Computer

Science
CSl1

Donald Alan Retzlaff
Principal Lecturer

Philip Hamilton Sweany
Associate Professor

Gopyright «> 2021 Donald Xlan Retzlaff

Table of Contents

Introduction \
Authors Vi
Intructional Objectives vii

Section 1 - Introduction

o Logical Relationships among the Components of a Typical Computer 1
o Instruction Fetch-Execute Cycle 3
o Moore's Law 3
o Telling the Difference Between Programming Languages 4
o The Programming Steps 5
o Common Cautions about Programming 5
o Programming Rules and Meaning 6
o History of C 6
o Overview of C the Programming Language 7

o C Supports "Subroutines" 9
o C Comments 10
o Basic Structure of a C Program 11
o Example of a Simple C Program 12
o Common C Characteristics Related to this Simple Example 14

Section 2 - C Basics

o C ldentifiers 15
o Basic C Data Types 17
o Additional C Data Types 21
o Declaration of C Variables 23
o Declaration of String Variables 25
o C Arithmetic Operators 27
o Integer Arithmetic 29
o Assignment of C Variables 31
o Assignment Statements and C Data Types 33
o Including C Header Files 37
o C Output: printf() function 39
o Complete C Program Examples using printf() function 44
o Getting Input from User: scanf() function 47
o Examples using scanft() and printf() 49
o Dealing with Syntax and Logic Errors 52

o Variable Assignment Review 54

Section 3 - Conditionals

i1 T Conditional

Comparison Operators

i T Conditional Code Examples

C Code Blocks

iT-else Conditional

i f-else Conditional Code Examples

More Discussion on Compound s
Compound i1 F Conditional Code Examples
Conditional Operator ? :

Review of Unary, Binary, and Ternary Operators
Multiple Conditions - the switch statement
The break Command

switch Code Examples

o C Expressions and Assignments

O 0 0 0O 00O 0o 00 0 o0 o

Section 4 - Additional C Operators

o Increment and Decrement Variables

o Increment and Decrement Operators ++ --
o Additional Assignment Operators

o #define Symbolic Constants

o enum Enumerated Datatypes

Section 5 - Loops

Programming Language Constructs
while Loop Command

while Loop Code Examples
Infinite Loops

do-while Command

o do-while Loop Code Examples
o Nested Loops

o for Loop Command

o break and continue with Loops
o continue command

0O O O O

o

56
57
59
61
65
68
72
73
76
78
80
82
83
88

90
91
93
96
100

105
106
107
112
114
115
122
125
136
137

Section 6 - Strings

o Introduction to C Strings 141
o Review of String Terminology 142
o String Constants and String Declaration 144
o Common String-Related Operations - strien() 146
o Common String-Related Operations - strcpy () 147
o Common String-Related Operations - strcat() 148
o Common String-Related Operations - strvar[] 149
o Common String-Related Operations - strchr() 150
o Common String-Related Operations - strstr() 151
o Common String-Related Operations - strcmp() 153
o Common String-Related Operations - strcasecmp() 154
o String Program Example 156

Section 7 - User-Defined C Functions

o Introduction 157
o Annotated Example of the Definition & Use of a C Function 159
o A Function Header 161
o Sample Function Headers 162
o Simple Function Examples 164
o Returning Values from Functions 169
o More Function Examples 172
o Introduction to Functions and Recursion 178
o Recursion Function Examples 181

Section 8 - Arrays

o Introduction to C Arrays 186
o Declaration of an Array 188
o Declaring Arrays Examples 190
o Referencing Array Indexes 192
o Array Program Examples 194

o Array Program Example - Bubble Sort 199

Section 9 - Pointers

o Introduction to C Pointers 204
o C Pointer Declaration 206
o Pointer Operators 207
o & - Determining a Variable's Address 207
o * - Dereferencing a Pointer Variable 209
o Passing Arguments to Functions by Reference 214
o Pointers and Array References 217
o Calculations involving Pointers 218
o Pointers and Multi-Dimensional Arrays 223
o Dynamic Arrays and Pointers 225
o Accessing Dynamically-Allocated Arrays 228

o Releasing the Dynamically-Allocated Memory Space 230

Appendix
o Top Ten Most Common C Mistakes 232
o C Precedence Table 233
o Unix and File Redirection 234
o C Header Files and Multiple Source Files 239

o Common C Libraries 247

Introduction

Computer Science CS1 is a course designed for computer science majors. The class, and these
notes, discusses most of the common aspects of C and programming in general, tailored for beginners
who have little or no background in computer programming.

