

Introduction v

Authors vi

Intructional Objectives vii

Section 1 - Introduction

Logical Relationships among the Components of a Typical Computer
Instruction Fetch-Execute Cycle
Moore's Law
Telling the Difference Between Programming Languages
The Programming Steps
Common Cautions about Programming
Programming Rules and Meaning
History of C
Overview of C the Programming Language
C Supports "Subroutines"
C Comments
Basic Structure of a C Program
Example of a Simple C Program
Common C Characteristics Related to this Simple Example

1
3
3
4
5
5
6
6
7
9

10
11
12
14

Section 2 - C Basics

C Identifiers
Basic C Data Types
Additional C Data Types
Declaration of C Variables
Declaration of String Variables
C Arithmetic Operators
Integer Arithmetic
Assignment of C Variables
Assignment Statements and C Data Types
Including C Header Files
C Output: printf() function
Complete C Program Examples using printf() function
Getting Input from User: scanf() function
Examples using scanf() and printf()
Dealing with Syntax and Logic Errors
Variable Assignment Review

15
17
21
23
25
27
29
31
33
37
39
44
47
49
52
54

i

Section 3 - Conditionals

if Conditional
Comparison Operators
if Conditional Code Examples
C Code Blocks
if-else Conditional
if-else Conditional Code Examples
More Discussion on Compound ifs
Compound if Conditional Code Examples
Conditional Operator ? :
Review of Unary, Binary, and Ternary Operators
Multiple Conditions - the switch statement
The break Command
switch Code Examples
C Expressions and Assignments

56
57
59
61
65
68
72
73
76
78
80
82
83
88

Section 4 - Additional C Operators

Increment and Decrement Variables
Increment and Decrement Operators ++ --
Additional Assignment Operators
#define Symbolic Constants
enum Enumerated Datatypes

90
91
93
96

100

Section 5 - Loops

Programming Language Constructs
while Loop Command
while Loop Code Examples
Infinite Loops
do-while Command
do-while Loop Code Examples
Nested Loops
for Loop Command
break and continue with Loops
continue command

105
106
107
112
114
115
122
125
136
137

ii

Section 6 - Strings

Introduction to C Strings
Review of String Terminology
String Constants and String Declaration
Common String-Related Operations - strlen()
Common String-Related Operations - strcpy()
Common String-Related Operations - strcat()
Common String-Related Operations - strvar[]
Common String-Related Operations - strchr()
Common String-Related Operations - strstr()
Common String-Related Operations - strcmp()
Common String-Related Operations - strcasecmp()
String Program Example

141
142
144
146
147
148
149
150
151
153
154
156

Section 7 - User-Defined C Functions

Introduction
Annotated Example of the Definition & Use of a C Function
A Function Header
Sample Function Headers
Simple Function Examples
Returning Values from Functions
More Function Examples
Introduction to Functions and Recursion
Recursion Function Examples

157
159
161
162
164
169
172
178
181

Section 8 - Arrays

Introduction to C Arrays
Declaration of an Array
Declaring Arrays Examples
Referencing Array Indexes
Array Program Examples
Array Program Example - Bubble Sort

186
188
190
192
194
199

iii

Section 9 - Pointers

Introduction to C Pointers
C Pointer Declaration
Pointer Operators
& - Determining a Variable's Address
* - Dereferencing a Pointer Variable
Passing Arguments to Functions by Reference
Pointers and Array References
Calculations involving Pointers
Pointers and Multi-Dimensional Arrays
Dynamic Arrays and Pointers
Accessing Dynamically-Allocated Arrays
Releasing the Dynamically-Allocated Memory Space

204
206
207
207
209
214
217
218
223
225
228
230

Appendix

Top Ten Most Common C Mistakes
C Precedence Table
Unix and File Redirection
C Header Files and Multiple Source Files
Common C Libraries

232
233
234
239
247

iv

Computer Science CS1 is a course designed for computer science majors. The class, and these
notes, discusses most of the common aspects of C and programming in general, tailored for beginners
who have little or no background in computer programming.

The major themes of the course include:

Developing students' expertise in the C programming language
Preparing students to build C software in a Linux environment
Introducing students to the algorithmic thinking that pervades computer disciplines
Helping students develop an accurate and useful abstract model of how computers work

These notes directly address students' ability to program in C and are designed as a supplement to
your instructor's in-class lectures. They will be presented in the classroom utilizing the online version
of these pages, making it easy for you to follow along, without having to tediously attempt to copy
the programming examples into your personal notes. These pages are formatted to make it easy for
you to add your own notes to the pages as the material is presented in class.

