

Come out and Play

Webanwendungen schreiben mit Scala, Scala.js, Akka und
dem Play Framework.

Jens Grassel und Andre Schütz

Dieses Buch wird verkauft unter http://leanpub.com/comeoutandplay

Diese Version wurde veröffentlicht am 2019-03-19

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von
Lean-Publishing, neue Möglichkeiten des Publizierens. Lean Publishing bedeutet die
wiederholte Veröffentlichung neuer Beta-Versionen eines eBooks unter der
Zuhilfenahme schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei
der Finalisierung und der anschließenden Vermarktung des Buches. Lean Publishing
unterstützt den Autor darin ein Buch zu schreiben, das auch gelesen wird.

© 2016 - 2019 Jens Grassel und Andre Schütz

http://leanpub.com/comeoutandplay
http://leanpub.com/
http://leanpub.com/manifesto

Twittere dieses Buch!
Bitte unterstütze Jens Grassel und Andre Schütz, indem du dieses Buch auf Twitter
weiterempfiehlst!

Vorschlag: Verwende den folgenden Hashtag, wenn du über dieses Buch twitterst:
#comeoutandplay.

Was sagen andere über dieses Buch? Klicke hier, um nach diesem Hashtag auf Twitter
zu suchen:

#comeoutandplay

http://twitter.com
https://twitter.com/search?q=%23comeoutandplay
https://twitter.com/search?q=%23comeoutandplay

Inhaltsverzeichnis

1. Vorwort . 1
1.1 Einleitung . 2
1.2 Aufbau des Buches . 2

1.2.1 Konventionen für den Quelltext . 3
1.3 Schutzmarken und Copyrights . 4
1.4 Logos und Bilder . 5
1.5 Quelltext zum Buch . 5

Einrichtung der Werkzeuge und Einführung
in Scala . 1

2. Werkzeuge . 2
2.1 Java . 2
2.2 SBT . 2

2.2.1 Installation . 3
2.2.2 Nützliches für SBT . 3

2.3 Entwicklungsumgebung . 4

3. Programmierung in Scala . 6
3.1 Interaktive Programmierung via REPL . 7
3.2 Hinweise zu Datenstrukturen (var, val) . 7
3.3 Schnelleinstieg in die funktionale Programmierung 9

3.3.1 Auswertungsstrategien (evaluation strategies) 10
3.3.2 Scopes und Blöcke . 11
3.3.3 Semikolons und Infix-Operatoren 12

INHALTSVERZEICHNIS

3.3.4 Tail-Rekursion . 13
3.3.5 Funktionen höherer Ordnung (Higher Order Functions) 14
3.3.6 Currying . 14
3.3.7 Polymorphismus . 16
3.3.8 Pattern-Matching . 18
3.3.9 Implizite Parameter . 19

3.4 Hilfsmittel zur Unterstützung . 20
3.5 Reduzierung von “Boilerplate” Code . 21

Einführung und Grundlagen zu den verwen-
deten Technologien . 23

4. Play Framework . 25
4.1 Erstellen einer Play Anwendung . 25

4.1.1 Play Anwendung über Schablonen erstellen 25
4.1.2 Play Anwendung von Hand erstellen 26

4.2 Projektstruktur . 29
4.2.1 Verzeichnisse, SBT-Einstellungen und Abhängigkeiten 29
4.2.2 Unterprojekte . 31

4.3 Requests, Routing und Controller . 36
4.3.1 Requests . 36
4.3.2 Routing . 36
4.3.3 Controller . 36

4.4 Templates (Twirl) . 37
4.4.1 Wiederverwendung von Templates 37

4.5 Mehrsprachigkeit (Internationalisierung) . 37
4.5.1 Messages Objekt . 37

4.6 Formulare . 37
4.6.1 Formdefinition . 37
4.6.2 Form-Objekte und ihre Typen . 38
4.6.3 Beispiele für Formulare . 38
4.6.4 Verarbeitung von Formularen . 38
4.6.5 Formulardarstellung in Template View 38
4.6.6 Beispiel mit sich wiederholenden Elementen 38

INHALTSVERZEICHNIS

4.7 Datenbankkonfiguration . 38
4.7.1 Konfiguration von Slick für Play . 38

4.8 Datenbankzugriff . 39
4.9 Asynchrone Programmierung mit Play . 39

4.9.1 Websockets . 39
4.10 Webservices . 39
4.11 Migration von Play 2.5 auf 2.6 . 39

4.11.1 Was hat sich geändert . 40
4.11.2 SBT 0.13.15 erforderlich . 40
4.11.3 Guice und OpenId Unterstützung ausgelagert 40
4.11.4 Bereitstellung neuer Controller Klassen 40
4.11.5 Assets . 40
4.11.6 Play WS . 40
4.11.7 Anpassungen bei i18n . 40
4.11.8 Cache . 41
4.11.9 Veränderungen an der Scala Configuration API 41
4.11.10 Entfernung diverser APIs und Bibliotheken 41
4.11.11 play.api.libs.concurrent.Execution ist nun veraltet 42
4.11.12 Neue Standardfilter . 42

4.12 Konfiguration von Ehcache . 42
4.13 Ausführen mit IntelliJ IDEA und Debuggen 42

5. Akka . 43
5.1 Einrichten einer Akka Anwendung . 43
5.2 Akka Grundlagen . 44

5.2.1 Aktorsystem und Aktoren . 44
5.2.2 Supervision . 47
5.2.3 Aktorreferenzen . 48
5.2.4 Nachrichten und deren Auslieferung 48
5.2.5 Konfiguration . 48

5.3 Aktoren . 48
5.3.1 DeathWatch . 48
5.3.2 Nachrichten . 48
5.3.3 Aktoren beenden . 48
5.3.4 FSM . 49

INHALTSVERZEICHNIS

5.3.5 Persistenz . 49
5.3.6 Tests . 49

5.4 Aktorenhilfsmittel . 49
5.4.1 Event-Bus . 49
5.4.2 Logging . 49
5.4.3 Scheduler . 50
5.4.4 Zeitdauer (Duration) . 50
5.4.5 Unterbrecher (Circuit Breaker) . 50

5.5 Streams . 50

6. Scala.js . 51
6.1 Erstellen einer Scala.js Anwendung . 52
6.2 Abhängigkeiten . 53
6.3 Module exportieren . 54
6.4 Cross-Compile . 55
6.5 Testen . 55

Anwendungsszenario . 56

7. Das Frontend . 58

8. Das Online-Spiel . 61

Das Frontend . 63

9. Erstellung und Konfiguration einer Basis-Play-Anwendung 64

10. Einbindung von Silhouette als Authentifikations-Framework 65

11. Anmeldung der Nutzer am System . 66
11.1 Konfiguration des Backend Store (PostgreSQL) 66
11.2 Definition des Nutzermodells . 66
11.3 Erstellen einer Datenbank-Evolution . 66
11.4 Tabellendefinition innerhalb der Anwendung 66
11.5 DAOs für den Zugriff auf die Nutzerdaten 67

INHALTSVERZEICHNIS

11.6 Silhouette Konfiguration auf eigene DAOs umstellen 67
11.7 Konfiguration der Social-Provider . 67
11.8 Funktionalität für das Löschen eines Accounts 67

12. Suchen und Verwalten von Freunden . 68
12.1 Erweiterung des Nutzermodells um einen Nutzernamen 68
12.2 Registrierung der Nutzer mit Nutzernamen und E-Mail 68
12.3 Evolution und Tabellendefinitionen für Freundeslisten 68
12.4 Funktionalitäten für Freundeslisten in einem DAO 69
12.5 Erstellen von WebSockets zur dynamischen Interaktion 69

12.5.1 Erstellen des WebSocket auf Basis eines Actors 69
12.5.2 Controller als Endpunkt für das WebSocket 69
12.5.3 Verbinden der Action innerhalb des Routing 69
12.5.4 Erstellen von Funktionen innerhalb des Javascript, welche mit

dem WebSocket zusammen arbeiten 69
12.6 Erweiterung des CSR für WebSockets . 70
12.7 Visualisierung der Freundeslisten . 70
12.8 Erweiterung der Views zur Übergabe von Skripten und CSS 70

13. Migration auf Play 2.6 und Silhouette 5 . 71
13.1 Upgrade der benötigten Abhängigkeiten . 71
13.2 Anpassungen für das Upgrade von Silhouette 71
13.3 Änderungen im CustomPostgresDriver . 71
13.4 Neue Controller-Klassen . 71
13.5 Von WebJarAssets zu AssetsFinder . 72
13.6 Anpassungen für die Änderungen in i18n . 72
13.7 Impliziter ExecutionContext . 72
13.8 Refactoring (Compiler-Warnungen) . 72

Das Spiel . 73

14. Regeln und Spielverlauf . 74

15. Umsetzung . 75
15.1 Grundlegende Datentypen . 75

INHALTSVERZEICHNIS

15.2 Operationen auf einem Spielstand . 75
15.3 Operationen auf einem Spielfeld . 75
15.4 Nutzung von Eq (Cats) . 75
15.5 Datenbank (Repository) . 76
15.6 Zeichnen von Spielfeldern im Client . 76
15.7 Hilfsfunktionen . 76

15.7.1 Websocket-URL berechnen . 76
15.7.2 Feldgröße zum Zeichnen berechnen 76
15.7.3 Berechnen der Klickposition in einem Spielfeld 76
15.7.4 Logging . 77

15.8 Spielvorbereitung (Preparation) . 77
15.8.1 Globale Variablen . 77
15.8.2 Struktur der HTML-Datei . 77
15.8.3 Funktionen . 77
15.8.4 Websocket . 77
15.8.5 Aufruf und Initialisierung . 77

15.9 Spielablauf (Game) . 78
15.9.1 Globale Variablen . 78
15.9.2 Struktur der HTML-Datei . 78
15.9.3 Funktionen . 78
15.9.4 Websocket . 78
15.9.5 Aufruf und Initialisierung . 78

16. Integration ins Frontend . 79
16.1 Verzeichnisstruktur . 79

16.1.1 Aktoren, Controller, DAO und Modelle 79
16.1.2 View-Templates . 79

16.2 Datenbankschicht (Repository) als DAO . 79
16.3 Websocket . 79

16.3.1 Eine Websocket-Algebra . 80
16.3.2 Komposition zum fertigen Websocket 80

16.4 Controller und Routing . 80
16.4.1 Übersichtsseite . 80
16.4.2 Spielerstellung . 80
16.4.3 Löschen eines Spielstandes . 80

INHALTSVERZEICHNIS

16.4.4 Dem Spiel beitreten . 80
16.4.5 Das Spiel . 81
16.4.6 Spielvorbereitung . 81
16.4.7 Websocket . 81

16.5 Views . 81

Deployment (Auslieferung) . 82

17. Konfiguration für den Produktivbetrieb . 83

18. Erstellen eines Artefakts mit allen Abhängigkeiten 84

19. Erstellen von Paketen für Debian . 85
19.1 Systemstart-Skripte . 85

20.Auslieferung zu einem Cloud Service . 86
20.1 Deployment via Remote Repository . 86
20.2 Deployment mittels des Plugins sbt-heroku 86
20.3 Datenbankzugriff bei Heroku . 86

Erkenntnisse . 87

21. Silhouette . 88
21.1 Abhängigkeiten von anderen Bibliotheken 88
21.2 Aufwand durch inkompatible Änderungen 88

22. Circe . 89
22.1 Erstellung von Codecs . 89

22.1.1 Vollautomatische Ableitung . 89
22.1.2 Halbautomatische Ableitung . 89
22.1.3 Manuelle Implementierung . 89

22.2 Geschwindigkeit des Compilers . 89
22.3 Fehlerhäufigkeit . 90

23.WTFM - Write that fucking manual! . 91
23.1 Vorteile für bereits involvierte Entwickler 91

INHALTSVERZEICHNIS

23.2 Vorteile für neue Entwickler . 91

24. Danke . 92

1. Vorwort
Die webbasierte Implementierung von Anwendungen hat sich durchgesetzt, um den
Anwendern einen möglichst einfachen und der Zeit entsprechenden Zugang zu er-
möglichen.