The major themes of the course include:

Developing students expertise in the C programming language

Preparing students to build C software in a Linux environment

Introducing students to the algorithmic thinking that pervades computer disciplines
Helping students develop an accurate and useful abstract model of how computers work

These notes directly address students ability to program in C and are designed as a supplement to
your ingtructor's in-class lectures. They will be presented in the classroom utilizing the online version
of these pages, making it easy for you to follow along, without having to tediously attempt to copy
the programming examples into your personal notes. These pages are formatted to make it easy for
you to add your own notes to the pages as the material is presented in class.

Learning how to program is a skill that requires practice. Lots of practice! Running the program
examples that are in the notes is a good start, but it rarely is enough for most students. One problem
with most beginners is they're not sure what to try, or they dont know how to come up with
programming exercises to write. Thisis why, after many of the program examples shown in this text,
there are supplemental programming problems, all of them similar in nature to the corresponding
exercise in the notes. These are designed to give you the opportunity to practice to your heart's
content.

Authors

Don RetZaff is a Principal Lecturer for the Computer Science and Engineering Department at the
University of North Texas. He has taught programming for over forty years, thirty-three of which
have been at UNT. He received his Masters Degree in Computer Science from North Texas State
Univergity (later renamed to UNT) in 1978, and has taught a variety of software development
undergraduate courses at UNT since that time, including Basic, Assembly, Pascal, C, C++, Java, and
PHP. He aso is the coordinator and primary instructor for the department's senior-level Software
Development courses where students develop and maintain large-scale web-based applications.

For most of the courses Don teaches, he has developed his own custom set of course notes, utilizing
various programming features and the web to enhance the student's learning experience.

Don enjoys traveling with his wife Elisa, writing, programming, and spending time at home with their
four cats.

Phil Sweany is an Associate Professor in the Computer Science and Engineering Department at the
University of North Texas. He has been a computer science faculty member for 20 years, with the
last 8 at UNT. Phil received both M.S. and Ph.D degrees from Colorado State University in 1986 and
1992 respectively, and has taught a variety of Computer Science courses both at Michigan
Technological University and UNT. His research focuses on compiler optimization for heterogeneous
multiprocessors on a chip.

Unlike Don, Phil enjoys staying at home where he and his wife Margaret are dutiful staff members
responsible for the care and feeding of three cats. So, given the authors choices in pets, | hope welll
be forgiven for interjecting a few "catty remarks' from time to time both in these notes and in class.

Vi

Instructional Objectives

Asan aide to both students and instructors, we are including a list of instructional objectives that we
anticipate that each student will meet during the term. The concept of instructional objectives and
their relevance to this course will be discussed in class early in the term, but in general, please
remember that exam questions will come directly from these objectives and an excellent way to
prepare for exam(s) isto make sure that you can meet each objective "covered" on an exam. So,
without further ado, here isalist of objectives that students will meet.

. Find an electronic version of the web page for Fall 2011's CSCE 1030.
. Draw adiagram that shows the logical relationships among the following components of a
"typical" computer.
a. CPU
b. Arithmetic-Logic Unit
c. Main Memory
d. Secondary Storage
e. 1/0 Devices

3. Given adiagram as described in the previous objective describe how the various logical
components of the computer work together to execute a program.
Describe the fetch-execute cycle.
When shown a program, determine whether that program is a machine-language program, an
assembly-language program or a high-level language program.
Describe the purpose of the C Sandard Library.
Describe Moore's law.
Describe how each of the following pieces of software helpsto convert a C program into a
program ready to execute.

a. Preprocessor

b. Compiler

c. Assembler

d. Linker

e. Loader

9. Usereadable and consistent style in writing C programs.
10. Write complete C programs that use assgnment statements, printf and scanf.
11. Write complete C programsthat use smple |F statements.
12. Given an assignment statement, and input values for each right-hand side operand, determine
what value will be assigned during program execution.
13. Describe, both pictorially and in words, how a C assignment statement changes the state
(memory) of the computer during execution.
14. Show a precedence table for the following C binary operators.
a+,-,*/,%
b. == 1= <, > >= <=

15. Use C'sfloating point and/or mixed-mode arithmetic to produce "more meaningful” answers to

N -

o &

O N

vii

16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.