Learning how to program is a skill that requires practice. Lots of practice! Running the program
examples that are in the notes is a good start, but it rarely is enough for most students. One problem
with most beginners is they're not sure what to try, or they don't know how to come up with
programming exercises to write. This is why, after many of the program examples shown in this text,
there are supplemental programming problems, all of them similar in nature to the corresponding
exercise in the notes. These are designed to give you the opportunity to practice to your heart's
content.

v

Don Retzlaff is a Principal Lecturer for the Computer Science and Engineering Department at the
University of North Texas. He has taught programming for over forty years, thirty-three of which
have been at UNT. He received his Masters Degree in Computer Science from North Texas State
University (later renamed to UNT) in 1978, and has taught a variety of software development
undergraduate courses at UNT since that time, including Basic, Assembly, Pascal, C, C++, Java, and
PHP. He also is the coordinator and primary instructor for the department's senior-level Software
Development courses where students develop and maintain large-scale web-based applications.

For most of the courses Don teaches, he has developed his own custom set of course notes, utilizing
various programming features and the web to enhance the student's learning experience.

Don enjoys traveling with his wife Elisa, writing, programming, and spending time at home with their
four cats.

Phil Sweany is an Associate Professor in the Computer Science and Engineering Department at the
University of North Texas. He has been a computer science faculty member for 20 years, with the
last 8 at UNT. Phil received both M.S. and Ph.D degrees from Colorado State University in 1986 and
1992 respectively, and has taught a variety of Computer Science courses both at Michigan
Technological University and UNT. His research focuses on compiler optimization for heterogeneous
multiprocessors on a chip.

Unlike Don, Phil enjoys staying at home where he and his wife Margaret are dutiful staff members
responsible for the care and feeding of three cats. So, given the authors' choices in pets, I hope we'll
be forgiven for interjecting a few "catty remarks" from time to time both in these notes and in class.

vi

As an aide to both students and instructors, we are including a list of instructional objectives that we
anticipate that each student will meet during the term. The concept of instructional objectives and
their relevance to this course will be discussed in class early in the term, but in general, please
remember that exam questions will come directly from these objectives and an excellent way to
prepare for exam(s) is to make sure that you can meet each objective "covered" on an exam. So,
without further ado, here is a list of objectives that students will meet.

Find an electronic version of the web page for Fall 2011's CSCE 1030.1.
Draw a diagram that shows the logical relationships among the following components of a
"typical" computer.

CPUa.
Arithmetic-Logic Unitb.
Main Memoryc.
Secondary Storaged.
I/O Devicese.

2.

Given a diagram as described in the previous objective describe how the various logical
components of the computer work together to execute a program.

3.

Describe the fetch-execute cycle.4.
When shown a program, determine whether that program is a machine-language program, an
assembly-language program or a high-level language program.

5.

Describe the purpose of the C Standard Library.6.
Describe Moore's law.7.
Describe how each of the following pieces of software helps to convert a C program into a
program ready to execute.

Preprocessora.
Compilerb.
Assemblerc.
Linkerd.
Loadere.

8.

Use readable and consistent style in writing C programs.9.
Write complete C programs that use assignment statements, printf and scanf.10.
Write complete C programs that use simple IF statements.11.
Given an assignment statement, and input values for each right-hand side operand, determine
what value will be assigned during program execution.

12.

Describe, both pictorially and in words, how a C assignment statement changes the state
(memory) of the computer during execution.

13.

Show a precedence table for the following C binary operators.14.
+, -, *, /, %a.
==, !=, <, >, >=, <=b.

Use C's floating point and/or mixed-mode arithmetic to produce "more meaningful" answers to15.

vii

integer problems.
Develop algorithms through the process of stepwise refinement.16.
Use pseudocode in design of algorithms.17.
Write complete C programs that use WHILE statements.18.
Write complete C programs that use C's rich set of assignment operators.19.
Write complete C programs that use C's increment and decrement operators.20.
Write complete C programs that use IF-THEN-ELSE statements.21.
Write complete C programs that use logical operators and complex conditional statements.22.
Write complete C programs that use FOR statements.23.
Write complete C programs that use DO ... WHILE statements.24.
Write complete C programs that use SWITCH statements.25.
Write complete C programs that use BREAK statements.26.
Write complete C programs that use CONTINUE statements.27.
Write complete C programs that use the following subset of C's rich set of unary, binary, and
ternary operators:

(), [], ->, sizeofa.
++, --b.
binary operators +, -, *, /, %, <<, >>c.
unary -, &, *, ~d.
&, *e.
relational operators <=, <, >, >=, ==, !=f.
logical operators &&, ||, !g.
assignment operators =, +=, -=, *=, /=, %=, &=, ^=, |=, <<=, >>=h.
bitwise operators &, |, ^i.