Für die Umsetzung kann man unter diversen Technologien und Herangehensweisen
wählen, welche sich je nach Interesse der Entwickler oder durch Vorgaben der Auf-
traggeber ergeben. Eine Vorgehensweise ist die Funktionale Programmierung, welche
in den letzten Jahren einen immer stärker werdenden Zulauf erfährt, auch wenn die
Grundlagen für diese schon seit Jahrzehnten bestehen.

Ein häufiger Werdegang ist das Erlernen einer imperativen, prozeduralen oder objekt-
orientierten Programmiersprache während der wissenschaftlichen oder beruflichen
Ausbildung. Der Einstieg in die Funktionale Programmierung erfolgt dann zu einem
späteren Zeitpunkt über Sprachen wie Clojure1, Haskell2, Lisp3 oder Scala4.

Die Autoren dieses Buches kamen teilweise auch über diesen Weg zur Funktionalen
Programmierung, wobei beide auch schon in früheren Jahren diverse Berührungspunk-
te mit diesem Bereich hatten.
Den vollständigen Einstieg und Umstieg in den Bereich der Funktionalen Programmie-
rung mittels Scala vollzogen sie in Zusammenhang mit einem Forschungs- und Ent-
wicklungsprojekt, welches sich mit dem Gebiet der Datenintegration und -migration
beschäftigte. Die Funktionale Programmierung bietet eine besonders gute Grundlage
für das Verarbeiten, Modifizieren und Integrieren von unterschiedlichen Datenstruk-
turen.

Neben der rein funktionalen Programmierung, werdenweitere Technologien in diesem
Buch verwendet, die in unterschiedlichen Projekten eingesetzt wurden. Dazu zählen
u.a. das Akka Toolkit, das Play Framework und Scala.js.

1Ein häufiger Grund ist beispielsweise, daß das Modell in einer API zur Verfügung gestellt wird. Eine
einfache Änderung an Attributen würde so z.B. zu einem Bruch der API führen.

2https://www.haskell.org/
3https://de.wikipedia.org/wiki/Lisp
4https://www.scala-lang.org/

Vorwort 2

1.1 Einleitung

Webanwendungen haben sich in den letzten 20 Jahren von einemNischendasein hin zu
ernstzunehmenden Konkurrenten bzw. Ergänzungen von klassischen Anwendungen
entwickelt.
Da sich die damit einhergehenden Technologien ebenfalls weiterentwickelt haben,
eröffnen sich dementsprechend weitere Möglichkeiten.

Die Anzahl der Programmiersprachen, Basistechnologien und Frameworks, die in
diesemUmfeld angebotenwerden sindmehr als zahlreich und entsprechend schwierig
ist es sich einen Überblick zu verschaffen bzw. geeignete Werkzeuge auszuwählen.

Wir haben im Laufe unserer Arbeit viele verschiedene Frameworks (inklusive Pro-
grammiersprachen) verwendet und haben uns schlußendlich in diesem Buch dazu
entschieden das Play Framework zu nutzen.

Die Gründe hierfür sind vielfältig und teilweise subjektiv, da persönliche Vorlieben
unsere Entscheidungen immer beeinflussen, schließlich wollen wir an dem, was wir
tun, auch Freude haben. ;-)

Darüber hinaus basiert das Play Framework seinerseits auf soliden Basistechnologien
wie Akka, Netty und Scala. Der Code der Anwendung wird compiliert und läuft auf der
Java Virtual Machine (JVM).

1.2 Aufbau des Buches

Wir entwickeln im Verlauf dieses Buchs eine Beispielanwendung, was uns die Arbeit an
konkreten und praxisnahen Problemstellungen erlaubt.

In Teil 1 werden grundlegende Erklärungen zum Einrichten der Entwicklungsumge-
bung undWerkzeuge sowie eine kurze Einführung in Scala gegeben. Leser, denen diese
Themen bereits vertraut sind, können diesen Teil somit getrost überspringen.

https://www.playframework.com/
http://akka.io/
http://netty.io/
http://scala-lang.org/
http://java.oracle.com/

Vorwort 3

Die verwendeten Technologien werden in Teil 2 beschrieben, um den Einstieg in
die Beispielanwendung zu erleichtern. Dazu gehören das Play-Framework, Akka und
Scala.js. Wiederum können diejenigen Leser, welche mit den Technologien bereits
vertraut sind, diesen Teil überspringen und zu Teil 3 voranschreiten.

Teil 3 dient dazu, das Szenario für eine Anwendung zu definieren, die im Verlauf dieses
Buches entwickelt werden soll.

Eine grundlegende Komponente ist das Frontend, welches die Interaktion des Nutzers
mit der Beispielanwendung ermöglicht und ihm Zugriff auf die Funktionalitäten gibt.
Die Erstellung des Frontend auf Basis des Play-Framework, die Integration eines
Authentifikations-Frameworks, die Implementierung der Anmeldung des Nutzers am
System, das Durchsuchen und Verwalten von Freundeslisten und die Auswahl und
Ausführung eines Spiels werden in Teil 4 chronologisch erarbeitet. Darüber hinaus
wurde eine Migrationsanleitung aufgenommen, in der die gesamte Beispielanwendung
plus das integrierte Authentifikations-Framework auf Play 2.6 aktualisiert worden ist
(Während der Arbeit an dem Buch gab es die Veröffentlichung von Version 2.6, so
daß eine Migration von Play 2.5 und die damit verbundenen Erkenntnisse aufbereitet
wurden).

In Teil 5 wird das Spiel und dessen Umsetzung sowie Integration in das Frontend
beschrieben, was die Lücke zwischen diesen beiden Komponenten schließt. Für die
Ausführung der Beispielanwendung und das in diesem Zusammenhang notwendige
Deployment wird eine Anleitung in Teil 6 zusammengefaßt.

ZumAbschluß dieses Buches noch eine kurze Anmerkung hinsichtlich “Dokumentation
im Code” und warum diese gewissenhaft und von Anfang an durchgeführt werden
sollte.

1.2.1 Konventionen für den Quelltext

Wir folgen weitestgehend dem offiziellen Scala Style Guide. Ein Quelltext sieht bei-
spielsweise wie folgt aus:

http://docs.scala-lang.org/style/

Vorwort 4

Beispiel für einen Quelltext

/**

* Ein Kommentar...

*/

object Foo {

def someFunction(param: Int): String = {

/*

* Noch ein Kommentar...

*/

val someMagicValue = ??? // Kommentar...

// Und wieder ein Kommentar

val einEtwasLaengererBezeichner = someMagicValue.foldLeft(0)(_ + _) * outOfNowhereVal\

ue + 314

???

}

}

Je nach Medium werden Zeilen im Quelltext unterschiedlich umgebrochen. In einer
PDF-Datei können diese relativ lang sein (ca. 100 Zeichen). In einem E-Book dagegen
werden sie meist schon nach 45-50 Zeichen umgebrochen, bei größeren Schriftarten
(je nach Einstellung des Lesegerätes) auch deutlich früher. Dies erschwert es, größere
Quelltextblöcke vorzuformatieren, aber wir bemühen uns um möglichst gute Lesbar-
keit.

Es kann vorkommen, daß Zeilen im Quelltext, die sehr lang sind, mit einem
Backslash (\) “zerteilt” umgebrochen werden. Wir werden uns bemühen den
Code so vorzuformatieren, daß dies möglichst selten auftritt.

1.3 Schutzmarken und Copyrights

Folgende Technologien werden in diesem Buch genutzt. (Alphabetische Auflistung)

Vorwort 5

Technologie Rechteinhaber
Akka Lightbend
Java Oracle Corporation
Java Virtual Machine (JVM) Oracle Corporation
JavaScript Oracle Corporation
Netty The Netty Project
Play Framework Lightbend
Sbt Lightbend
Scala EPFL - École polytechnique fédérale de Lausanne
Scala.js EPFL - École polytechnique fédérale de Lausanne

1.4 Logos und Bilder

Wir bedanken uns recht herzlich für die Genehmigung zur Nutzung der folgenden
Logos.

Logo Eigentümer
Akka Lightbend in Respekt der Trademark Policy
Play Framework Lightbend in Respekt der Trademark Policy
Scala Scala Center and Scala logo courtesy of EPFL, Switzerland
Scala.js Scala Center and Scala logo courtesy of EPFL, Switzerland

Das Titelbild wurde für dieses Buch von André Schütz erstellt. Alle weiteren Abbildun-
gen innerhalb dieses Buches wurden durch die Autoren angefertigt.

1.5 Quelltext zum Buch

Der Quelltext zu der in diesem Buch erstellten Anwendung und die jeweils in den
Kapiteln angelegten Tags können im folgenden Repository eingesehen werden:
https://gitlab.com/comeoutandplay

https://gitlab.com/comeoutandplay

Einrichtung der Werkzeuge und
Einführung in Scala

Dieses Kapitel beschreibt grundlegende Arbeitsweisen undWerkzeuge und kann dem-
entsprechend übersprungen werden, wenn diese Kenntnisse bereits vorliegen.
Wir beginnenmit einem kurzen Exkurs durch dasÖkosystem der Programmiersprache
Scala hinsichtlich der zur Verfügung stehenden Werkzeuge. Diese umfassen Java, SBT
und diverse Entwicklungsumgebungen.

Danach erfolgt eine kurze Einführung in die Programmierung in Scala, welche einen
grundlegenden Überblick über die Möglichkeiten und Vorgehensweisen in dieser
Programmiersprache geben soll. Dazu zählen u.a. die interaktive Programmierung mit
einer REPL, Hinweise zu vorhandenen Datenstrukturen, ein Schnelleinstieg in die
funktionale Programmierung, Hilfsmittel, welche man zur Unterstützung nutzen kann
und ein Überblick, wie man “Boilerplate” Code reduziert.

2. Werkzeuge
In der praktischen Anwendung geht letztlich nichts ohne die entsprechenden Werk-
zeuge. Daher folgt hier ein kurzer Exkurs zu den benötigten Hilfsmitteln.

2.1 Java

Da Scala eine Programmiersprache ist, die in der Java Virtual Machine (JVM) läuft
und auch das Play-Framework und sonstige Werkzeuge Java benötigen, muß dieses
installiert sein. Zum gegenwärtigen Zeitpunkt empfehlen wir die aktuellste Version aus
der 1.8’er Reihe zu nutzen. Ob die Version von Oracle oder das OpenJDK zum Einsatz
kommen ist fürs Erste nicht weiter von Belang. Wir selbst nutzen vorzugsweise das
OpenJDK.

2.2 SBT

AlsWerkzeug zur Projektverwaltung hat sich für Scala das “Simple Build Tool”, kurz SBT,
durchgesetzt. Da die Bezeichnung “Simple” durchaus zu Kontroversen führte, wird es
mittlerweile eigentlich nur noch als SBT bezeichnet. ;-)

http://www.oracle.com/technetwork/java/index.html
http://openjdk.java.net/install/
http://www.scala-sbt.org/

Werkzeuge 3

2.2.1 Installation

Für SBT bestehen ausreichende Pakete für verschiedenste Betriebssysteme. Die In-
stallation desselben sollte also über die für das entsprechende System empfohlenen
Kanäle erfolgen.

2.2.2 Nützliches für SBT

Nach derzeitigem Stand kann man SBT global über das Verzeichnis ∼/.sbt/VERSION/
konfigurieren. Hierbei steht VERSION entweder für 0.13 (für ältere Projekte) oder für
1.0. Einige Einstellungen, die sehr nützlich sind, sollten in der folgendenDatei abgelegt
werden: ∼/.sbt/VERSION/global.sbt

Nützliche globale SBT-Einstellungen

// Prevent Strg+C from killing SBT.

cancelable in Global := true

// Use a coloured scala console if possible.

initialize ~= (_ =>

if (ConsoleLogger.formatEnabled)

sys.props("scala.color") = "true"

)

Die erste Einstellung verhindert, daß beim Beenden einer aus SBT heraus gestarteten
Anwendung durch Strg+C, SBT mit beendet wird. Die nächste Einstellung sorgt dafür,
daß Syntax-Highlighting in der Konsole aktiviert wird, wennman diese aus SBT heraus
startet.

