
Contenful - The Missing Manual

Jon D Jones

Contents

Welcome 2
Developer Prerequisites . 4
Why use a SAAS headless CMS? . 5
Why use Contentful CMS? . 10
The true price of Contentful . 13
Additional reading and resources . 19

1

Welcome

Welcome, to my 4th book!. By purchasing a copy, you have officially become a
bona fide legend! Within these pages you will learn about all the essential steps
that are required to build an epic website that is powered using Contentful CMS.

As of writing, this is the first book on Contentful CMS that has been published.
Where this book differs from the majority of the other CMS books is on its
focus. The intention of this book is not to be a glorified content editing manual.
Instead, the intention of this book is to be a reference for developers that explains
the complete end-to-end process that a team will need to follow in order to
successfully deliver a headless web project. Also before you worry. . . yes, it also
contains all the code samples and implementation details you would expect it to.

When it comes to starting and successfully delivering a new CMS powered
project, there are two fundamental elements. The first is the code. Knowing and
understanding the ins and outs of the programming language that you are using.

The second element in a headless project is being able to define the overarching
architecture. Without fully understanding the role a headless CMS plays in the
process, the capabilities you should expect it to provide (and the capabilities it
does not cover), the technologies required to deliver all the proposed features
and how you can budget for these things, you are setting yourself up for failure.
Not getting these fundamentals right is a recipe for disaster.

The biggest project failure that I ever worked on occurred around 2015. At the
time, I had been working in the industry for over a decade, I had helped deliver
a lot of enterprise-level websites and I knew what I was doing. I was brought
onto a team as a contractor to help deliver a website for a large global brand
most readers will have heard of.

The overall brief from the client was simple, an e-commerce site that made them
money within x amount of time for x budget. They had just got an existing
company to create a new platform for them. This new platform met 90% of
their business use cases, however, some aspects of it had issues. The relationship
with the existing vendor had deteriorated badly and they wanted us to finish off
the project for them.

The lead architect on the project didn’t take this brief. Instead, as a team, we

2

were forced into recreating another brand new website. This new website needed
to work within some utopian architecture. Instead of using the licensed software
the client had purchased, we were briefed to re-invent the wheel and built custom
solutions that took effort to build and which diverted effort from the features the
client actually cared about. On top of this, these custom solutions also increased
their operating costs, they were paying twice for the same capabilities!

Neither of the two new sites ever saw the light of day. All the efforts by lots of
people were discarded. I feel one of the main reasons why this project caused
so much controversy was because of the difference in opinions between the two
sides about what needed to be built. The client expected us to fix their new
website within a few months of effort and to help them make money. Instead, we
spent months rebuilding the brochureware part of the project to work within a
new architecture. This only compound the tensions, as the brochureware aspect
didn’t help them make any money.

This story highlights what can happen when there is communication breakdown
around architecture. In a headless project, there is a greater chance you might
find yourself in a situation like mine. Fail to scope a project correctly and the
end operating costs could be thousands of pounds more per month than you
planned. Not having a good understanding about which features you can expect
to get out-of-the-box and which you will need to custom build yourself, can
mean disaster. In the worst-case scenario, you might miss deadlines by months
or years.

This is why one of the most fundamental aspects of a headless CMS build, is
understanding what you need to deliver. After you have a clear and accurate
understanding of your client needs, you will decrease the chance of getting things
wrong. This will then allow you to realistically assess which features you can
offload to the CMS (or another tool) and which feature you will have to build
from scratch. My recommendation is to always try and use something ready-
made as in general it will make everyone’s lives a little easier. Its somewhere
between these pillars of understanding and delivery that project success can be
found.

This is why the focus of this book is for technical readers. The book not only
covers how to use the CMS, it also covers the different options and approaches
that you can pick from when building a headless website powered by ContentFul.
Depending on the implementation route that you pick, will also have an influence
how you configure Contentful. Understanding how all the bits of the puzzle fit
together will help increase the odds that your project is a success.

Simply understanding how the CMS works is not enough. There are also a
number of ancillary tooling that you may also need to consider, in order to deliver
anything meaningful. For instance, how are you going to host your website? Are
you using JAMStack? What about search?

In the real world, regardless of how perfectly you write some code, if that code
does not address the fundamental business problem a company is trying to

3

solve and you deliver it within budget, do not be surprised if your technical
masterpiece never gets used.

The aim of this book is to allow you to build a website for any client, whether it
be enterprise or personal, using Contentful CMS. With the introduction nailed,
let us get to the good stuff!

Developer Prerequisites
One cool aspect of a headless project is the freedom that it gives you as a
developer. Contentful is classed as software-as-a-service (SASS), meaning you
will not need to install the CMS locally yourself. Instead, you will access
Contentful using an internet connection and a web browser. The great thing
about SASS is that you are free from the responsibility of patching, or upgrade
the CMS whenever a new version is released. As a developer, all you need to
focus on is building a righteous website by talking to an API.