28.

Describe how C's ternary operator, ?:, works and why some (including Dr. Sweany) suggest
not to use it.

29.

Describe how C's bit manipulation operators (shift, bitwise AND, OR, and NOT) can be used
to alter the operands upon which they are used.

30.

Given an operator precedence table and an arbitrary C expression, list the order in which the
operators will be evaluated.

31.

Design significant software using stepwise refinement and modular design techniques.32.
Write complete C programs that include calls to C-supplied functions.33.
Write complete C programs that include user-defined function definitions other than main.34.
Write complete C programs that include user-defined function definitions in more than one .c
file.

35.

Write complete C programs that include user-defined header (.h) files.36.
Write complete C programs that make significant use of the random function to generate and
use random integer data.

37.

Write complete C programs that use recursion as a design and programming tool.38.
Describe C's conventions for supporting function calls, including:

run-time stacka.
activation recordsb.
call by valuec.
call by referenced.

39.

viii

Describe C's storage classes, namely:
autoa.
staticb.
registerc.
externd.

40.

Given a multi-function, multi-file program, identify the scope of variable(s) within that
program.

41.

Write declaration statements for both single and multi-dimension arrays in C.42.
Use #define constants to specify both array sizes in declarations and loop bounds in code
accessing arrays.

43.

Use C's [] operator to access both single and multi-dimension arrays in C.44.
Use loops and loop indices in manipulating arrays in C programs.45.
Initialize arrays either in loops or in initializer lists within a declaration statement.46.
Declare both single and multi-dimension arrays in function definitions (as parameters) and in
function prototypes.

47.

Pass arrays as arguments to C functions.48.
Use array data structures in design and C implementation of algorithms, including but not
limited to:

printing histrogram(s) of frequency countsa.
bubble sortb.
merge sortc.
binary searchd.
reading (scanf) and writing (printf) strings as character arrayse.
manipulating characters within an arrayf.
printing tablesg.

49.

Debug programs with array access out-of-bounds errors.50.
Declare a C enumerated type.51.
Use a C enumerated type in a C program.52.
Declare a C variable to be a pointer.53.
Dereference C pointer variables.54.
Use C's pointers to "simulate" pass-by-reference of scalar variables.55.
Describe how X[i] can possibly be interpreted the same as i[X] in C.56.
Given a C expression that uses pointer arithmetic define the value of the expression in
symbolic terms using the address of the pointer variable.

57.

Describe how C typically allows one-dimensional arrays and pointers to be used
interchangeably.

58.

Use malloc to dynamically allocate enough space to hold a data structure (such as an array) in
C.

59.

Use gdb to find, and fix, bugs in programs using arrays and pointers.60.

ix

1

MEMORY - The computer's memory is a relatively small storage area that can be accessed quickly.
Data from the input sources are stored here, as well as the instructions for the programs that are run.
Memory maintains the output data from the program until it is placed on the output devices. The
information in memory is usually volatile, meaning it is typically lost when the computer's power is
turned off. Memory is also commonly referred to as primary memory, or also RAM, or Random
Access Memory.

ARITHMETIC-LOGIC UNIT (ALU) - This section of the computer performs the various
mathematical calculations required by the computer programs, including addition, subtraction,
multiplication, and division. It also contains circuits that are designed to perform decisions or
comparisons, such as comparing two values in memory and determining if they are they're equal, or
one is numerically greater than the other.

PROGRAM CONTROL UNIT - This section controls the operation of the computer, managing the
communication between the other components. The Arithmetic-Logic Unit and Program Control
Unit are often combined to form what is called the CENTRAL PROCESSING UNIT, or CPU.

INPUT UNIT - This is where the programs and data originate. Most users enter data and commands
via a keyboard and mouse. Other devices are also used, such as disk drives, CD/DVD drives, and
now USB thumb-drives.

OUTPUT UNIT - Output devices are used to access information from the computer's primary
memory. Most output today is displayed on screens, printed on paper, or played on audio speakers.
Output can also be written to external drives (disk, CD/DVD, or thumb-drives), or even remote
locations on the Internet.