2.2.2.1 Globale Plugins

ImVerzeichnis∼/.sbt/0.13/pluginsbzw.∼/.sbt/1.0/plugins können globale Plugins
eingebundenwerden. Zwei sehr nützliche Plugins sind sbt-updates und sbt-dependency-
graph. Wer sich mit Ensime beschäftigen möchte, kann dort auch das entsprechende
SBT-Plugin installieren.

https://github.com/rtimush/sbt-updates
https://github.com/jrudolph/sbt-dependency-graph
https://github.com/jrudolph/sbt-dependency-graph
https://ensime.github.io/

Werkzeuge 4

2.2.2.2 Schnelleres Herunterladen von Abhängigkeiten

Wer mit mehreren Projekten parallel arbeitet, wird recht schnell über die Meldung
‘Waiting for /.ivy2/.sbt.ivy.lock to be available’ stolpern. Darüber hinaus lädt SBT via Ivy Abhängigkeiten nur einzeln herunter. Eine schnellere Variante ist möglich, wenn das Plugin [Coursier](http://get-coursier.io) genutzt wird. Dieses kann in der folgenden Datei eingebunden werden: ‘/.sbt/VERSION/plugins/build.sbt‘

Achtung! Da einige andere SBT-Plugins ebenfalls Coursier nutzen, kann es
zu Problemen kommen, wenn verschiedene Versionen davon im Klassenpfad
zu finden sind!

2.2.2.3 Projektplugins

Innerhalb eines Projekts können Plugins im Verzeichnis project eingebunden werden.
Der Übersichtlichkeit halber sollte man einfach eine Datei project/plugins.sbt anle-
gen, in derman die gewünschten Plugins einbindet. Nützliche Plugins auf Projektebene
sind beispielsweise:

1. Scalafmt für automatisiertes Formatieren von Quelltext (Style Guide) oder alter-
nativ Scalariform

2. Wartremover für das Erzwingen von strengeren Regeln hinsichtlich funktionaler
Programmierung

3. sbt-git für nützliche Funktionen rund um Git wie z.B. die automatische Ableitung
einer Versionsnummer aus Tags

2.2.2.4 SBT-Version fixieren

Die SBT-Version kann für ein Projekt fest eingestellt werden, indem man diese in der
Datei project/build.properties konfiguriert:

SBT-Version in build.properties einstellen

sbt.version=1.2.8

2.3 Entwicklungsumgebung

Mittlerweile gibt es einige Entwicklungsumgebungen (IDEs) für Scala wie Scala IDE
und IntelliJ Idea. Es ist jedoch auch möglich mit Texteditoren zu arbeiten. Das Projekt

http://scalameta.org/scalafmt/
https://github.com/sbt/sbt-scalariform
https://github.com/wartremover/wartremover
https://github.com/sbt/sbt-git
https://git-scm.com/
http://scala-ide.org/
https://www.jetbrains.com/idea/

Werkzeuge 5

Ensime bietet Plugins für SBT und diverse Editoren an, um fortgeschrittene Funktio-
nalitäten zu ermöglichen. Beliebte Editoren im Umfeld von Scala sind: Emacs, Vim bzw.
Neovim, Sublime Text 2 und Atom.

Seit einiger Zeit gewinnt auch das Projekt Metals immer mehr an Fahrt und macht
einen sehr vielversprechenden Eindruck. Insbesondere in Kombination mit Visual
Studio Code ist es ein sehr schlankes, aber wirkungsvolles Werkzeug. Es gibt auch
Integrationen in andere Editoren.
Wer sich Metals ansehen möchte, sollte zudem einen Blick auf Bloop werfen, da diese
Projekte Hand in Hand gehen.

Die Nutzung von Texteditoren für größere Projekte ist nur fortgeschrittenen Anwen-
dern zu empfehlen. Für den Einstieg sollte eine IDE gewählt werden. Wir nutzen
vorzugsweise IntelliJ Idea, daher bezieht sich die Beschreibung zur Einrichtung der
Entwicklungsumgebung darauf. Damit IntelliJ Idea genutzt werden kann, muß das
Scala-Plugin installiert werden.

Das Erstellen von Projektstrukturen erfolgt jedoch mittels SBT. Diese Strukturen
werden dann in die IDE importiert.

https://ensime.github.io/
https://www.gnu.org/software/emacs/index.html
http://www.vim.org/
https://neovim.io/
https://www.sublimetext.com/2
https://atom.io/
https://scalameta.org/metals/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://scalacenter.github.io/bloop/

3. Programmierung in Scala

Scala ist eine objektorientierte und ebenso eine funktionale Programmiersprache. Für
Ein- undUmsteiger, die Erfahrungen in objektorientierter Programmierung (insbeson-
dere mit Java) haben, bietet sich so die Möglichkeit eines recht einfachen Übergangs.
Man kann erstmal “besseres Java” schreiben und ist nicht gezwungen gleich komplett
in die funktionale Programmierung einzutauchen. Ein interessantes Feature von Scala
ist auch die Möglichkeit Java- und Scalaklassen beliebig zu mischen bzw. Bibliotheken
gegenseitig zu nutzen.

Es gibt zahlreiche Literatur zur Programmierung in Scala. Die folgenden Bücher sind
unserer Ansicht nach zu empfehlen:

1. Programming in Scala - Martin Odersky, Lex Spoon, Bill Venners

2. Scala for the Impatient - Cay S. Horstmann

3. Functional Programming in Scala - Runar Bjarnason, Paul Chiusano

4. Functional Programming for Mortals - Sam Halliday

5. Scala with Cats - Noel Welsh, Dave Gurnell

“Functional Programming in Scala” ist definitiv kein Einsteigerbuch, aber nichtsdesto-
trotz ein sehr gutes Buch für jemanden, der sich intensiv mit funktionaler Program-
mierung auseinandersetzen möchte. Die beiden letztgenannten Bücher bieten einen
guten Einstieg mit dem Schwerpunkt jeweils auf Scalaz bzw. Cats als Bibliotheken.

Programmierung in Scala 7

Eine umfassende Einführung in Scala würde den Rahmen dieses Kapitels sprengen,
daher werden wir hier nur kurz auf einige im Rahmen des Buches wichtige Aspekte
eingehen und verweisen auf die bereits erwähnte Literatur.

3.1 Interaktive Programmierung via REPL

Das Kürzel REPL steht für “read eval print loop” und wertet Nutzereingaben direkt in
der verwendeten Programmiersprache aus. Dieses Prinzip der interaktiven Program-
mierung ist je nach bisherigem Erfahrungshintergrund eventuell bekannt. Sollte dieses
Konstrukt Neuland sein, können wir nur empfehlen, sich damit auseinanderzusetzen.
Auch wenn wir für das Entwickeln größerer Anwendungen eine IDE nutzen, so bietet
eine REPL jedoch den Vorteil schnell Code auszuprobieren und zu verfeinern.

Scala bietet eine Standard-REPL, die einfach via scala bzw. scala -Dscala.color

gestartet werden kann.

Zum Kopieren größerer Quelltextausschnitte ist es hilfreich die Scala-REPL
in den Einfügemodus zu schalten. Dies geschieht durch den Befehl :paste.

Eine Alternative zur Scala-REPL ist die Ammonite-REPL. Sie bietet einige interessante
Erweiterungen zur Standard-REPL, ist aber für das Ausprobieren der Codeschnipseln
in diesem Buch nicht zwingend erforderlich.

Des Weiteren besteht die Möglichkeit in IDEs (IntelliJ Idea, Scala IDE) ein sogenanntes
“Worksheet” anzulegen. Hierzumuß ein Scalaprojekt erstellt werden, in welchem dann
der Worksheet erzeugt werden kann. Diese Möglichkeit bietet alle Annehmlichkeiten
einer integrierten Entwicklungsumgebung und weitaus bessere Speichermöglichkei-
ten als eine REPL.

3.2 Hinweise zu Datenstrukturen (var, val)

Man kann Datenstrukturen in den folgenden Varianten definieren:

http://www.lihaoyi.com/Ammonite/#Ammonite-REPL

Programmierung in Scala 8

Immutable
Datenstrukturen, die nicht veränderbar sind. Scala stellt eine Reihe von Daten-
typen bereit, die unter scala.collection.immutable zu finden sind. Ein solcher
Datentyp kann nach seiner Initialisierung nicht wieder verändert werden. Man
kann lediglich eine veränderte Kopie von selbigem erzeugen.

Mutable
Datenstrukturen, die veränderbar sind. Ein solcher Datentyp ist nach seiner
Initialisierung beliebig veränderbar und kann mehrmals zugewiesen werden.
Auch hierfür bietet Scala eine Reihe vonDatentypen, die analog zu den vorherigen
unter scala.collection.mutable zu finden sind.

Var Eine Variable, deren Inhalt geändert werden kann. Sie kann einen beliebigen
Datentyp (immutable oder mutable) enthalten und kann jederzeit mit einem
neuen Wert belegt werden.

Val Eine Variable, deren Inhalt nicht geändert werden kann. Auch sie kann einen
beliebigen Datentyp (immutable oder mutable) enthalten, aber nach ihrer Initia-
lisierung nicht wieder mit einem neuen Wert belegt werden.

Hieraus ergeben sich die folgenden Kombinationsmöglichkeiten:

3.2.0.1 Immutable Val

Perfekt

Die optimale Kombination im Hinblick auf Datensicherheit. Man muß sich keine
Gedanken darum machen, daß ein Wert, den man weitergibt oder erhalten hat von
einer anderen Stelle aus geändert werden könnte.

3.2.0.2 Immutable Var

In Ordnung

Programmierung in Scala 9

Die Nutzung eines unveränderbaren Datentyps in einer Variablen kann sinnvoll sein,
wenn diese nur innerhalb eines bestimmten Kontextes (z.B. für den Zustand eines
Aktors) genutzt wird.

3.2.0.3 Mutable Val

Möglichst vermeiden

Die Nutzung von veränderbaren Datentypen kann unter Umständen sinnvoll sein, aber
man muß sicherstellen, daß man diese niemals weitergibt! Wer sich nicht sicher ist,
sollte diese Kombination vermeiden.

3.2.0.4 Mutable Var

Niemals!

Um es kurz zumachen: Nie, aber auch wirklich nie sollte diese Kombination verwendet
werden!

3.3 Schnelleinstieg in die funktionale Programmierung

Unter funktionaler Programmierung versteht man gemeinhin den Aufbau von Pro-
grammen aus Funktionen unter der Prämisse, daß Nebenwirkungen (Seiteneffekte)
bewußt vermieden werden. Sogenannte “reine funktionale” Programmiersprachen
schließen die Verwendung von Elementen aus, die diesem Paradigma zuwider laufen.
Scala ist keine reine (pure) funktionale Programmiersprache. Allerdings ist Scala eine
rein objektorientierte Sprache. Im Gegensatz zu Java bedeutet dies, daß auch primitive
Datentypen Objekte sind. Interfaces können über sogenannte Traits realisiert werden,
die jedoch nicht nur die Deklarationen sondern auch konkrete Implementierungen
beinhalten können. Des Weiteren können Klassen in Scala mehrere Traits erweitern,

Programmierung in Scala 10

was jedoch keine Mehrfachvererbung ist sondern ein Mixin-Mechanismus. Statische
Felder und Methoden können nicht in Klassen definiert werden, allerdings in einem
object. Ein solches object stellt ein Singleton dar und bildet im Zusammenhang mit
einer gleichnamigen Klasse ein sogenanntes Companion-Object.
Die funktionale Programmierung wird in Scala dadurch möglich, daß Funktionen
sogenannte First-Class-Objects sind. Auch Funktionen höherer Ordnung werden un-
terstützt. Darüber hinaus werden wichtige Eigenschaften wie Pattern-Matching und
Closures unterstützt. Scala ist eine statisch typisierte Programmiersprache mit einem
sehr umfangreichen Typisierungssystem.