29.
30.
31.
32.
33.
34.
35.

36.
37.

38.
39.

integer problems.
Develop algorithms through the process of stepwise refinement.
Use pseudocode in design of algorithms.
Write complete C programs that use WHILE statements.
Write complete C programsthat use C'srich set of assgnment operators.
Write complete C programs that use C's increment and decrement operators.
Write complete C programs that use |F-THEN-EL SE statements.
Write complete C programs that use logical operators and complex conditional statements.
Write complete C programs that use FOR statements.
Write complete C programsthat use DO ... WHILE statements.
Write complete C programs that use SWITCH statements.
Write complete C programs that use BREAK statements.
Write complete C programs that use CONTINUE statements.
Write complete C programs that use the following subset of C'srich set of unary, binary, and
ternary operators:
a (),[],->, sizeof
b. ++, --
binary operators +, -, *, /, %, <<, >>
unary -, &, *, ~
&’ *
relational operators<=, <, >, >=, ==, I=
logical operators & &, ||, !
assignment operators =, +=, -=, *=, /=, %=, &=, \=, |5, <<=, >>=
i. bitwise operators &, |, *
Describe how C'sternary operator, 2, works and why some (including Dr. Sweany) suggest
not to use it.
Describe how C's bit manipulation operators (shift, bitwise AND, OR, and NOT) can be used
to alter the operands upon which they are used.
Given an operator precedence table and an arbitrary C expression, list the order in which the
operators will be evaluated.
Design significant software using stepwise refinement and modular design techniques.
Write complete C programs that include calls to C-supplied functions.
Write complete C programs that include user-defined function definitions other than main.
Write complete C programs that include user-defined function definitions in more than one .c
file.
Write complete C programs that include user-defined header (.h) files.
Write complete C programs that make significant use of the random function to generate and
use random integer data.
Write complete C programs that use recursion as a design and programming tool.
Describe C's conventions for supporting function calls, including:
a. run-time stack
b. activation records
c. cal by value
d. call by reference

2@ +~D Qo0

viii

40.

4]1.

42.
43.

45,
46.
47.

48.
49.

50.
ol
52.
53.
4.
55.
56.
S7.

58.

59.

60.

Describe C's storage classes, namely:
a auto
b. static
C. register
d. extern
Given a multi-function, multi-file program, identify the scope of variable(s) within that
program.
Write declaration statements for both single and multi-dimension arraysin C.
Use #define constants to specify both array sizes in declarations and loop boundsin code
accessing arrays.
Use C's[] operator to access both single and multi-dimension arraysin C.
Use loops and loop indices in manipulating arraysin C programs.
Initialize arrays either in loops or in initializer lists within a declaration statement.
Declare both single and multi-dimension arrays in function definitions (as parameters) and in
function prototypes.
Pass arrays as arguments to C functions.
Use array data structuresin design and C implementation of algorithms, including but not
limited to:
printing histrogram(s) of frequency counts
bubble sort
merge sort
binary search
reading (scanf) and writing (printf) strings as character arrays
manipulating characters within an array
printing tables
Debug programs with array access out-of-bounds errors.
Declare a C enumerated type.
Use a C enumerated type in a C program.
Declare a C variable to be a pointer.
Dereference C pointer variables.
Use C's pointersto "simulate" pass-by-reference of scalar variables.
Describe how X[i] can possibly be interpreted the same asi[X] in C.
Given a C expression that uses pointer arithmetic define the value of the expression in
symbolic terms using the address of the pointer variable.
Describe how C typically allows one-dimensional arrays and pointersto be used
interchangeably.
Use malloc to dynamically allocate enough space to hold a data structure (such as an array) in
C.
Use gdb to find, and fix, bugsin programs using arrays and pointers.