This means that the prerequisites required to start a headless CMS project are
minimal. Basically, you need the ability to write code, push code to source
control and run your website locally. Like the majority of developers, I use Visual
Studio code as my IDE of choice. VS-Code is the most used IDE by developers,
its free, and it has a great extension library. What more can you want?

You are free to use whatever IDE you want, as long as you can install NPM
packages you will be able to do everything outlined within this book. If you
want to know which VS-Code extensions I use to optimize my development flow,
I recorded a video outlining everything which you can find here.

I use Github as a code repository combined with the command line to pull and
push things. I recommend that all developers invest the time and learn how to
use Git from the command line as it’s a skill that will last your whole career
and it’s a skill that will make you more productive. Those really are the only
two essential tools that you need to get started!

If you are anything like me, one annoyance when reading any programming book
is being able to access the included code samples. Having to manually try and
copy and paste code out of a book is annoying. Additionally, code samples that
are spread over many pages are hard, if not impossible to understand.

To make your life a little easier, I have included all code samples within this
book within an accompanying GitHub repository. You can access this repository
at:

https://github.com/jondjones/contentful-the-missing-manual

If you want a quick way to search the code contained within this book I recom-
mend bookmarking that link!

The final handy resource to mention is the Contentful forum. As you go through

4

https://code.visualstudio.com/
https://code.visualstudio.com/
https://www.jondjones.com/tactics/productivity/21-amazing-visual-studio-code-extensions-2022-edition/
https://github.com/
https://github.com/jondjones/contentful-the-missing-manual

this book, if you get really stuck trying to implement something, I recommend
you head over to the Contentful forum which is available here and ask for help
over there. Failing that Stackoverflow is always your friend.

Why use a SAAS headless CMS?
I frequently get asked all sorts of questions about CMS development through
my work, my website, and my YouTube channel. Out of these questions, there
always seems to be a subset of developers who tend to think pretty negatively
about headless CMS development. The majority of this negativity tends to
come from folks who have a history within CMS and fail to see the benefit of
switching.

For some reason, many older developers can be very opposed to even considering
a headless CMS solution. Typically, these herds of disgruntled developers tend
to come from a web development background and are not very familiar with
the whole Javascript/Typescript ecosystem. They also tend to already have a
“favourite” CMS

I have found that one of the main reasons why certain people adopt this mindset
is based on some he-said/she-said horror story that someone once told them in a
pub. “Oh, I don’t want to use headless, because I know someone, who said such
and such a client couldn’t preview anything!”

Yes, these horror stories do exist for Contentful, however, these types of stories
also exist for every language, framework, package and tool that has ever been
created.

The simple truth is that the team implementing a project has the biggest
influence on whether that project is successful or not. If the team does not really
understand the system they are using, they will configure and implement it
incorrectly. This in turn can create a bad experience for content editors, which
leads to a horror story.

Whenever I encounter a real-world horror story, I always question the storyteller
about the challenges the team had during the project. It is only when you
question, that you learn the truth. “Oh yeah, the lead developer quit halfway
through and the client made us deliver the site a month before the agreed
deadline, so it was rushed”

The point I am trying to make is that if you do online research about headless
CMS you will quickly find good and negative opinions on it. It is very easy to
find stories that will collaborate with your thinking.

One of the reasons why some folks can have misconceptions about headless CMS
is that enterprise-level solutions, like the CMS systems provided by Adobe, Opti-
mizely, or Sitecore, approach the challenge of CMS from a different perspective.
These enterprise-level CMS solutions tend to provide a lot more capabilities than

5

https://www.contentfulcommunity.com/

just content editing. These CMS systems, fall into the bracket also known as
digital experience platforms (DXP).

DXPs are a digital tool that can be compared to a swiss-army knife. The reason
why these tools exist is mainly due to the CMS sales process. Over time, as all
the different CMS companies kept trying to outdo each other, more and more
capabilities got added to the CMS. After many years of this competition, the
CMS systems eventually did so much that the category of software they resided
in changed. It went from CMS to DXP!

If you think of this in terms of pure sales, this is understandable. In order
to get a competitive advantage a sales team needs to have features that their
competitors can’t match. This is why building new features is a key aspect for
all software technology vendors.

Your affinity towards tools that do everything will determine which side of the
fence you stand on. A headless CMS tool will fundamentally approach the
problem with a different mindset compared to DXPs. DXPs try to solve all the
problems, while headless tools tend to simply solve a single problem. This is
why you can find a lot of conflicting articles online about which approach is best.