3.3.1 Auswertungsstrategien (evaluation strategies)

Man unterscheidet die beiden Strategien “Call by value” und “Call by name”.
Erstere wertet den angegebenen Ausdruck immer aus, aber dafür nur einmal. Letztere
wertet den Ausdruck nur aus, wenn er auch benutzt wird, dafür wird er immer wieder
ausgewertet.
Beide Strategien setzen voraus, daß die angegebenen Ausdrücke reine Funktionen sind
und auch terminieren.
Scala verwendet “Call by value”, unterstützt aber auch “Call by name” dessen Verwen-
dung sinnvoll sein kann, wenn teure Auswertungen evtl. nicht notwendig sind.

call-by-value

scala> val a = 1

a: Int = 1

call-by-name

scala> def f(a: Int, b: => Int): Int = {

if (a == 0)

a + 1

else

b

}

f: (a: Int, b: => Int)Int

scala> f(0, extremLangsameFunktion)

res4: Int = 1

Programmierung in Scala 11

Jede Funktion, die für “Call by value” terminiert, terminiert auch für “Call by name”.
Umgekehrt gilt dies nicht.

Funktionsparameter können als “by value” oder “by name” übergebene werden. Dies
gilt gleichermaßen für die Definition von Ausdrücken. Wobei def für “by name” und
val für “by value” genutzt wird.

3.3.2 Scopes und Blöcke

In Scala können Funktionen auch innerhalb anderer Funktionen definiert werden. Dies
ist sehr hilfreich, wenn sehr spezifische Hilfsfunktionen genutzt werden.

Funktionen in Funktionen

def foo(a: Int) = {

def bar(x: Int, y: Int) = ???

bar(a, 1)

}

Blöcke werden durch geschweifte Klammern geöffnet und geschlossen. Sie können
eine Reihe von Definitionen oder Ausdrücken enthalten und das letzte Element des
Blocks bestimmt dessen Rückgabewert. Ein Block ist wiederum ein Ausdruck und kann
an allen Stellen genutzt werden, an denen auch ein Ausdruck stehen kann.
Bei der Schachtelung von Funktionen und bei Blöcken, ist die Sichtbarkeit von Werten
zu beachten.

Sichtbarkeit in geschachteltem Code

def foo(a: Int) = {

val x = 23

def bar(a: Int) = {

x + a // x ist gleich 23

}

val r = {

val x = bar(42) + a

x * x // x ist gleich 42 + 23 + a

}

}

Programmierung in Scala 12

Definitionen und Werte innerhalb eines Blocks sind auch nur in diesem sichtbar.
Ausdrücke von außerhalb des Blocks sind in diesem sichtbar, es sei denn, darin sind
identisch benannte definiert. Dies nennt man “shadowing”.

3.3.3 Semikolons und Infix-Operatoren

In Scala ist die Verwendung von Semikolons im Gegensatz zu Java optional, d.h. man
kann eine Zeile mit einem Semikolon beenden, muß dies aber nicht tun. Gemeinhin
lässt man das Semikolon weg. Lediglich wenn zwei Befehle hintereinander geschrieben
werden, müssen diese durch ein Semikolon getrennt werden.

Semikolon

// Korrekte Syntax

val a = 1

// Auch korrekt, aber nicht notwendig.

val b = 2;

// Semikolon notwendig

val c = a + b; c * 2

Bei Ausdrücken, die über mehrere Zeilen gehen, müssen die Infix-Operatoren an das
Ende der vorhergehenden Zeile gesetzt werden. Alternativ könnte man den gesamten
Ausdruck in Klammern setzen.

Ausdrücke über mehrere Zeilen

// Wird interpretiert als a; + b

a

+ b

// Wird interpretiert als a + b

a +

b

// Wird interpretiert als a + b

(a

+ b)

Programmierung in Scala 13

3.3.4 Tail-Rekursion

Wenn der letzte Befehl einer Funktion der Aufruf einer anderen ist, nennt man dies
einen Tail-Call, da dann der Stack für beide Funktionen genügt. Nutzt man diese
Technik in rekursiven Funktionen, werden diese tail-recursive genannt. Eine solche
Funktion ist ein iterativer Prozess und kann vom Compiler zu einer einfachen Schleife
optimiert werden.
Tail-Rekursion bringt erhebliche Leistungsvorteile. Allerdings sind tail-rekursive Funk-
tionenmeist nicht so leicht lesbar wie rein rekursive. Deswegen sollte man abwägen ob
der Aufwand für die Implementierung einer Tail-Rekursion notwendig ist. Manchmal
ist es auch schlichtweg nicht möglich einen Algorithmus tail-rekursiv zu implementie-
ren.

Fakultät mit Rekursion

object Factorial {

def fac(n: Long): Long = {

if (n == 0)

1L

else

n * fac(n - 1)

}

}

Fakultät mit Tail-Rekursion

import scala.annotation.tailrec

object Factorial {

def fac(n: Long): Long = {

@tailrec

def fact(acc: Long, x: Long): Long = {

if (x == 0)

acc

else

fact(acc * x, x - 1)

}

fact(1, n)

}

}

Programmierung in Scala 14

3.3.5 Funktionen höherer Ordnung (Higher Order Functions)

Durch die Behandlung von Funktionen als First-Class-Objects können diese wie je-
der andere Wert verwendet werden. Dies bedeutet, daß Funktionen implementiert
werden, die andere Funktionen als Parameter empfangen und Funktionen als Rückga-
bewerte liefern können. Solche Funktionen nennt man Funktionen höherer Ordnung
(Higher-Order Functions).
Der Typ für Funktionen lautet A => B, demnach impliziert die Notation String => Int

eine Funktion, die einen String empfängt und eineGanzzahl (Integer) zurückgibt. Damit
man nicht jede benutzte Funktion explizit definieren muß, kann man auch sogenannte
anonyme Funktionen definieren.

Funktionen und anonyme Funktionen

@ def check(x: Int)(f: Int => Boolean) = f(x)

defined function check

@ def isEven(a: Int) = a % 2 == 0

defined function isEven

@ // Funktion explizit übergeben.

@ check(3)(isEven)

res2: Boolean = false

@ // Eine anonyme Funktion übergeben.

@ check(3)((a: Int) => a % 2 != 0)

res3: Boolean = true

3.3.6 Currying

Mit Currying meint man die Umwandlung einer Funktionmit mehreren Argumenten in
einemit einemArgument. Praktisch bedeutet dies, daß durch die Implementierung von
Funktionen, die wiederum Funktionen zurückgeben weitere Generalisierungen und
Vereinfachungen möglich sind. Wenn also eine Funktion definiert ist, die n Argumente
erfordert und auf ein Argument angewendet wird, so verarbeitet sie dieses und gibt
eine Funktion zurück, die ihrerseits noch n - 1 Argumente verlangt.
Der Aufruf foo(bar)(42, "Die Antwort.") wird linksassoziativ ausgewertet, d.h. er
löst auf zu (foo (bar)) (42, "Die Antwort."). Der Ausdruck foo(bar) wendet die
Funktion foo auf bar an und die daraus zurückgegebene Funktionwirdmit den übrigen
Parametern aufgerufen.

Programmierung in Scala 15

Beispiel für Currying

/**

* Multipliziere alle Zahlen beginnend mit

* `x` und endend mit `y`. Hierbei wird auf

* jede Zahl die übergebene Funktion `f`

* angewendet bevor die Multiplikation

* durchgeführt wird.

*/

def mult(f: Int => Int): (Int, Int) => Int = {

def applyF(x: Int, y: Int): Int = {

if (x > y)

1

else

f(x) * applyF(x + 1, y)

}

applyF

}

// Identität

mult((a: Int) => a)(1, 1) // => 1

mult((a: Int) => a)(1, 2) // => 2

mult((a: Int) => a)(1, 3) // => 6

// Quadrieren

mult((a: Int) => a * a)(1, 1) // => 1

mult((a: Int) => a * a)(1, 2) // => 4

mult((a: Int) => a * a)(1, 3) // => 36

Scala unterstützt eine spezielle Syntax, um die Definition derartiger Funktionen zu
vereinfachen. Es können mehrere Parameterlisten angegeben werden.

Programmierung in Scala 16

Currying mit spezieller Syntax

/**

* Vereinfachte Definition durch multiple

* Parameterlisten.

*/

def mult(f: Int => Int)(x: Int, y: Int): Int = {

if (x > y)

1

else

f(x) * mult(f)(x + 1, y)

}

// Identität

mult((a: Int) => a)(1, 1) // => 1

mult((a: Int) => a)(1, 2) // => 2

mult((a: Int) => a)(1, 3) // => 6

// Quadrieren

mult((a: Int) => a * a)(1, 1) // => 1

mult((a: Int) => a * a)(1, 2) // => 4

mult((a: Int) => a * a)(1, 3) // => 36

3.3.7 Polymorphismus

Scala unterstützt polymorphe Funktionen, d.h. man kann angeben für welche Typen
eine Funktion anwendbar ist. Nehmen wir z.B. die folgende Funktion, die generisch auf
einem Datentyp Person arbeitet und das Gehalt der Person zurückgibt, wenn diese
ein Angestellter ("EMPLOYEE") ist. Anderenfalls wird ein Ausnahmefehler (Exception)
geworfen.

Programmierung in Scala 17

final case class Person(...)

def getSalary(p: Person) = {

if (p.category == "EMPLOYEE") {

...

}

else

throw new IllegalArgumentException("Cannot get salary of non-employee!")

}

Dieser Ansatz hat sicherlich mehr als ein Problem, aber wir konzentrieren uns darauf,
daß die Funktion nur auf Datentypen anwendbar sein sollte, welche die erforderlichen
Bedingungen erfüllen. Mit Hilfe der Typisierung ist eine andere Lösung denkbar:

trait Person {

...

}

final case class Stranger(...) extends Person

final case class Employee(...) extends Person

def getSalary[A <: Employee](p: A) = {

...

}

Nun verlangt die Funktion getSalary einen Datentyp, der ein untergeordneter Typ
von Employee ist. Anwender der Funktion sehen nun direkt an deren Signatur, daß
ein solcher erforderlich ist. Darüber hinaus können Tests eingespart werden, da der
Compiler nun prüft ob ein korrekter Typ übergeben wurde. Des Weiteren kann dieser
Optimierungen vornehmen, da nur bestimmte Typen zugelassen sind.

Auch komplett generische Angaben sind möglich:

def apply[A, B](a: A)(f: A => B): B = f(a)

Es lohnt sich dieses Thema zu vertiefen, da es hiermit möglich ist den
Implementierungsraum einer Funktionsdefinition einzuschränken.
Man vergleiche z.B. die möglichen Implementierungen für def f(a:

String): Stringmit denen für def f[A,B](a: A)(b: A => B): B.

Programmierung in Scala 18

3.3.8 Pattern-Matching

Das Problem der Dekomposition in der Programmierung lässt sich in funktionalen
Programmiersprachen mit Hilfe von Pattern-Matching (Musterabgleich) lösen. Ge-
nerell geht es um die Fragestellung, welche Klasse bzw. Unterklasse mit welchen
Konstruktorparametern benutzt wurde.

Folgendes Beispiel soll das Prinzip verdeutlichen.

Beispiel für Pattern-Matching

scala> def fn(x: Any): String = x match {

| case Some(value) => value.toString

| case None => "None"

| case (v1, v2) => s"Pair($v1, $v2)"

| case xh :: xs => "List"

| case _ => "..."

| }

fn: (x: Any)String

scala> fn(Option(123))

res0: String = 123

scala> fn(None)

res1: String = None

scala> fn(Option(List(1,2,3)))

res2: String = List(1, 2, 3)

scala> fn(List(1,2,3))

res3: String = List

scala> fn((1,2))

res4: String = Pair(1, 2)

scala> fn((1,2,3))

res5: String = ...