@ ~0 Q200D

Logical Relationships among the Components
of a "Typical" Computer

Central Processing Unit
(CPU)

Main Input
Memory Output
(RAM) Devices

+—» Program
Control
-— Unit

MEMORY - The computer's memory is a relatively small storage area that can be accessed quickly.
Data from the input sources are stored here, as well as the instructions for the programs that are run.
Memory maintains the output data from the program until it is placed on the output devices. The
information in memory is usually volatile, meaning it is typically lost when the computer's power is
turned off. Memory is also commonly referred to as primary memory, or also RAM, or Random
Access Memory.

ARITHMETIC-LOGIC UNIT (ALU) - This section of the computer performs the various
mathematical calculations required by the computer programs, including addition, subtraction,
multiplication, and division. It also contains circuits that are designed to perform decisions or
comparisons, such as comparing two values in memory and determining if they are they're equal, or
one is numerically greater than the other.

PROGRAM CONTROL UNIT - This section controls the operation of the computer, managing the
communication between the other components. The Arithmetic-Logic Unit and Program Control
Unit are often combined to form what is called the CENTRAL PROCESSING UNIT, or CPU.

INPUT UNIT - This is where the programs and data originate. Most users enter data and commands
via a keyboard and mouse. Other devices are also used, such as disk drives, CD/DVD drives, and
now USB thumb-drives.

OUTPUT UNIT - Output devices are used to access information from the computer's primary
memory. Most output today is displayed on screens, printed on paper, or played on audio speakers.
Output can also be written to external drives (disk, CD/DVD, or thumb-drives), or even remote
locations on the Internet.

SECONDARY STORAGE - Secondary storage is usually long-term, high-capacity storage media,
that can be disconnected from the computer itself and still maintain its data. Secondary storage
devices are said to be persistent, in that they keep their data even without power being applied to
them. The cost of secondary storage is much less than primary memory.

Instruction Fetch-Execute Cycle

What actually happens when an instruction gets executed in a computer? The process involves a key
series of events. What's interesting is this sequence happens for each instruction that is executed:

e At the beginning of each cycle the CPU presents the value of the program counter on the
address bus.

e The CPU then fetches the instruction from primary memory via the data bus into the
instruction register (a register is one of a small set of very-high-speed memory locations).

¢ From the instruction register the data forming the instruction is decoded and passed to the
control unit which sends a sequence of control signals to the relevant function units of the
CPU to perform the actions required by the instruction, such as reading values from registers,
passing them to the ALU to add them together, and writing the result back to a register.

e The program counter is then incremented to address the next instruction and the cycle is
repeated.

Moore's Law

Moore's Law describes a long-term trend in the history of computing hardware. The law is named
after Intel co-founder Gordon E. Moore, who described the trend in his 1965 paper:

The number of transistors that can be placed inexpensively on an integrated circuit
doubles approximately every two years.

This trend has continued for more than half a century and is expected to continue until 2015 or 2020
or later.

The capabilities of many digital electronic devices are strongly linked to Moore's law: processing
speed, memory capacity, storage technology, and even the number and size of pixels in digital
cameras.

The capabilities of our personal computers today far exceed the capabilities of the multi-million
dollar mainframe computers of the past. Every day we see new innovations in technology that amaze
even the most ardent technophile, providing computer scientists with a marvelous playground in
which to work.

Telling the Difference Between Programming

Languages

Programmers write instructions for the computer in a variety of programming languages. Some use a
notation very close to the computer's own internal binary language, while others are high-level,
supporting a notation similar to the real-world problems being solved, and therefore require
intermediate translation steps.

Machine language is the native or "natural" language understood by a specific computer
architecture. Machine languages are machine dependent, meaning that a specific machine language
can only be used on one type of computer. Machine languages generally consist of strings of
numbers (ultimately reduced to 1s and 0Os) to represent instructions and data values.

01010100000101011111101010101010100

Assembly languages are symbolic representations of the machine language, converting instructions
into symbols that are meaningful to the programmer, each one representing individual instructions in
the computer architecture.

LOAD value
ADD TOTAL
STOR value
DW 200

Translator programs called Assemblers are used to convert the assembly language instructions to
their binary, machine language equivalent.

Although assembly language is much easier to work with than machine language, it still is tedious
when complicated programs are required. To speed up the programming process, High-level
languages were developed where single statements can perform many of the assembly language
instructions, as well as provide a structure that is similar to the types of operations (such as
mathematical expressions) that are being described in the computer program. The following is an
example:

Average = TotalGrades / NumGrades;

The Programming Steps

7.