In order to try and explain both camp’s positions, let us consider some of the
main justifications that always seem to get mentioned in these debates:

Sub-par features: Each technology company normally has an insane amount
on their product to-do list. With constant pressure to work on the next ticket, a
CMS vendor will typically build a feature as a minimal viable feature (MVP).
The typical development cycle is to build a feature that ticks the minimum
number of required requirements so the team can start the next ticket as fast as
possible.

If the vendor’s customer base reacts favorably to a feature, it might be improved
later on, however, if it doesn’t get high adoption then that feature will likely never
be touched upon again. This product development cycle continually repeats.
After a few years, the CMS system starts to become composed of more and more
features. Some good features and some not-so-good features.

When a potential new customer evaluates a new CMS, they will usually have a
tickbox of things that the CMS has to do. The simple fact is that when a CMS
has lots of features, it will get considered for more opportunities.

In a lot of instances, a customer may pick a CMS because of a certain feature.
Sadly, more often than not, the company ends up never using that feature. In
other scenarios, because the feature is average it might not give the benefit the
customer expected, so they stop using it.

A great example of where this buyer’s remorse can occur is when picking a
CMS because it offers A/B testing. Several CMS systems ship with pretty bad
out-of-the-box AB testing capabilities. If you are serious about experimentation,

6

you will want to buy the best tool possible and spoiler alert, no in-build AB
feature provided by a CMS makes this list!

This story highlights the pro vs against DXP debate. The pro DXP’ers will
negatively judge any CMS that does not ship with A/B testing capabilities. The
against DXP’ers will say, why buy a feature that is not great, which does not
give them the best business outcome possible, and which they are then forced to
maintain in the future?

To re-cap, the pro headless camp thinking is that best-of-breed software will give
the team access to the best tool possible, which should create a better overall
system!

More code to maintain: The issue with a DXP that has lots of capabilities, is
that the chances that the system needs to be upgraded more frequently increase.

DXP-powered websites will typically be more reliant on that single DXP platform.
Meaning the next time you need to upgrade your CMS, the team will have a
higher chance your upgrade will take longer as you have more code to maintain.

The pro headless camp will say that by splitting responsibilities into different
tools, there will be less need to upgrade software and when you upgrade the
impact will not be as severe.

Admin effort: If you sit in the pro-DXP camp, your preference will be to
minimize the amount of admin effort involved in the procurement process. It
takes time and effort to research, onboard and maintain a new software vendor.
The process will involve lawyers, finance people, training and more. With a
DXP you have a single contract to agree upon with a single vendor, however,
that contract will typically be a lot more important and in-depth!

If you agree with MACH and headless, you will want to start your project ASAP.
You will not want to wait and rely upon some big contract being signed before
you start the project.

Many of the new SAAS tools allow you to get going on a Freemium tier without
signing a big contract. All of the tools that I mention in this book will allow
you to create an account and get up and running with that tool in under 15
minutes. Most of the time you will start your project in development before
going to production. You can access the Freemium tier while getting the lawyers
to sign contracts in parallel. Speeding up your project timelines.

Lastly, if you find a certain feature is not useful, you do not need to worry about
signing an enterprise license. You can try it before you buy.

Yes, there is going to be more admin in headless, the tradeoff is starting a project
sooner.

Upgrades: In order to get access to a new feature released by a DXP vendor,
you are typically forced to upgrade something. The upgrade process could involve

7

changing a package, a database, an executable, a framework, or a combination
of all of the above.

I know from first-hand experience, upgrades can take blood, sweat, tears, and
arguments. The worst upgrade project I worked on took over six months!

The pro-DXP camp will consider upgrades as good because they feel like having
the power over when they should upgrade is less risky. They will not want
a vendor changing anything without their knowledge, they will need to do
everything themselves in-house.

When you use a headless tool that is also SASS, like Contentful, you never need
to worry about upgrades. The thinking within the pro-headless camp is that
as a business their focus is on doing whatever they do best. The purpose of
their company is not a software maintenance business. They understand that
they are not experts on the tool in question and that the vendor will likely do
a better job of maintaining the tool they created as they understand it better.
They want to focus on growing their business, rather than maintaining software.

Hosting The arguments around hosting is the same as the ones made above.
Do you want to manage the hosting responsibilities in-house, or, do you want
someone else to take the hassle away? When you use a SAAS tool, you do not
host the software. Hosting, patching of servers, and dealing with 24/7 support
and up-time is transferred to the SAAS vendor.

MACH Vs Traditional?
I think the above points help to showcase one of the most misunderstood aspects
of building a headless website powered by a CMS, responsibilities.

Traditionally, a CMS/DXP did everything for a developer, in terms of features
and in many cases infrastructure. A DXP will typically include things like a
search and personalization engine, it will provide ways of managing frontend
members, and it will be customizable so you can include your own custom screens.
In the new world, this way of thinking has evolved.