Noch einige Anmerkungen zum Beispiel:

1. Die Verwendung von Any als Datentyp dient hier lediglich der Demonstration.

2. Der Ausdruck Some(...) wird genutzt um auf eine Option zu treffen.

3. Mit (v1, v2) trifft man ein Paar (Tuple) und extrahiert die einzelnen Elemente
direkt.

4. Der letzte Ausdruck _ trifft auf alles.

Programmierung in Scala 19

Die Unterstrichnotation (_) im Pattern-Matching bedeutet, daß der Wert
selbst nicht verwendet werden soll. So trifft z.B. das Pattern Some(_) auf eine
Option, aber der Inhalt derselben ist nicht relevant.

3.3.9 Implizite Parameter

Bei der Nutzung von Currying mit mehreren Parameterlisten ist es manchmal hinder-
lich, wenn alle Parameter jeweils explizit angegeben werdenmüssen. Durch die Defini-
tion einesWertes als implicit innerhalb eines Bereichs (Scope) wird der entsprechen-
de Ausdruck automatisch genutzt. Allerdings dürfen nicht zwei implizite Ausdrücke
im selben Bereich definiert sein, wenn die Funktion genutzt werden soll. Implizite
Parameter können auch explizit belegt werden, um dieses Problem zu umgehen.

Beispiel für implizite Parameter

scala> def increment(n: Int)(incBy: Int) =

| n + incBy

increment: (n: Int)(incBy: Int)Int

scala> increment(3)

<console>:14: error: missing argument list for method increment

...

scala> increment(3)(4)

res0: Int = 7

scala> def increment(n: Int)

| (implicit incBy: Int): Int = n + incBy

increment: (n: Int)(implicit incBy: Int)Int

scala> increment(3)(4)

res1: Int = 7

scala> implicit val i = 10

i: Int = 10

scala> increment(3)(4)

res2: Int = 7

scala> increment(3)

res3: Int = 13

scala> implicit val foo = 1

foo: Int = 1

scala> increment(3)

<console>:15: error: ambiguous implicit values:

Programmierung in Scala 20

both value i of type => Int

and value foo of type => Int

match expected type Int

increment(3)

scala> increment(3)(foo)

res7: Int = 4

3.4 Hilfsmittel zur Unterstützung

Es gibt einige nützliche Plugins für SBT, die es erlauben, die Codequalität bzw. die
Konformität hinsichtlich funktionaler Standards, zu überprüfen. Für uns hat sich
Wartremover als überaus hilfreich erwiesen. Wenn Akka genutzt wird, muß über der
Implementierung von receive jedoch immer die Annotation stehen, die Warnungen
für Any unterdrückt. Dies sieht dann zum Beispiel so aus:

Annotation zum Unterdrücken von Any-Warnungen bei Aktoren

class FancyActor extends Actor {

@SuppressWarnings(

Array("org.wartremover.warts.Any")

)

override def receive: Receive = ???

}

Man kannmitWartremover einen funktionalen Programmierstil forcieren, ohne diesen
unausweichlich zu erzwingen. Insbesondere in einer Übergangs- bzw. Lernphase kann
dies praktisch sein, sollte jedoch nicht dazu verleiten, ein SuppressWarnings einer
sauberen Lösung vorzuziehen.

In einigen Fällen (wie z.B. im vorher erwähnten Aktor) kann es zu Fehlalarmen kommen,
die dann entsprechend unterdrückt werden können.

Des Weiteren steht mit Scalafix ein neues Werkzeug zur Verfügung. Es überschneidet
sich etwas mit Wartremover, stellt aber auch sehr gute andere Möglichkeiten zur
Verfügung. Als Beispiel sei hier nur das Unterdrücken des generischen Vergleichs via
== genannt.

https://github.com/wartremover/wartremover
https://scalacenter.github.io/scalafix/

Programmierung in Scala 21

3.5 Reduzierung von “Boilerplate” Code

Eine sehr nützliche Eigenschaft von Scala ist die Definition von Case-Classes. Dadurch
lassen sich einfach Datencontainer implementieren, ohne den von Java gewöhnten
umfangreichen Code zu schreiben (oft “Boilerplate” genannt). Im Folgenden zwei kleine
Beispiele, wovon eines in Java und das andere in Scala umgesetzt sind:

Datencontainer in Java

class Person {

private String firstname = "";

private String surname = "";

private String phone = "";

public Person(String fn,

String sn,

String ph) {

this.firstname = fn;

this.surname = fn;

this.phone = ph;

}

public String getFirstname() {

return firstname;

}

public String getSurname() {

return surname;

}

public String getPhone() {

return phone;

}

}

Programmierung in Scala 22

Datencontainer in Scala

final case class Person(firstname: String,

surname: String,

phone: String)

Der geringere Aufwand ist deutlich ersichtlich und darüber hinaus bieten Case-Classes
noch weitere nützliche Funktionen wie z.B. Nichtveränderbarkeit (Immutablility) und
Hilfsfunktionen wie beispielsweise copy. Damit kann man einfach eine modifizierte
Kopie der Daten erzeugen.

Copy mit Case-Classes

@ final case class Person(firstname: String,

surname: String,

phone: String)

defined class Person

@ val p = Person(

"Max",

"Mustermann",

"555-12345")

p: Person = Person("Max", "Mustermann", "555-12345")

@ p.copy(firstname = "Franz")

res2: Person = Person("Franz", "Mustermann", "555-12345")

Bei tief verschachtelten Datenstrukturen wird die Verwendung von copy

sehr umständlich. Eine mögliche Lösung bieten “Optics” (Lenses). Für
Scala empfiehlt sich die Bibliothek Monocle.

http://julien-truffaut.github.io/Monocle/

Einführung und Grundlagen zu
den verwendeten Technologien

Dieses Kapitel beschreibt die grundlegenden Technologien, welche bei der Implemen-
tierung der späteren Beispielanwendung verwendet werden.

Play Framework
Das Play Framework (im Folgenden oft auch nur einfach Play genannt) ist ein
Web-Framework, welches die Erstellung einer Oberfläche zur Interaktion zwi-
schen der Anwendung und dem Nutzer erleichtert.

Akka
Akka ist ein Toolkit, welches die Erstellung verteilter, asynchroner und paralle-
ler Anwendungen ermöglicht, die zudem hochperformante Aufgabenstellungen
mittels einfacher Skalierung bereitstellt.

Scala.js
Scala.js kombiniert die Typisierung von Scala Code mit den vielfältigen Möglich-
keiten und vorhandenen Bibliotheken von JavaScript. Dadurchwird die Erstellung
von Frontend-Anwendungen erleichtert und in eine vorhandene Scala Umgebung
fließend integriert.

Programmierung in Scala 24

Je nach vorhandenen Vorkenntnissen kann das folgende Kapitel oder Teile davon
übersprungen werden.

4. Play Framework

Dieses Kapitel beschreibt die Grundlagen für die Arbeit mit dem Play Framework und
kann bei entsprechenden Vorkenntnissen übersprungen werden.

Das Play Framework ist ein Web Framework für Java und Scala, kann in beiden
Programmiersprachen genutzt und hinsichtlich der Anforderungen angepasst werden.
Das zu Grunde liegende asynchrone Modell wurde auf Grundlage von Akka konzipiert
und bietet nicht-blockierende (asynchrone), zustandslose Anwendungen (stateless),
welche eine planbare und robuste Skalierung ermöglichen.

4.1 Erstellen einer Play Anwendung

Play Anwendungen können auf unterschiedlichem Wege mittels sbt erstellt werden.
Seit Version 0.13.13 von sbt ist es möglich vorgefertigte Projektschablonen über den
Befehl sbt new zu nutzen.

4.1.1 Play Anwendung über Schablonen erstellen

Für die Erstellung eines Projekts mit Play und Scala genügt der folgende Befehl:

Play Framework 26

Erstellung einer play-scala Anwendung via sbt new

sbt new playframework/play-scala-seed.g8

4.1.2 Play Anwendung von Hand erstellen

Eine neue Play Anwendung kann direkt mittels sbt erstellt und nach den eigenen
Bedürfnissen konfiguriert werden.

Nach der Erstellung eines neuenOrdners, welcher die Grundlage für das Projekt bildet,
müssen die folgenden Zeilen in die Datei project/plugins.sbt innerhalb eines project
Ordners eingetragen werden.

Erstellung einer Play Anwendung mit SBT: plugins.sbt

// Repository of the Typesafe plugins

resolvers +=

"Typesafe repository" at

"https://repo.typesafe.com/typesafe/maven-releases/"

// The Play sbt plugin for the creation of Play projects

// Replace the `x` for the actual version of the plugin

// example: `2.5.15` or `2.6.3`

addSbtPlugin("com.typesafe.play" % "sbt-plugin" % "2.5.x")

Die zu verwendende SBT Version kann in der project/build.properties definiert werden.

Erstellung einer Play Anwendung mit SBT: build.properties

sbt.version = 0.13.16

Abhängig von der Version des Play Framework kann die Version von SBT variieren.
Daraus ergeben sich die folgenden Kombinationen aus SBT und Play Framework.

• Play 2.5 und SBT 0.13.x

• Play 2.6 und SBT 1.x

Eine grundlegende build.sbt wird rudimentär folgendermaßen aussehen.

Play Framework 27

Erstellung einer Play Anwendung mit SBT: build.sbt

name := "play-test"

version := "0.0.1"

lazy val root = (project in file(".")).enablePlugins(PlayScala)

scalaVersion := "2.11.11"

Die Version von Scala variiert wie die SBT Version in Abhängigkeit von der gewählten
Play Version. Daraus ergeben sich die folgenden Kombinationen.

• Play 2.5 und Scala 2.11.x

• Play 2.6 und Scala 2.12.x

Die gesamte bisherige Verzeichnisstruktur ergibt sich daraus wie folgt.

Erstellung einer Play Anwendung mit SBT: Verzeichnisstruktur

play-test

|_ build.sbt

|_ project

|_ build.properties

|_ plugins.sbt

Es werden noch diverse SBT-Plugins für ein Play-Projekt benötigt, welche in der Datei
project/plugins.sbt eingetragen werden.

Play Framework 28

SBT-Plugins für Play-Projekte

// The Play sbt plugin for the creation of Play projects

// Replace the `x` for the actual version of the plugin

// example: `2.5.9`

addSbtPlugin("com.typesafe.play" % "sbt-plugin" % "2.5.x")

// web plugins

addSbtPlugin("com.typesafe.sbt" % "sbt-coffeescript" % "1.0.0")

addSbtPlugin("com.typesafe.sbt" % "sbt-less" % "1.1.0")

addSbtPlugin("com.typesafe.sbt" % "sbt-jshint" % "1.0.4")

addSbtPlugin("com.typesafe.sbt" % "sbt-rjs" % "1.0.8")

addSbtPlugin("com.typesafe.sbt" % "sbt-digest" % "1.1.1")

addSbtPlugin("com.typesafe.sbt" % "sbt-mocha" % "1.1.0")

// If you enable sassify then you need to have libsass installed.

//addSbtPlugin("org.irundaia.sbt" % "sbt-sassify" % "1.4.6")

Darüber hinaus kann die build.sbt erweitert werden, um weitere externe Abhängigkei-
ten hinzuzufügen und in das Projekt einzubinden.

Einbindungen in der build.sbt für Play-Projekte

name := "play-test"

version := "0.0.1"

lazy val root = (project in file(".")).enablePlugins(PlayScala)

scalaVersion := "2.11.11"

libraryDependencies ++= Seq(

jdbc,

cache,

ws,

"org.scalatestplus.play" %% "scalatestplus-play" % "1.5.1" % Test

)

Die Variable libraryDependencies enthält die eingebundenen Abhängigkeiten. Ange-
fangen mit Zeile (10) werden diese eingebunden, so daß sie in der Anwendung zur
Verfügung stehen. Darunter sind der Zugriff auf Datenbanken (jdbc), die Nutzung eines
internen Cache (cache) und web services (ws).