. Define the problem to solve.

. Devise an algorithm (logical steps) to solve the problem.

Example: Filling your Car with Gas

. Write a program in a programming language that describes the algorithm for the computer.

You use a text editor (in the Unix environment, common editors are joe, emacs, or Vi) to
type-in the program, and save this in a file normally referred to as the source file). Details of
the use of these editors will be discussed in your labs.

Then translate the program into machine language: Compile (translate) with a software
application called a compiler.

Link (combine) the various modules that make up the program with a linking program to
create an executable image of the program.

Finally, you Execute (run) the program, testing the program to see if it solves the problem.
The executable image of your program is loaded into memory for execution using a loader
program.

Repeat the steps above until the program does what you want it to.

Please note that all of these steps and the commands you will use to do them will be discussed in
detail in your lab.

Common Cautions about Programming

e Programming in any programming language requires extreme attention to detail; the

syntax rules of programming languages are very specific and cannot be ignored; if you do, you
will not be able to compile your programs and frustration will be your only reward.

¢ Although you will be able to continuously reuse your skills and techniques that you've learned

from writing other programs, new programs will always require something that you no doubt
have never done before.

e Programming requires a thorough understanding of problem solving skills and a logical mind; if

you can't define the steps necessary to solve problems or think logically, programming will be
mere smoke and mirrors to you.

Programming Rules and Meaning

Syntax

The grammatical rules related to a programming langauge.
English: subject predicate.

C: variable = expr op expr;

Semantics

The meaning of the statements in a programming language.
Result = A - B;

"Subtract the value of variable B from variable A, and assign the difference to the variable
Result."

History of C

C is a general-purpose programming language designed by Dennis Ritchie of AT&T Bell
Laboratories.

It was first implemented on a PDP-11 (a mini-computer system) in 1972.

Ken Thompson (another researcher at AT&T) had used C’s predecessor (a language called B) to do
initial development of the UNIX operating system.

C's original claim to fame was that UNIX was written in C, and therefore UNIX was the first
operating system that was written completely in a high-level programming language. To that point in
time, operating systems had been written in Assembly Language, a programming language that is
very close to machine language).

In 1980, ANSI (the American National Standards Institute) defined "ANSI C" or "Standard C",
which standardized the language, making it so implementations of the language by different
programming language developers would all support the same language definition.

This course will utilize a UNIX-based version of the C compiler called gcc.

Overview of the C Programming Language

C is a Structured Language that supports the three basic programming constructs:

e simple sequence
e if-then-else (conditional test)
¢ loop (repeating instructions)

C supports these structured language constructs with extensions.

Every program written can be written with these three, standard language constructs.

C is a Stream-oriented language:
e Operations can continue automatically to a new line.

e More than one command can appear on a line.
e Commands are separated by semicolons.

double numil,
totalSalary,
shares;

X =y +
numValues - 3
* totalCount;
printf (""The value is %d\n",x * 12);

X = 5; shares = 7.25;

Commands in the C language are Case-sensitive (lowercase letters and capital letters are considered
to be different):

i is different than 1F

Keywords (also sometimes referred to as Reserved Words), are words that have specific meaning
in the language and can only be used for that one purpose.

auto double
break else
case enum
char extern
const float

continue for
default goto
do if

int

long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

Others keywords may be included in specific compiler implementations.

There is no reason to memorize what the keywords are, as the compiler will immediately let you
know you are using a keyword incorrectly.

C Supports "Subroutines"

Subroutines are named modules of code that are designed to perform a specific operation in your
program. When we write our programs, we can group statements and give them a name so we can
easily refer to them again elsewhere in the program. This is an extremely powerful and useful feature
in programming, saving many hours of repetitious coding.

Subroutine Call Sequence

When a subroutine is "called," control is transferred to the subroutine and its instructions are then
executed. When the subroutine is completed, control is automatically returned to the calling set of
mstructions and continues where it left off.

You reference a subroutine by specifying its name (note the parenthesis):

displayResults();

Values (commonly referred to as parameters or arguments) can be passed to subroutines to modify
or alter what the subroutine does, or they modify the data that the subroutine operates on:

displayMessage (""Hi there!™);
answerl = sqrt(x);

answer2 = sqrt(y);

In C, subroutines are often referred to as functions.