The intention of Contentful is to be a CMS that can provide you with everything
you need to create and deliver content, nothing more. This is why when you
decide to use a headless CMS, typically the story is not just about picking a
single tool, it is about picking a combination of technologies that can work
together. It is this power to combine tools that will allow you to build a kick-ass
website.

When you go to a restaurant, you will want to get the best meal possible, based
on your liking. To do this you will pick a starter, a main course, and a dessert
from the menu of options. The same is true when creating a website powered by
Contentful.

After picking Contentful as your CMS, you will also need to decide how you want
to build your head. What other technologies will you need to use? Javascript,

8

Typescript, Swift, React, Kotlin, Vue, NextJs, Flutter, or, Gatsby.

What other tools may you also need to use? Does your site need to provide
a search engine? If so, you will likely need to pick additional kick-ass SAAS
tools. Will Algolia, Optimizely, Netlify, Big Commerce, or Cloudinary make the
list? These choices can seem endless. Do not overlook the fact that at the start
of your project, you will also need to learn about the best SAAS tools in the
marketplace.

A lot of headless naysayers will quickly point out that Contentful CMS is rubbish
as it doesn’t provide a search engine. Yes, this is true. . . however, when you
typically pick a DXP CMS that has its own search engine, you typically end up
with two OK products, rather than two great products.

In the SAAS, best-of-breed world, if you want to provide a search engine, you
would likely consider using Algolia. If you want to create a membership area,
Auth0 provides a great way to manage log-in. Need a provider to host your
website? Netlify will integrate nicely

This mix-and-match philosophy is where I believe the true power of this new
approach comes into its own. Headless turns the challenge the DXP herd has on
its head. Big, monolithic code base are notoriously hard to maintain. This is
why the DXP vendors who have been in the market for 20+ years, typically find
it harder and harder over time to release new features quickly. By slowly adding
more features to the CMS, they limit their ability to be agile.

The same principle is true for your project. The more composable you can make
your architecture, the easier it will be to pivot later on. ContentFul is very clear
in its intentions. To be the best CMS in delivering content via an API. This
intent is not to be the best member management tool or the best A/B testing
tool. If you want these features you need to either build or, or, what is more
likely buy it.

SAAS tools also provide some other less obvious benefits. When going with a
traditional DXP-powered CMS, you will also need to regularly maintain the
software. Taking this route, you are faced with an issue. Do you take the
responsibility to host the site in-house and potentially reduce your hosting costs
but increase your maintenance responsibilities? This comes with the burden
of maintaining the software. Expect to regularly invest time upgrading and
patching the software and the infrastructure. Also, how do you deal with bursts
in traffic? What happens when the site falls over in the middle of the night? You
need teams to maintain the servers, provide support, deal with scaling issues,
etc. . .

In SAAS, the vendors will manage the tool for you. As the tool lives in the
cloud, updates and patches will be managed for you. The tool will be configured
so it can be scaled if you get a spike in traffic. It will also come with DDOS
protection so you do not need to deal with malicious attacks. Do not forget
there will be 24/7 maintenance and support included in the background. There

9

will be a team of people making sure everything is running OK. Maybe that’s
the reason the monthly SAAS bill can seem quite expensive at first glance!

Granted, headless and SASS are two different topics that I just munged together,
however, when you go online most articles you find will often do the same.
Assuming I have convinced you about the benefits of headless and SASS over
traditional CMS systems, the next question is why should you pick specifically
Contentful?

Why use Contentful CMS?
When it comes to using a headless CMS you are faced with a lot of options.
To prove just how many there are, you can head over to Jamstackers.org.
Jamstackers.org publishes a list of pretty much all of the headless CMS solutions
that are currently available within the marketplace, both free and commercial.

This list can be filtered by Open and Closed source projects. Projects are then
displayed based on the number of stars it has on Github. Obviously, Contentful
CMS is on the list, however, as Contentful is not open source and not on Github
it has no stars. This means that you will have to scroll for a while before you
find it in that list.

Before I start sharing tips on how to build a website powered by Contentful, it
is prudent to call out some of the reasons why I think it is a good option, what
exactly makes Contentful stand out?

According to G2.com’s Best Headless CMS award, Contentful is ranked as having
the largest market share in the mid-market category with 36% adoption. It also
has an impressive grip on the small-business market with 33%. based on G2,
Contentful has pretty solid all-around user satisfaction scores.

In terms of CMS functionality, Contentful has all the capabilities that you would
expect a CMS to ship with. Key features for content editors include:

• Content modelling capabilities with 9 different field types including rich-
text, text, number, date, time, location, media, boolean, JSON object and
reference type.