Play Framework 29

4.2 Projektstruktur

Der Aufbau einer Play Anwendung ist standardisiert und trennt wichtige Teile der
Kernanwendung, Konfiguration und Administration in separate Projektpfade. Im fol-
genden Abschnitt wird die Standardstruktur um einige Ordner erweitert, die für
die konzeptionelle Planung von Vorteil sind und die Administration des Projektes
erleichtern.

4.2.1 Verzeichnisse, SBT-Einstellungen und Abhängigkeiten

Die Verzeichnisstruktur einer Play Anwendung1 gliedert sich grundlegend in die fol-
genden Teile (Ordner mit einem * wurden hinzugefügt):

Struktur einer Play Anwendung

app -> Anwendungsdateien

|_ actors -> Actor Definitionen

|_ adt -> Abstrakte Datentypen

|_ assets

|_ stylesheets -> Normalerweise LESS CSS Dateien

|_ javascripts -> Normalerweise Coffeescript Dateien

|_ controllers -> Anwendungscontroller

|_ dao* -> Datenzugriffsobjekte

|_ forms* -> Formulardefinitionen

|_ models -> Anwendungsgeschäftsschicht

|_ views -> Templates

conf -> Konfigurationsdateien

|_ application.conf -> Hauptkonfigurationsdatei

|_ routes -> Routing

dist -> Diverse weitere Projektdateien

public -> Öffentliche Dateien

|_ stylesheets -> CSS Dateien

|_ javascripts -> Javascript Dateien

|_ images -> Bilddateien

project -> SBT Konfigurationsdateien

|_ build.properties -> Grundeinstellungen des SBT Projektes

|_ plugins.sbt -> SBT Plugins

1https://www.playframework.com/documentation/2.5.x/Anatomy

Play Framework 30

lib -> Manuelle Bibliotheksabhängigkeiten

logs -> Log-Datei Ordner

|_ application.log -> Standard Log-Datei

target -> Erstellte Projektdateien

|_ resolution-cache -> Informationen über Abhängigkeiten

|_ scala-2.11

|_ api -> Erstellte API Dokumentation

|_ classes -> Kompilierte Class Dateien

|_ routes -> Von `routes` erstellt

|_ twirl -> Von `templates` erstellt

|_ universal -> Packaging

|_ web -> Kompilierte Web Ressourcen

test -> Ordner für diverse Testdateien

build.sbt -> Skript zum Erstellen der Anwendung

Die folgende Übersicht stellt einen Überblick über die Verwendung der einzelnen
Verzeichnisse und ihrer Bedeutung im Projekt dar. (Eine ausführliche Beschreibung
der einzelnen Verzeichnisse findet sich in der Play Dokumentation2.)

Das /app Verzeichnis
Dieses Verzeichnis enthält alle ausführbaren Java und Scala Dateien, Templates
und kompilierte Medieninhalte. Die grundlegende MVC (Model-View-Controller)
Architektur gliedert sich in die drei Grundverzeichnisse app/models, app/views
und app/controllers. Darüber hinaus wurden einige Verzeichnisse zur Standard-
struktur hinzu gefügt, welche die folgenden Bedeutungen haben. Das app/ac-
tors Verzeichnis beherbergt Actor Definitionen, im app/adt Verzeichnis werden
abstrakte Datentypen definiert, welche nicht in das app/models Verzeichnis
gehören, das app/dao Verzeichnis beinhaltet Datenzugriffsobjekte (Data Access
Objects), welche den Datenzugriff auf verschiedene Datenquellen regeln und das
app/forms Verzeichnis beinhaltet eigene Formulardefinitionen, welche aus den
anderen Codeteilen ausgelagert wurden.

Das /conf Verzeichnis
Dieses Verzeichnis enthält die Konfigurationsdateien für die Anwendung.

Das /public Verzeichnis
Im /public Verzeichnis sind statische Ressourcen hinterlegt, welche direkt vom

2https://www.playframework.com/documentation/2.5.x/Anatomy

Play Framework 31

Webserver ausgeliefert werden. Dazu zählen unter anderem CSS Dateien, Bilder
und Javascript Dateien.

Das /project Verzeichnis
In diesem Verzeichnis werden die sbt Informationen hinterlegt, welche für die
Erstellung der finalen Anwendung notwendig sind. Dazu gehören u.a. verwendete
Plugins und die Version von sbt, welche für die Kompilierung der Anwendung
genutzt wird.

Das /lib Verzeichnis
Dieses optionale Verzeichnis beinhaltet allemanuell hinterlegten JAR Bibliotheks-
dateien, welche automatisch zum Klassenpfad (Classpath) hinzu gefügt werden.

Das /logs Verzeichnis
Dieses Verzeichnis enthält Log-Daten der Anwendung, welche automatisch in die
Standard-Logdatei geschrieben werden.

Das /target Verzeichnis
Das /target Verzeichnis enthält alle Dateien, welche durch den Kompilierungs-
prozeß vom System erstellt werden. Dazu gehören u.a. kompilierte Klassen der
Java und Scala Dateien, kompilierte CSS und Javascript Dateien oder die erstellten
Template Inhalte.

Diese Grundstruktur ist bei allen Play Projekten grundsätzlich ähnlich und kann
darüber hinaus an den persönlichen Programmierstil angepasst werden.

4.2.2 Unterprojekte

Oftmals ist es sinnvoll, ein Projekt in mehrere Unterprojekte (Multiprojekt) aufzuteilen,
um eine Trennung zwischen den einzelnen Komponenten der Anwendung zu erhalten
und die Wartbarkeit der Code-Basis zu erleichtern. Ein Grund kann u.a. die Aufteilung
der Anwendung in diverse Teilkomponenten sein, welche sich über definierte Schnitt-
stellen miteinander unterhalten und eine getrennte Skalierung ermöglichen.

Unterprojekte teilen sich die build.sbt das Hauptprojektes, indem die einzelnen Pro-
jektdefinitionen aufgenommen werden. Dadurch wird der komplette Erstellungspro-
zeß über eine zentrale Datei ermöglicht.

Hauptprojekte können als Play Anwendung erstellt werden oder mittels SBT Mul-
tiprojekt die Play Anwendung als Unterprojekt beinhalten. Dadurch ergeben sich

Play Framework 32

unterschiedliche Projektstrukturen und Definitionen für die Anwendung.

4.2.2.1 Play Anwendung als Hauptprojekt

Eine Play Anwendung kann selbst das Hauptprojekt sein und diverse Unterprojekte
enthalten, die über die build.sbt definiert werden. Im folgenden Beispiel wird eine
Play Anwendung um zweiweitere Unterprojekte erweitert, die einenDatenbankservice
und einen Authentifikationsservice via Akka bereitstellen.

Definition einer Play Anwendung mit 2 Akka-Unterprojekten in der build.sbt

name := "main-play-project"

version := "0.9"

lazy val commonSettings = Seq(

organization := "com.my.organization",

scalaVersion := "2.11.11",

scalaOptions ++= Seq(...),

javaOptions ++= Seq(...),

...

)

lazy val mainPlayProject = project.in(file("."))

.settings(commonSettings: _*)

.aggregate(subProjectDatabase, subProjectAuthentication)

.enablePlugins(...)

lazy val subProjectDatabase = project

.in(file("subProjectDatabase"))

.settings(commonSettings: _*)

.settings(

name := "sub-project-database",

libraryDependencies ++= List(...)

)

lazy val subProjectAuthentication = project

.in(file("subProjectAuthentication"))

.settings(commonSettings: _*)

.settings(

name := "sub-project-authentication",

Play Framework 33

libraryDependencies ++= List(...)

)

DasmainPlayProject (Zeile 16) stellt das Hauptprojekt der Anwendung dar und gliedert
sich in die zwei Unterprojekte subProjectDatabase (Zeile 21) und subProjectAuthentica-
tion (Zeile 31).

Die Verzeichnisstruktur würde sich wie folgt darstellen.

Verzeichnisstruktur einer Play Anwendung mit 2 Akka-Unterprojekten

mainPlayProject

|_ build.sbt

|_ app

|_ conf

|_ logs

|_ project

|_ public

|_ subProjectDatabase

|_ packaging.sbt

|_ project

|_ src

|_ target

|_ subProjectAuthentication

|_ packaging.sbt

|_ project

|_ src

|_ target

|_ target

|_ test

Wie in einem normalen Projekt gibt es eine build.sbt und diverse weitere Ordner, die
für alle Unterprojekte gültig sind. Darüber hinaus werden spezifische Dateien, welche
in die jeweiligenUnterprojekte gehören, jeweils unter einemOrder angelegt, der gleich
dem Namen des Unterprojektes ist.

4.2.2.2 Play Anwendung als Unterprojekt eines SBT Multiprojektes

Bei der Wahl eines SBT Multiprojektes als Hauptprojekt, werden alle Komponenten
der Anwendung als Unterprojekte definiert. Dadurch wird das Hauptprojekt von den

Play Framework 34

Verzeichnisstrukturen der Unterprojekte befreit und die Trennung zwischen den
einzelnen Komponenten erweitert.
Im folgenden Beispiel wird ein SBT Multiprojekt erstellt, welches 3 Unterprojekte
beinhaltet. Das Projekt gliedert sich in eine Play Anwendung, welche das Frontend
darstellt und zwei Akka Anwendungen, die einen Datenbankservice und einen Authen-
tifikationsservice bereitstellen.

Definition eines SBT Multiprojektes mit 3 Unterprojekten

name := "main-project"

version := "0.9"

lazy val commonSettings = Seq(

organization := "com.my.organization",

scalaVersion := "2.11.11",

scalaOptions ++= Seq(

...

),

javaOptions ++= Seq(

...

),

...

)

lazy val mainProject = project.in(file("."))

.settings(commonSettings: _*)

.aggregate(subProjectPlay,

subProjectDatabase, subProjectAuthentication)

.enablePlugins(...)

lazy val subProjectPlay = project

.in(file("subProjectPlay"))

.settings(commonSettings: _*)

.settings(

name := "sub-project-play",

libraryDependencies ++= List(

...

)

)

lazy val subProjectDatabase = project

Play Framework 35

.in(file("subProjectDatabase"))

.settings(commonSettings: _*)

.settings(

name := "sub-project-database",

libraryDependencies ++= List(

...

)

)

lazy val subProjectAuthentication = project

.in(file("subProjectAuthentication"))

.settings(commonSettings: _*)

.settings(

name := "sub-project-authentication",

libraryDependencies ++= List(

...

)

)

Das mainProject bildet das Gerüst und beinhaltet die Play Anwendung subProjectPlay
und die beiden Akka Anwendungen subProjectDatabase und subProjectAuthentication.

Die Verzeichnisstruktur würde sich wie folgt darstellen.

Verzeichnisstruktur eines SBT Multiprojektes mit 3 Unterprojekten

mainProject

|_ bin

|_ build.sbt

|_ logs

|_ project

|_ subProjectAuthentication

|_ packaging.sbt

|_ project

|_ src

|_ target

|_ subProjectDatabase

|_ packaging.sbt

|_ project

|_ src

|_ target

Play Framework 36

|_ subProjectPlay

|_ app

|_ conf

|_ logs

|_ project

|_ public

|_ target

|_ test

Das Hauptprojekt beinhaltet gemeinsame Dateien, welche von allen Unterprojekten
genutzt werden. Spezifische Dateien, welche speziell zu den Unterprojekten gehören,
werden in Ordnern angelegt, welche den Namen des Unterprojektes tragen.