SECONDARY STORAGE - Secondary storage is usually long-term, high-capacity storage media,
that can be disconnected from the computer itself and still maintain its data. Secondary storage
devices are said to be persistent, in that they keep their data even without power being applied to
them. The cost of secondary storage is much less than primary memory.

2

What actually happens when an instruction gets executed in a computer? The process involves a key
series of events. What's interesting is this sequence happens for each instruction that is executed:

At the beginning of each cycle the CPU presents the value of the program counter on the
address bus.

The CPU then fetches the instruction from primary memory via the data bus into the
instruction register (a register is one of a small set of very-high-speed memory locations).

From the instruction register the data forming the instruction is decoded and passed to the
control unit which sends a sequence of control signals to the relevant function units of the
CPU to perform the actions required by the instruction, such as reading values from registers,
passing them to the ALU to add them together, and writing the result back to a register.

The program counter is then incremented to address the next instruction and the cycle is
repeated.

Moore's Law describes a long-term trend in the history of computing hardware. The law is named
after Intel co-founder Gordon E. Moore, who described the trend in his 1965 paper:

The number of transistors that can be placed inexpensively on an integrated circuit
doubles approximately every two years.

This trend has continued for more than half a century and is expected to continue until 2015 or 2020
or later.

The capabilities of many digital electronic devices are strongly linked to Moore's law: processing
speed, memory capacity, storage technology, and even the number and size of pixels in digital
cameras.

The capabilities of our personal computers today far exceed the capabilities of the multi-million
dollar mainframe computers of the past. Every day we see new innovations in technology that amaze
even the most ardent technophile, providing computer scientists with a marvelous playground in
which to work.

3

Programmers write instructions for the computer in a variety of programming languages. Some use a
notation very close to the computer's own internal binary language, while others are high-level,
supporting a notation similar to the real-world problems being solved, and therefore require
intermediate translation steps.

Machine language is the native or "natural" language understood by a specific computer
architecture. Machine languages are machine dependent, meaning that a specific machine language
can only be used on one type of computer. Machine languages generally consist of strings of
numbers (ultimately reduced to 1s and 0s) to represent instructions and data values.

 01010100000101011111101010101010100

Assembly languages are symbolic representations of the machine language, converting instructions
into symbols that are meaningful to the programmer, each one representing individual instructions in
the computer architecture.

 LOAD value
 ADD TOTAL
 STOR value
 DW 200

Translator programs called Assemblers are used to convert the assembly language instructions to
their binary, machine language equivalent.

Although assembly language is much easier to work with than machine language, it still is tedious
when complicated programs are required. To speed up the programming process, High-level
languages were developed where single statements can perform many of the assembly language
instructions, as well as provide a structure that is similar to the types of operations (such as
mathematical expressions) that are being described in the computer program. The following is an
example:

 Average = TotalGrades / NumGrades;

4

Define the problem to solve.1.

Devise an algorithm (logical steps) to solve the problem.
Example: Filling your Car with Gas

2.

Write a program in a programming language that describes the algorithm for the computer.
You use a text editor (in the Unix environment, common editors are joe, emacs, or vi) to
type-in the program, and save this in a file normally referred to as the source file). Details of
the use of these editors will be discussed in your labs.

3.

Then translate the program into machine language: Compile (translate) with a software
application called a compiler.

4.

Link (combine) the various modules that make up the program with a linking program to
create an executable image of the program.

5.

Finally, you Execute (run) the program, testing the program to see if it solves the problem.
The executable image of your program is loaded into memory for execution using a loader
program.

6.

Repeat the steps above until the program does what you want it to.7.

Please note that all of these steps and the commands you will use to do them will be discussed in
detail in your lab.

Programming in any programming language requires extreme attention to detail; the
syntax rules of programming languages are very specific and cannot be ignored; if you do, you
will not be able to compile your programs and frustration will be your only reward.

Although you will be able to continuously reuse your skills and techniques that you′ve learned
from writing other programs, new programs will always require something that you no doubt
have never done before.

Programming requires a thorough understanding of problem solving skills and a logical mind; if
you can′t define the steps necessary to solve problems or think logically, programming will be
mere smoke and mirrors to you.

5

The grammatical rules related to a programming langauge.

 English: subject predicate.

 C: variable = expr op expr;

The meaning of the statements in a programming language.

 Result = A - B;

"Subtract the value of variable B from variable A, and assign the difference to the variable
Result."