C Comments

Comments (programmer remarks) allow the programmer to describe (in English terminology rather
than C-code) the algorithms and approaches used in a program.

Comments should be included in the program liberally, but don’t go overboard. The examples in
these notes show reasonable uses of programmer comments.

-
The syntax of comments have two forms:

e A pair of delimiters:
/*and */
are used to surround the comments. This form is commonly used for multiline comments.
e A single delimiter:

//

is placed before the comment. The rest of the current source line is all considered to be
part of the comment.

Comment examples:

/* Anything inside these delimiter characters */

/* Comments can also be continued
onto multiple lines, i1f you wish */

// Single line comments

10

Basic Structure of a C Program

A typical book consists of a series of sections:

o Title Page

e Author Acknowledgements
e Table of Contents

e Several Content Chapters

e Appendices

e Index

A C program also consists of a series of sections that must appear in a specific order:

¢ Introductory Comments that identify the program, its author, and the primary purpose of the
program.

"Included files" (descriptions of other code modules that will be used by your program).
Global variable definitions (values that are used throughout the entire program).

Function (Subroutine) definitions.

Main (primary) function definition (where the program will begin its execution):

int main() {
Local variable definitions

Instructions

}

11

Example of a Simple C Program

Olsimple.c

-~

/*

L/

#i

C Program Example - Course: CSE 1030 - C Programming
programmer: Don Retzlaff donrfunt.edu

C program to accept two numbers from user and
add the numbers together.

nclude <stdio.h> // include system information

int main() {

int numl, num2, sum;

// display initial program identification
play prog
printf ("Simple C Program - Don Retzlaff donr@unt.edu\n\n");

// prompt the user for input

printf ("Please enter first number: ") ;
scanf ("%d4d",&numl) ;

printf ("Please enter second number: ") ;
scanf ("%4d", &num2) ;

sum = numl + num2;
printf ("The sum is %d\n",sum) ;

return 0; // return control to Operating System

12

Possible modifications to this sample program that you can try as separate exercises:

Change the text in the comment section and in the code section so the program includes your name and
email address rather than your instructor's.

Change the input values to different numbers and verify that the program continues to produce the
proper output for the numbers entered.

Change the variable names in the program to "valuel," "value2," and "result" (remember to change all
references to the variables in the program).

Change one of the lines in the program so it no longer matches the syntax that we've discussed and
compile the program; explain the syntax error message; put the program back to its original, compilable
state, and verify that it will compile successfully and produce the proper output.

Change the calculation in the program so it finds the difference between the two values, rather than the
sum (remember to also change the output message so it indicates the result is the difference rather than
the sum, and change the variable name from sum to difference).

Change the calculation in the program so it finds the product (the multiplication of the two values),
rather than the sum (remember to also change the output message so it indicates the result is the
product rather than the sum, and change the variable name from sum to product).

Change the program so it prompts the user to enter three values rather than two, and have the program
find the sum of the three entered values.

13

Common C Characteristics

Related to this Simple Example

multiline comments are surrounded by /* and */

/* C Program Example - Course: CSE 1030 - C Programming
programmer: Don Retzlaff donrfunt.edu

C program to accept two numbers from user and
add the numbers together.
' . I3 I 2
/ //-smgie-hne comments begin with /,
#include <stdio.h> // include system informatien

R B — — every C pmgrarmrha,‘s a mai
ok . R i (procedure); this indicates w
' ' ’ program begins execution
variables are /f.ﬂ' display initial program identification
de:ﬁ'ned at the printf ("Simple € Program - Don Retzlaff donrfunt.edu\n\n");

beginning of

; // prempt the user for input

the main printf ("Please enter first number: "):
IJI'GCE’dIU'E“ scanf ("%d", &numl) ;
printf ("Flease enter second number: ");

scanf ("%d",&num2) ; -._._.____________
the curly- sum = nunt + mun2 scanf is used to get inpu
braces { } printk ("The sum is $d\n",sum); values from the user

denote the \ \ every statement e

beginning and printf is used to in a semicolon

ending of a 4 : : (similar to a sente
output information

block of code in in English)
a C program to the screen g

return

the main procedure of every C
program should return a value the assignment operator (=) is used to assigi

values to variables, such as mathematical
exXpressions

14