4.3 Requests, Routing und Controller

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.3.1 Requests

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.3.2 Routing

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.3.3 Controller

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Play Framework 37

4.4 Templates (Twirl)

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.4.1 Wiederverwendung von Templates

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.5 Mehrsprachigkeit (Internationalisierung)

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.5.1 Messages Objekt

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.6 Formulare

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.6.1 Formdefinition

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Play Framework 38

4.6.2 Form-Objekte und ihre Typen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.6.3 Beispiele für Formulare

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.6.4 Verarbeitung von Formularen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.6.5 Formulardarstellung in Template View

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.6.6 Beispiel mit sich wiederholenden Elementen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.7 Datenbankkonfiguration

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.7.1 Konfiguration von Slick für Play

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Play Framework 39

4.8 Datenbankzugriff

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.9 Asynchrone Programmierung mit Play

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.9.1 Websockets

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.9.1.1 Websockets mit Akka Stream und Aktoren

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.10 Webservices

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11 Migration von Play 2.5 auf 2.6

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Play Framework 40

4.11.1 Was hat sich geändert

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11.2 SBT 0.13.15 erforderlich

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11.3 Guice und OpenId Unterstützung ausgelagert

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11.4 Bereitstellung neuer Controller Klassen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11.5 Assets

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11.6 Play WS

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11.7 Anpassungen bei i18n

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Play Framework 41

4.11.7.1 Entfernung von Implicit Default Lang

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11.7.2 Refactoring der Message API zu Traits

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11.7.3 I18nSupport benötigt impliziten Request

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11.7.4 Einfachere Einbindung von I18nSupport

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11.8 Cache

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11.9 Veränderungen an der Scala Configuration API

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11.10 Entfernung diverser APIs und Bibliotheken

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Play Framework 42

4.11.11 play.api.libs.concurrent.Execution ist nun veraltet

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.11.12 Neue Standardfilter

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.12 Konfiguration von Ehcache

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

4.13 Ausführen mit IntelliJ IDEA und Debuggen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

5. Akka

Akka ist ein Toolkit für die Erstellung von asynchronen, parallelen und verteilten
Anwendungen, die von kleinen Anwendungsfällen bis hin zu hochperformanten Auf-
gabenstellungen skaliert werden können.
Das Aktormodell ermöglicht die Abstraktion komplexer Aufgabenstellungen hin zu
fehlertoleranten, belastbaren Komponenten, die untereinander kommunizieren und
ein transparentes Konstrukt darstellen.

Zusammengefasst ist Akka:

• Parallelisierung und Verteilung von Anwendungen durch Aktoren
• Asynchroner, nicht-blockierender Nachrichtenaustausch zwischen den Aktoren
• Fehlertoleranz durch Supervision und dem let it crashModell
• Verteilte Anwendungen durch reinen Nachrichtenaustausch
• Persistenz durch Recovery Strategien
• JVM

5.1 Einrichten einer Akka Anwendung

Die Einrichtung einer Akka Anwendung kann via Maven, SBT, Gradle, etc. erfolgen.
Anleitungen für diverse Wege gibt es in dem Getting Started Abschnitt der offiziellen
Akka Dokumentation.

Das folgende Beispiel zeigt die Installation einer Akka Anwendung via SBT. Zuerst wird
ein Projektordner angelegt und eine grundsätzliche build.sbt Datei erstellt.

http://doc.akka.io/docs/akka/2.4/intro/getting-started.html

Akka 44

SBT-Konfiguration für ein Akka-Projekt

name := "AkkaProject"

version := "0.1"

scalaVersion := "2.11.11"

libraryDependencies += "com.typesafe.akka" %% "akka-actor" % "2.4.12"

5.2 Akka Grundlagen

Nebenläufigkeit und Parallelismus

Nebenläufigkeit (concurrency) und Parallelismus haben einige feine Unterschiede,
welche sich in einem Akka System widerspiegeln. Nebenläufigkeit bedeutet, daß zwei
Prozesse eigenständig voranschreiten können, auch wenn sie nicht parallel ausgeführt
werden. Parallelismus hingegen bedeutet, daß die Prozessewirklich parallel ausgeführt
werden.

Synchron und Asynchron

Ein synchroner Methodenaufruf bedeutet, daß der aufrufende Prozess erst weiterma-
chen kann, wenn die aufgerufene Methode ein Ergebnis geliefert hat. Wohingegen ein
asynchroner Methodenaufruf den aufrufenden Prozess nicht blockiert, so daß dieser
weiter in seiner Abarbeitung voranschreiten kann.

Blockierend und nicht-blockierend

Blockierend bedeutet, daß eine Ressource exklusiv von einem Thread genutzt und
dadurch den Zugriff anderer Threads auf diese Ressource verhindert. Im Kontrast dazu
verhindern nicht-blockierende Prozesse den exklusiven Zugriff nur eines Threads auf
eine Ressource und werden generell blockierenden Strukturen vorgezogen.

5.2.1 Aktorsystem und Aktoren

Ein Aktorsystem verwaltet die in ihm laufenden Aktoren und gibt der Anwendung eine
hierarchische Struktur. Darüber hinaus werden grundlegende Konfigurationen wie

Akka 45

das Logging, die Fehlerbehandlung oder das Verhalten des Systems im Vergleich zu
anderen Aktorsystemen, definiert.

Aktoren sind Teile eines Aktorsystems und gliedern sich in dessen Hierarchie. In dieser
Hierarchie gibt es Aufsichtsaktoren, welche die Erstellung anderer Aktoren und deren
Fehlerbehandlung überwachen und steuern. Weitere Aktoren übernehmen die ihnen
definierten Funktionalitäten und kommunizieren untereinander mittels Nachrichten.

Aktorsystem und Aktoren

Dadurch bilden Aktoren die kleinste Einheit in einem Aktorensystem und sollten

Akka 46

im Gesamtkonzept möglichst einfach gehalten und mit einer klar definierten Auf-
gabe versehen sein. Dieses herunterbrechen der Komplexität in einfache, in sich
geschlossene Einheiten, ermöglicht eine klare Trennung von sich überschneidenden
Verantwortlichkeiten und Abhängigkeiten.

Ein Aktor kann über seine Aktorreferenz aufgelöst und angesprochen werden. Da-
hinter verbirgt sich ein Container aus Zustand, Verhalten, einer Nachrichtenbox, Kind-
aktoren, die von diesem Aktor erstellt wurden und eine Strategie für den eigenen
Lebenszyklus und die Fehlerbehandlung der von ihm erstellten Kindaktoren.

Aktorreferenz
Eine Aktorreferenz ist ein Objekt, welches den Aktor nach außen hin abschottet und
frei übergeben werden kann. Dadurch ist das Ansprechen der Aktoren von diversen
Orten aus möglich und ermöglicht eine lose Kopplung im gesamten Aktorensystem.
Diese dezentraleHaltung der Aktoreinheiten ermöglicht dasDurchstarten eines Aktors
ohne Erneuerung seiner Aktorenreferenz, das Ansprechen eines Aktors auf entfernten
Systemen (Remote) oder die Kommunikation mit Aktoren aus anderen Applikationen.

Eine Aktorenreferenz kann auch als eine Art Abschottung angesehen werden, durch
welche alle Aktoren ihre internen Zustände nach außen hin verbergen und nur preis-
geben, was sie preisgeben wollen.

Zustand
Jeder Aktor verfügt über seinen eigenen leichtgewichteten Thread, welcher die Daten
und damit den Zustand des Aktors gegenüber anderen Aktoren verbirgt. Solch ein Zu-
stand kann direkt über eine Zustandsmaschine (FMS - Finite State Machine) abgebildet
werden oder aus internen Variablen, Nachrichten oder Anfragen bestehen.

Verhalten
DasVerhalten eines Aktors spiegelt sich in denAktionenwieder,welche als Reaktion auf
erhaltene Nachrichten ausgeführt werden. Dabei kann sich das Verhalten im Verlaufe
der Zeit ändern und je nach Zustand anpassen.

Nachrichtenbox
Aktoren erhalten Nachrichten von anderen Aktoren oder aus anderen Systemen. Diese
Nachrichten werden in der Nachrichtenbox des empfangenden Aktors abgelegt und in
der Reihenfolge ihres Eintreffens abgearbeitet.

Werden Nachrichten von einem Aktor an einen anderen versendet, bleibt die Reihen-

Akka 47

folge, in der die Nachrichten versendet worden sind, beim empfangenden Aktor gleich.
Versenden hingegen verschiedene Aktoren Nachrichten an einen Aktor, kann sich die
Reihenfolge der Nachrichten im empfangenden Aktor unterscheiden, da diese diversen
Aktoren innerhalb unterschiedlicher Threads agieren.

Kindaktoren
Jeder Aktor kann mehrere Kindaktoren erstellen und über diese die Aufsicht haben.
Er wird dann zum Aufsichtsaktor über seine Kindaktoren. Wenn dieser Aufsichtsaktor
beendet wird, beenden sich auch seine Kindaktoren.

Stategie für den Lebenszyklus und die Fehlerbehandlung
Während des Lebenszyklus von Kindaktoren eines Aktors können sich Fehler ergeben,
welche von dem Aktor je nach vorgesehener Strategie behandelt werden.
Je nach Strategie kann dies zum Neustart der Kindaktoren, dem Weiterführen ihres
Prozesses, dem Anhalten der Kindaktoren oder der Eskalation des Fehlers führen, so
daß das gesamte System beendet wird.
Darüber hinaus ist es auch möglich, eigene Strategien und Ablaufpfade zu definieren,
welche unter bestimmten eintretenden Situationen durchgeführt werden.

Das Kapitel “Supervision and Monitoring” in der Akka Dokumentation gibt einen
ausführlichen Überblick über die vorhandenen Strategien und deren Bedeutung.

Die Strategie, welche für Kindaktoren genutzt werden soll, kann nach der Erstellung
des Kindaktors nicht mehr geändert werden. Sollen in diesem Zusammenhang ver-
schiedene Strategien genutzt werden, um diverse Fehler bei verschiedenen Aktoren
zu behandeln, muß man die Aktorhierarchie dahingehend anpassen.
Aktoren, welche die gleiche Fehlerbehandlungsstrategie erhalten, sollten unter Auf-
sichtsaktoren gruppiert werden, welche diese definieren und diese Aktoren erzeugen.

5.2.2 Supervision

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://doc.akka.io/docs/akka/2.4/general/supervision.html
http://leanpub.com/comeoutandplay

Akka 48

5.2.3 Aktorreferenzen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.2.4 Nachrichten und deren Auslieferung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.2.5 Konfiguration

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.3 Aktoren

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.3.1 DeathWatch

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.3.2 Nachrichten

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.3.3 Aktoren beenden

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Akka 49

5.3.4 FSM

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.3.5 Persistenz

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.3.5.1 Aufbau

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.3.6 Tests

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.4 Aktorenhilfsmittel

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.4.1 Event-Bus

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.4.2 Logging

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Akka 50

5.4.3 Scheduler

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.4.4 Zeitdauer (Duration)

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.4.5 Unterbrecher (Circuit Breaker)

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

5.5 Streams

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

6. Scala.js

Scala.js ist ein Compiler, der Scala-Quelltext in entsprechendes Javascript übersetzt.
Dies ermöglicht es Scala zu schreiben und das Programm in einem Webbrowser oder
anderen Javascriptumgebungen (z.B. Node.js) auszuführen.

Javascript wird von den gängigenWebbrowsern unterstützt und ist letztlich die einzige
Wahl, wenn man interaktive Webanwendungen schreiben möchte. Obwohl es zahlrei-
che Versuche gab, andere Technologien über Browserplugins hierfür zu nutzen (z.B.
Flash, Java Applets, Silverlight), konnten sich diese nicht durchsetzen. Darüber hinaus
ist Javascript die einzige Technologie, die auf mobilen Browsern verfügbar ist.

Als Programmiersprache ist Javascript geeignet für kleinere bis mittlere Projekte. In
größeren leidet das Projekt unter diversen Eigenheiten und Schwächen der Sprache.
Andererseits ist Javascript auch eine Plattform mit sehr interessanten Eigenschaften:

1. Die Anwendung muß nicht mehr heruntergeladen und installiert werden.

2. Sandbox, d.h. die Anwendung läuft per se abgesichert.

3. Verweise zu anderen Anwendungen sind dank Hyperlinks trivial.

Trotz aller Probleme der Sprache und zugehöriger Werkzeuge (HTML, CSS) bietet es
sich an, die Stärken der Webplattform zu nutzen. Hierfür kommt Scala.js gelegen, das
es ermöglicht in einer statisch typisierten funktionalen Programmiersprache Weban-
wendungen zu schreiben.