C is a general-purpose programming language designed by Dennis Ritchie of AT&T Bell
Laboratories.

It was first implemented on a PDP-11 (a mini-computer system) in 1972.

Ken Thompson (another researcher at AT&T) had used C’s predecessor (a language called B) to do
initial development of the UNIX operating system.

C′s original claim to fame was that UNIX was written in C, and therefore UNIX was the first
operating system that was written completely in a high-level programming language. To that point in
time, operating systems had been written in Assembly Language, a programming language that is
very close to machine language).

In 1980, ANSI (the American National Standards Institute) defined "ANSI C" or "Standard C",
which standardized the language, making it so implementations of the language by different
programming language developers would all support the same language definition.

This course will utilize a UNIX-based version of the C compiler called gcc.

6

C is a Structured Language that supports the three basic programming constructs:

simple sequence
if-then-else (conditional test)
loop (repeating instructions)

C supports these structured language constructs with extensions.

Every program written can be written with these three, standard language constructs.

C is a Stream-oriented language:

Operations can continue automatically to a new line.
More than one command can appear on a line.
Commands are separated by semicolons.

 double num1,
 totalSalary,
 shares;

 x = y +
 numValues - 3
 * totalCount;

 printf ("The value is %d\n",x * 12);

 x = 5; shares = 7.25;

Commands in the C language are Case-sensitive (lowercase letters and capital letters are considered
to be different):

 if is different than IF

Keywords (also sometimes referred to as Reserved Words), are words that have specific meaning
in the language and can only be used for that one purpose.

7

Others keywords may be included in specific compiler implementations.

There is no reason to memorize what the keywords are, as the compiler will immediately let you
know you are using a keyword incorrectly.

8

Subroutines are named modules of code that are designed to perform a specific operation in your
program. When we write our programs, we can group statements and give them a name so we can
easily refer to them again elsewhere in the program. This is an extremely powerful and useful feature
in programming, saving many hours of repetitious coding.

Subroutine Call Sequence

When a subroutine is "called," control is transferred to the subroutine and its instructions are then
executed. When the subroutine is completed, control is automatically returned to the calling set of
instructions and continues where it left off.

You reference a subroutine by specifying its name (note the parenthesis):

 displayResults();

Values (commonly referred to as parameters or arguments) can be passed to subroutines to modify
or alter what the subroutine does, or they modify the data that the subroutine operates on:

 displayMessage ("Hi there!");

 answer1 = sqrt(x);
 answer2 = sqrt(y);

In C, subroutines are often referred to as functions.

9

Comments (programmer remarks) allow the programmer to describe (in English terminology rather
than C-code) the algorithms and approaches used in a program.

Comments should be included in the program liberally, but don’t go overboard. The examples in
these notes show reasonable uses of programmer comments.

Comment examples:

 /* Anything inside these delimiter characters */

 /* Comments can also be continued
 onto multiple lines, if you wish */

 // Single line comments

10

A typical book consists of a series of sections:

Title Page
Author Acknowledgements
Table of Contents
Several Content Chapters
Appendices
Index

A C program also consists of a series of sections that must appear in a specific order:

Introductory Comments that identify the program, its author, and the primary purpose of the
program.
'"Included files" (descriptions of other code modules that will be used by your program).
Global variable definitions (values that are used throughout the entire program).
Function (Subroutine) definitions.
Main (primary) function definition (where the program will begin its execution):

 int main() {

 Local variable definitions

 Instructions

 }

11

01simple.c

12

Possible modifications to this sample program that you can try as separate exercises:

Change the text in the comment section and in the code section so the program includes your name and
email address rather than your instructor's.
Change the input values to different numbers and verify that the program continues to produce the
proper output for the numbers entered.
Change the variable names in the program to "value1," "value2," and "result" (remember to change all
references to the variables in the program).
Change one of the lines in the program so it no longer matches the syntax that we've discussed and
compile the program; explain the syntax error message; put the program back to its original, compilable
state, and verify that it will compile successfully and produce the proper output.
Change the calculation in the program so it finds the difference between the two values, rather than the
sum (remember to also change the output message so it indicates the result is the difference rather than
the sum, and change the variable name from sum to difference).
Change the calculation in the program so it finds the product (the multiplication of the two values),
rather than the sum (remember to also change the output message so it indicates the result is the
product rather than the sum, and change the variable name from sum to product).
Change the program so it prompts the user to enter three values rather than two, and have the program
find the sum of the three entered values.

13

14