• Content scheduling
• Content versioning
• Publishing workflows
• Environments
• Role-based user permissions with multi-factor authentication
• Internationalization/multi-language with fallbacks
• Content tagging
• Content feedback with tasks & comments

For developers, you will get access to:

• Querying for content via GraphQL

10

https://jamstack.org/headless-cms/
https://www.g2.com/categories/headless-cms/enterprise

• Querying for content via API endpoints
• 8 SDKs to render content, including Javascript, Python, /NET. PHP and

Java
• Import/export via CLI
• Webhooks

Yes, the majority of headless CMS systems listed on JamStackers will also have
these capabilities, true. A feature matrix is definitely handy to point out what
Contentful can do, however, it does not really highlight the reasons why you
should pick Contentful CMS.

Personally, I think these three features, in particular, make Contentful stand
out:

Marketplace: One of the main reasons why I consider Contentful as one of the
top headless CMS contenders is because of its partnership network.

Contentful has a marketplace with over 70 apps. You can view the marketplace
online here. Within this list, you will see tools for analytics, commerce, artificial
intelligence, asset management, optimization, search, video, etc. . .

The majority of other headless CMS solutions do not have their own marketplace.
The ones that do, tend to ship with limited apps that are created by the CMS
vendor themselves. These apps are focused on adding slight improvements to
the CMS, like adding a new content type.

One example of this is Strapi CMS. Strapi has one of the largest marketplaces
with over 90 apps, however, 95% of these extend what Strapi can do. In the
Strapi marketplace expect to see tools like UUID field, TinyMCE editor, and a
Preview Button.

If you compare this to the Contentful marketplace, you will notice the difference in
the scale of integrations. Contentful apps include adding A/B testing capabilities
with Optimizely, adding e-commerce functionality with BigCommerce, adding a
DAM with Cloudinary, backing up your site with Dropbox, or improving your
teams’ communication with Slack.

Contentful provides apps to integrate with partners, including, Brandfolder,
Bynder, Cloudinary, CommerceTools, Dropbox, Frontify, Google Analytics, Jira,
Optimizely,Shopify, Smartling, Typeform, AWS, Algolia, Bitbucket, CircleCI,
Elasticsearch, GitLab, Heroku, Mailgun, Slack, Travis CI, and Twilio.

If you can leverage the marketplace, you will end up getting a project up and
running with a lot less effort compared to other solutions.

Environments: Any developer worth their salt (does anyone know why salt is
so valuable?) understands that when it comes to shipping bug-free software, we
need a process that involves a level of isolation.

In order to prevent disruption to production/customers, the development team
need to build a feature in development and when those features are completed

11

https://www.contentful.com/marketplace/
https://market.strapi.io/
https://market.strapi.io/plugins/@bn-digital-strapi-plugin-field-uuid
https://market.strapi.io/plugins/@sklinet-strapi-plugin-tinymce
https://market.strapi.io/plugins/strapi-plugin-preview-button
https://www.optimizely.com/products/intelligence/web-experimentation/
https://www.bigcommerce.co.uk/
https://cloudinary.com/home-102622
https://www.dropbox.com/login
https://www.contentful.com/marketplace/webhook/slack/

and tested, only then should it get merged into production. When it comes to
CMS and content authoring, these requirements do not change.

This is where the Contentful environment capability can help. For us developers,
it is probably easier to consider a Contentful environment as a feature branch
in Git. To avoid messing up production content during development, use a
Contentful environment to create a separate space/area where you can change
things in the CMS without impacting production.

When you are finished working on your task, you can copy your changes back
into the production CMS branch and finally delete the Contentful feature branch.

The next time you need to create a new feature in code, you can quickly log into
Contentful, and create a new feature branch based on the production branch.
This process will take about a minute and it will mean you will have access to
an environment that contains all the latest content updates which you can use
and update without impacting production.

As long as you use the same name to create these environments like development,
you will not need to update anything within your code. It will all just magically
work!

The main and default environment that gets created whenever you create a new
space within Contentful is called ‘master’. Whenever you create an additional
environment, you can pick the branch to branch from. In the free tier, you can
create 3 environments.

We will delve into creating a new environment in detail later, for now, you can
read more about it here.

Quick to get going: One issue with a traditional DXP, like Adode, is that it
can take months before you are given access to an environment. You need to get
everything agreed upon before you can create anything. As Contentful has a free
tier, you can get a production-ready website up and running with Contentful in
under 20 minutes. In terms of pace, this can not be beaten!

The last thing I like about Contentful is that I find the UI nice to use and using
some templates you can find online, you can get a working site up and running
in under 10 minutes.

One reason why you can move so quickly is that there are a number of starter
kits and themes available for Contentful.

You can use sites like Jamstack themes and Themeforest. Pick a theme, log
into your COntentful account and all the content will be created for you. Hook
the process up to Netlify and you have a production-ready website with pages
and content, ready online in minutes. For someone from my background, where
getting a basic site up and running would useful take a few weeks. Getting that
time down from weeks to minutes is amazing!

12

https://www.contentful.com/developers/docs/concepts/multiple-environments/
https://jamstackthemes.dev/cms/contentful/
https://themeforest.net/category/jamstack?term=contentful#content

The true price of Contentful
Before we get to the good stuff, I think its worth covering an area that can
cause a lot of controversy when picking Contentful, pricing.Some developers
do not consider financial impact as part of project planning, however, it is an
often unescapable necessity. The simple fact is that Contentful CMS is a bit of
software that is created by a business. Like all businesses, in order to survive
and thrive that business needs to make money.

The reason why I feel I need to highlight this at the start of the book, is because
a lot of teams fail to consider this when they are picking the CMS they want to
use on a project. One of the reasons why a lot of teams are drawn to Contentful
is because it has a free tier. A lot of people make the mistake of thinking that
because they start off on the free tier, Contentful will be free forever, this is a
mistake.

For small brochureware websites with limited requirements, its possible to build a
website powered by Contentful for free. As you would expect from any Freemium
service, there are restrictions within the free tier. During the early stages of
development when it is just you are your team building stuff, it is unlikely that
you will bump into one of the tier restrictions. Hitting this limit can often
happen just after a site is launched. When your requirements hit a certain
threshold, your only options will be to pay for the premium service.

Contentful provides two types of paid tiers, teams and premium. If you are an
enterprise-sized organization you will have a big laundry list of requirements
around what a CMS vendor must provide. It is almost guaranteed that an
enterprise- size company will need guarantees around uptime with financial
penalties if an SLA is breached. Other considerations might be a significant
number of bums in seats who can access the CMS and the amount of content
that needs to be created. Often large companies will also require real-time access
to support. This list could go on and on.

If you are building a project that requires the capabilities offered by Contentful
premium tier, you will need to get in contact with Contentful to get a custom
quote. After contacting Contentful, an account executive will get in contact with
you. Between the two of you, you can go over your requirements and the AE
will be able to cost it up. As the price will depend on certain levers, Contentful
can not advertise a flat price for enterprise costs on their site. I do know that
pricing can start from roughly $4000 a month.

For the smaller companies, a developers lack of planning around potential future
operating costs can be critical. The teams tier costs $489 a month, so $5868
annually. Promising a client that Contentful is a free CMS, then 6 months later
invoicing them for 6K can be a very unwelcome surprise. This type of unplanned
news can be a make or break relationship. This price increased can also be
compounded if your project uses other SASS tools. Typically, if you project
reaches the level where you need to scale the CMS, it is often likely that you will

13

also need to scale the hosting and other SASS tools used within your project.
That promise of free operating costs, can very quickly jump to operating costs
of 10K a year if you are not careful.

This is why before undertaking a project that uses Contentful, I strongly rec-
ommend you think about pricing and tiers. I think Contentful is a great CMS
which is worth the money, however, it is a mistake to not make the client aware
about the risks around potential increased operational costs before you start
writing code.

This communication is key in order to establish a long and happy relationship
with a client. Some companies will not be able to afford the price increase from
free to 6k a year. When a company is forced into a corner, their only option
might be to cancel the project, re-platform, and pay someone else to rebuild
their website and then dump you like yesterdays leftovers. This is why it is
important to take the time and consider what you will need to likely use in the
future before committing to Contentful. We all love Freemium, until we hit its
limits.

I point this dilemma out from personal experience. On one project, we identified
Contentful as a great platform for a client. Based on their needs the free pricing
tier gives the client everything they had asked for. Shortly after releasing the
website, the client asks for some bigger and better capabilities on the site. Even
though we had made the client aware of the limits at the start of the process,
they still had an unhappy shock when we told them about the cost increase.

In the remaining part of this chapter, I will explain what limitations you need
to consider and how those limits could impact your software budget.

Tiers: The first thing to make a client aware of is the jump in price between
the tiers. You can start to use Contentful CMS for free, however, when you need
to scale there is no small step between the free pricing model and the next tier.
As mentioned, the jump goes from free to 6k a year. This is not insignificant.
Some companies might be easily able to afford this price hike, some might not.

You will need to consider if this price is something the client can live with. If
you compare this yearly cost to a self-hosting CMS solution, like Wordpress
or Umbraco CMS, take into consideration everything. Self-hosting software
wil always seem cheaper at first glance, however, you also need to take into
consideration the invisible costs of the time required to patch, upgrade, monitor,
host and support that software. The benefit of SASS is that this is taken care
for you and that price is also included within the monthly fee.

Features: In order to successfully plan a headless project, determining the
capabilities of your project at the start is essential. The scope of most projects
will include a lot more than simply creating some screens or pages that render
content.

Typical features that we all know and love could include, e-commerce journeys,
secure member areas, or site searches. These are all examples of extra features

14

that a typical website is expected to offer. An important point to understand is
that just because your website does a lot of things, this does not mean that you
should expect your headless CMS to handle everything for you.

Contentful is a tool that adheres to the best-of-breed mentality. As a product,
its focus is on providing content editors with a great editing experience and it
does this really well. Contentful does not try to pretend that it does everything
for everyone.

This limitation around product offering is a very different approach compared
to most of the traditional CMS systems in the market. Traditionally a CMS
has promised to do everything for everyone. To emphasis this point, it is worth
pointing out that there is even a completely different category of CMS systems
that fall into a category of software called the digital experience platform category
(DXP). CMS systems within this category include Adobe and Optimizely.

The aim of these DXP tools is to be a one-stop shop for everything you might
need. For example, Contentful does not offer member management capabilities,
whereas a CMS like UmbracoCMS or even WordPress provides both.

Despite what each CMS vendor’s marketing hype might try to make you believe,
one approach is no better than the other. Like most choices in life, each CMS
platform has its strengths and weaknesses. There is no perfect fit for everyone.

Instead, determining the best CMS for your project will be determined by a
number of factors. These include what it needs to do, the budget, the size of
the team, the number of developers, and its budget. Combining all these factors
together will influence which type of CMS is right for you.

In the new world, you will potentially need to select a different SASS tool in
order to deliver each core feature that is offered by your website. Meaning, the
monthly cost for Contentful might not be the only cost that you may need to
consider. If you want to provide a great search in your site with faceted filtering,
you may need to pay for a tool like Algolia. If you want to build a members
portal, you may need to introduce Auth0 into your stack. If you need an asset
management solution to edit images, you might want to consider Cloudinary. Do
not forget you will also need to host your website so you might want to consider
Netlify.

Each of these tools has free and paid tiers. Assuming you wanted to build a
website with all the tools listed above, if you need the enterprise tier for all of
them, expect to pay 10-30k a month. If you work on a small project, the price
could be completely free. This is why when using SASS tools, having an exact
understanding of which tiers you need to use for each tool that you need to use
is key. The difference in price points can get very expensive very quickly if you
fail to plan accordingly!

This pricing might sound stupidly expensive, however, the theory is that by
picking the best tool for each job and combining them, your team will get access

15

https://www.algolia.com/
https://auth0.com/
https://cloudinary.com/
https://www.netlify.com/

to way better capabilities compared to a CMS that tries to do everything. This
is where the best-of-breed mantra comes into play.

The point that I am trying to be crystal clear about is that Contentful is aimed at
content editing and content delivery. If your specification defines any additional
functionality, you may need to purchase additional products.

In simple financial terms, the more products you use, the greater the chance
your monthly operating expenses could increase. This potential impact on the
projects operating costs is the main reason why I recommend that you get a
clear picture of what your website needs to do at the start. On my projects, I
always aim to get this clear understanding before committing to using any SASS
tool on a project.

Having the ability to pick the best product for each feature, means you can
create a much better overall experience and you are not constrained to using
sub-par features. It also means that all the hosting costs, upgrading costs, and
support costs for that tool are taken care of for you for one monthly price.

If you are interested in this topic and you want to learn more about other
headless SAAS tools there is an organization called the Mach Alliance that you
should be aware of.

MACH is short for micro-services, API-first, Cloud-native SaaS and Headless.
This group of individuals defines a group of SASS technologies, which include
Contentful, which are known to play nicely together.

One issue I have with some of the recommendations on the MACH alliance
website is that the recommendations also include digital agencies. Obviously,
you can pay these agencies to design and build a headless website for you. If the
aim of the group is to promote technology, why promote companies that make
money from using those technologies? For me, it muddies the water a little bit
too much.

Just because an agency is not on that list, that does not make them worse at
implementing headless websites compared to those on the list. It also means
that those agencies are more likely to try and influence technologies that they
know and use, which could stunt the adoption of new tools in the future.

I know from personal experience the agencies listed on the MACH alliance page
are just as happy to use a DXP tool to create a website. If you check my CV,
you will notice that I have previously worked at one. As long as an agency can
make money, they will build a project, however, the client wants.

One good thing about the MACH alliance website, is that it can give you an
indication about what tech works together nicely. If you are struggling to plan
a headless project, the MACH alliance website can be a good place to learn
about what else you need to start thinking about. I will also be covering these
considerations as we continue through this book.

16

https://machalliance.org/

Number of content editors Another element that will influence most SASS
vendors’ pricing is access to the tool. How many people from your team need
access to the CMS? Within the Contentful free tier, you get a maximum of
five content editors. If you work in a large team, with a handful of developers,
testers, project managers and a few clients, be aware that you will hit that limit
quickly. One workaround is to share login details, although this can get messy.
If you have lots of people who will need access to the tool and governance and
cadence is really important, this will likely be a reason why you will need to use
the paid-for tier.

Environments: Within Contentful, it is possible to create multiple environ-
ments. Environments are really handy for development, testing and user accep-
tance.

When writing code, it’s much easier to target a staging environment, so you can
change content models and create pages without impacting the live site. For
testing new code changes, it’s easier to sign something off in isolation, before
it is merged into production. Why risk new code potentially breaking existing
behavior when you do not need to? For approving new content changes, it is
much easier to update things on staging and test that they work and look OK
before merging those changes to the production pages.

In the free Contentful tier, you are allowed to create three environments. For
most projects, a development, a QA and a production environment will be
enough. If you need more, you will need to pay more.

Another thing that I should point out is the limitations around copying content
between environments. When you create environments, you can not copy content
between them within the UI yet. The process of copying content requires a
developer to use the Contentful CLI tool. Using this tool, I have hit limitations
when copying deeply nested content. The tool can fail to transfer some of this
content. This error is not a limitation of the free plan, however, something to be
aware of when doing content migration! We will also cover this CLI tool later in
the book.

Governance and roles: As part of the free pricing plan, you will only have
access to two different editing permissions, admin and editor. If I am being
honest, for day-to-day usage during a build, the editor role is a bit useless
because it does not have permission to publish content. From my experience,
during project kickoff, I have typically needed to give everyone on the team
admin access.

Another limit to the edit role is access to environments. As mentioned above,
when using Contentful CMS, I do not recommend performing all of your de-
velopment work against the production environment. Instead, I recommend
creating content in a staging area first and then pointing your local website to
that staging environment. Using this approach means that you can create code
and test it without impacting content editors.

17

In the free plan, the editor role can only access the production environment.
If you want to allow a content editor the ability to edit content in a different
environment, you will need to make them an admin. This means that on every
project I typically need to give all content editors the admin permission. This
means those editors can do everything, including delete the website! If you do
not like that prospect, you will need to use the premium tier where you get
access to more granular permissions!

Number of supported Languages: If you need to create a multi-language
site, the free plan will only allow you to create three languages. If you expect
the site to support more languages in the future, this will be a limit that will
force you to upgrade to the next tier.

SLA: A lot of companies think they need an SLA so they opt to pay for the
premium license, however, that statement is not necessarily true. Within the
enterprise tier, you will obviously get a much better SLA compared to the free
tier. Note that I said SLA and not level of hosting quality. The underlining
infrastructure Contentful uses under the bonnet on the free plan is the same
as the premium plan. This means that regardless of free or premium, you get
exactly the same underlining hosting service.

The SLA is simply a money-back guarantee your company could get if things go
wrong. In most cases, it will be cheaper to not have an SLA. If in the future
you think that you will need an SLA then expect to pay more. Depending on
how much SLA you need, may mean you need to use the enterprise tier.

For most clients, I advise them to not worry as much about SLA as they might
have when they used a traditional CMS. If you created your website following a
JAMStack architecture, with static site generation, access to the pages contained
within your website is decoupled from the CMS being “up”. Atomic deployments
mean that your website will work if the CMS is down. We will cover that
statement in more detail throughout this book, so do not worry if that statement
does not make complete sense yet. The takeaway is that if you are considering
Contentful, consider if you really need SLA first!

Content: The final capability that can influence the type of tier that you need
to use is an obvious one, the amount of content that you need to model. Within
the free, or, premium tiers, you can model up to 48 different content types. In
the free tiers, you can create up to 25K worth of records using those types. In
the premium tier, this can be increased to 50K if needed. Anything larger than
this will require the enterprise tier. If you know that in the future your project’s
content needs will scale a lot, be prepared. I think this is the main influencing
feature that can catch people out from premium to enterprise!

Out of all of the projects that I have built with Contentful, these are the main
points that clients have flagged as causing an unexpected increase in operating
costs. Contentful is a great CMS, however, I recommend knowing these points
before picking it.

18

For this book I am obviously assuming that you can see the value of Contentful
CMS and you are committed to powering your website with it. The next step is
to decide how we are going to build our headless website.

Additional reading and resources
• Environments FAQs
• Multiple Environments
• Contentful Community

19

https://www.contentful.com/faq/environments/
https://www.contentful.com/developers/docs/concepts/multiple-environments/
https://www.contentfulcommunity.com/

	Welcome
	Developer Prerequisites
	Why use a SAAS headless CMS?
	Why use Contentful CMS?
	The true price of Contentful
	Additional reading and resources