Scala.js 52

Dies ist sicherlich nicht notwendig bei kleinen Anwendungen, aber je größer ein
Projekt wird, desto mehr sind Fehlerursachen nicht in externen Bibliotheken, sondern
innerhalb des eigenenCodes zu suchen und zu finden.Wer jemit einer größerenCode-
Basis in Javascript konfrontiert war, wird wissen wie aufwendig und schwierig dies ist.
Die Nutzung von typisierten Sprachen ermöglicht es, einen Teil dieser Arbeit bereits
beim Schreiben des Codes vom Compiler erledigen zu lassen.

Das dies in der Tat ein gewichtiger Punkt ist, kannman an den Bemühungen aller nam-
haften Internetkonzerne ersehen, die seit einiger Zeit versuchen, typisierte Varianten
von Javascript zu schaffen (z.B. Dart, Flow, Typescript).

Darüber hinaus bietet Scala.js eine gute Möglichkeit für geteilten Code, d.h. Client
und Server können gemeinsam Code verwenden, der nur einmal geschrieben und
dann jeweils in JVM-Bytecode bzw. Javascript übersetzt wird. Zahlreiche etablierte
Bibliotheken für Scala werden mittlerweile auch für Scala.js angeboten.

Es ergeben sich also die folgenden Vorteile durch geteilten Code:

1. Manmuß nicht länger zwei Bibliotheken finden, welche die gleiche Funktionalität
bieten.

2. Man muß nicht länger die gleiche Sache auf zwei verschiedene Arten tun.

3. Manmuß nicht länger den gleichen Algorithmus in zwei verschiedenen Program-
miersprachen implementieren und danach schwer zu findende Fehler suchen, die
eben daraus resultieren.

4. Man muß nicht länger komplexe Konstrukte bauen, um Logikdoppelungen zwi-
schen Client und Server zu vermeiden.

Im folgenden erklären wir kurz das Aufsetzen eines einfachen Projekts mit Scala.js.

6.1 Erstellen einer Scala.js Anwendung

Hierfür nutzt man Plugins für SBT, welche unter project/plugins.sbt eingebunden
werden:

Scala.js 53

Scala.js Plugins für SBT

addSbtPlugin("org.scala-js" % "sbt-scalajs" % "0.6.26")

addSbtPlugin("org.portable-scala" % "sbt-scalajs-crossproject" % "0.6.0")

Anschließend muß das Plugin noch aktiviert werden, dies geschieht in der build.sbt
z.B. durch folgende Einstellung:

Scala.js SBT Plugin aktivieren

enablePlugins(ScalaJSPlugin)

Das Compilieren erfolgt ganz normal via compile an der SBT-Konsole, allerdings
können die daraus generierten Dateien (.sjsir und .class) so nicht in einem JVM-
Projekt benutzt werden!

Damit eine Javascriptdatei generiert wird muß der Befehl fastOptJS genutzt werden.
Alternativ dazu kann man auch fullOptJS nutzen, was jedoch während der Entwick-
lung nicht zu empfehlen ist, da es deutlich länger dauert.

Insofern die entwickelte Anwendung keine Bibliothek ist, sondern ausgeführt werden
soll, muß noch die folgende Einstellung getätigt werden:

scalaJSUseMainModuleInitializer := true

Zusammen mit einem Top-Level-Objekt, das eine Methode main hat, kann die Anwen-
dung via run von der SBT-Konsole gestartet werden.

Haupteinsprungspunkt für eine Javascriptanwendung

object Main {

def main(args: Array[String]): Unit = {

println("Hallo Welt!")

}

}

6.2 Abhängigkeiten

Verwendete Bibliotheken werden wie gewohnt in der SBT-Konfiguration eingetragen
jedoch mit drei(!) statt zwei Prozentzeichen.

Scala.js 54

Abhängigkeiten für Scala.js-Projekte

libraryDependencies ++= Seq(

"org.scala-js" %%% "scalajs-dom" % "0.9.6",

"org.typelevel" %%% "cats-core" % "1.5.0",

"org.scalatest" %%% "scalatest" % "3.0.5" % Test

)

Möchte man Javascriptbibliotheken einbinden, können diese via Webjars integriert
werden:

Einbinden von Webjars-Bibliotheken

libraryDependencies += "org.webjars" % "jquery" % "2.1.4"

Zusätzlich ist es erforderlich die Bibliotheken in der Direktive jsDependencies zu
definieren, damit sie korrekt verfügbar gemacht werden:

jsDependencies += "org.webjars" % "jquery" % "2.1.4" / "2.1.4/jquery.js"

Das Scoping funktioniert für jsDependencies genauso wie für die
“klassischen” Abhängigkeiten, d.h. jsDependencies += "org.webjars"

% "jquery" % "2.1.4" / "jquery.js" % "test" grenzt in diesem Fall
JQuery auf den Testmodus ein.

Lokale Javascriptbibliotheken können über den Helfer ProvidedJS spezifiziert werden.
Die folgende Konfiguration sucht in den Projektressourcen nach der Datei foo.js:

Lokale Javascriptbibliotheken einbinden

jsDependencies += ProvidedJS / "foo.js"

6.3 Module exportieren

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

https://www.webjars.org/
http://leanpub.com/comeoutandplay

Scala.js 55

6.4 Cross-Compile

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

6.5 Testen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Anwendungsszenario

Das Ziel der zu entwickelnden Anwendung ist es, eine Spieleplattform zu entwickeln.
Auf dieser soll es die Möglichkeit geben, daß sich Nutzer registrieren, ihre Freundes-
listen verwalten und Online-Spiele gegen andere Nutzer spielen.
Die verfügbaren Online-Spiele sind zudem auch ein Teil der Anwendung, werden
separat entwickelt und auf der Plattform eingebunden.

Daraus ergibt sich eine Einteilung in folgende Unterprojekte:

• Frontend für die Nutzerinteraktion (frontend)

• Online-Spiel, welches über das Frontend ausgewählt werden kann (seabattle)
und sich unterteilt in:

– serverseitigen Code (server)

– clientseitigen Code (client)

– gemeinsamen Code (shared)

Die Implementierung der Anwendung erfolgt in iterativen Schritten:

• Erstellung der grundlegenden Play Anwendung

• Einrichtung des Projektverzeichnisses

• Konfiguration des Projektes in Unterprojekten

• Erstellung der grundlegenden FrontendMethoden für Autorisierung und
Authentifikation

• Implementierung der Nutzerverwaltung

• Erstellung eines Spiels

• Integration des Spiels in die Anwendung

Scala.js 57

• Ausführung des Spiels

• Deployment der Anwendung auf einen Server

Im Anschluß werden einige Erkenntnisse aufgezeigt, welche sich aus der Entwicklung
der Anwendung ergeben und zu einem interessanten Wissensschatz für kommende
Projekte entwickelt haben.

• Nutzung der Bibliothek Silhouette für die Autorisierung und Authentifikation

• Nutzung der Bibliothek Circe für den Umgang mit JSON

Darüberhinaus wird die Migration der Anwendung von einer vorherigen auf eine aktu-
ellere Version des Play Framework durchgeführt. Diese häufig vorkommende Aufgabe
im Laufe eines Softwarelebenszyklusses beinhaltet diverse Schritte wie u.a.:

• Aktualisierung der genutzten Bibliotheken (Abhängigkeiten)

• Anpassungen des bestehenden Codes, wenn abhängige Bibliotheken interne
Methoden und Konzepte verändern

• Anpassungen an Änderungen in den Konzepten des Play Frameworks

• generelles Refactoring

7. Das Frontend

Anwendungsfluss im Frontend

Das Frontend dient der Interaktion zwischen den Nutzern untereinander und des
Nutzersmit der Anwendung selbst. Folgende Funktionalitäten sollen über das Frontend
dem Nutzer zur Verfügung stehen:

• Registrierung auf der Webseite via E-Mail und Paßwort oder via Facebook
• Ändern des Paßworts
• Löschen des eigenen Accounts
• Abmelden von der Webseite
• Erstellen und Verwalten von Freundeslisten

Das Frontend 59

• Suchen nach potentiellen Freunden

• Anzeigen der eigenen Freunde

• Freundschaftsanfrage senden

• Freundschaftsanfragen annehmen oder abbrechen

• Nutzer blockieren

• Übersicht der verfügbaren Online-Spiele

• Auswahl und Starten eines Online-Spiels

• Anzeigen der gespielten Spiele

Bei der Implementierung des Frontend wurden die folgenden Aspekte besonders
berücksichtigt, da sie einen entscheidenden Einfluss auf die Funktionalitäten der
Anwendung haben.

• Die Wahl einer geeigneten Bibliothek ermöglicht die Registrierung und Anmel-
dung der Nutzer über diverse Authentifikationsmethoden.

• Das Speichern der Daten in die unterliegende Datenbank sollte durch einen
unterstützenden Datenbank-Layer erfolgen, welcher den Zugriff und die Arbeit
mit den Daten erleichtert.

• Das dynamische Laden von Inhalten in Bezug auf die durch den Nutzer durchge-
führten Aktionen führt zu einer Minimierung von zu ladenden Komponenten und
einer Beschleunigung der Seite.

Eine beispielhafte Nutzung des Frontend durch einen Nutzer soll nach der Implemen-
tierung folgendermaßen möglich sein:

• Der Nutzer kann die Startseite aufrufen und bekommt die Möglichkeit, einen
Account zu erstellen.

• Ein Registrierungsformular ermöglicht demNutzer alle notwendigen Informatio-
nen einzugeben und den Account zu erstellen.

• Der Account muß durch das Aufrufen eines Bestätigungslinks freigeschaltet
werden.

• Der Nutzer kann sich mit seinen Anmeldedaten einloggen.

• Im Freundebereich können andere Nutzer zu einer persönlichen Freundesliste
hinzugefügt werden.

Das Frontend 60

• Freundesanfragen können abgelehnt oder bestätigt werden.

• Der Nutzer kann sich die auf der Plattform verfügbaren Spiele anzeigen lassen.

• Der Nutzer kann ein Spiel auswählen und einen anderen Spieler einladen gegen
ihn zu spielen.

• Das Spiel wird eingerichtet und die Spieler können gegeneinander spielen.

• Gespielte Spiele werden aufgelistet.

• Der Nutzer kann sich von der Plattform abmelden.

• Der Nutzer kann seinen Account von der Plattform löschen.

8. Das Online-Spiel
Im Rahmen dieses Buches wird das allseits bekannte Spiel “Schiffe versenken” im-
plementiert und in das Frontend integriert. Dieses Spiel bietet diverse interessante
Herausforderungen, welche während der Implementierung gelöst werden müssen:

• Mehrspielerbetrieb

• Rundenbasierte Dynamik

• Benachrichtigung der Spieler über die Aktionen der Gegenspieler

• Erstellung eines eigenständigen Spiels, welches in die Hauptanwendung inte-
griert wird

• Nachrichtenaustausch zwischen diversen Komponenten

Das Spiel muß verschiedene Komponenten zur Verfügung stellen, die entweder auf
dem Server (JVM), auf dem Client im Webbrowser (Javascript) oder in beiden Um-
gebungen laufen. Letzteres sind hauptsächlich Datentypen, damit man diese nicht
mehrfach implementierenmuß. Dadurch ergibt sich eine verringerte Fehleranfälligkeit
hinsichtlich Typisierung und eine Reduzierung des zu schreibenden Codes.

Auf Seiten des Servers müssen Funktionen für die Spiellogik und die Speicherung der
relevanten Informationen (Spielstand) implementiert werden.

Damit der Anwender auch spielen kann, müssen im Client alle Funktionalitäten rund
um die Darstellung, sowie Nutzerinteraktion und Nachrichtenflußmit dem Server, im-
plementiert werden. Die Spieler nutzen also einenWebbrowser, der vom Frontend eine
HTML-Seite bzw. Seiten serviert bekommt, die den notwendigen Code enthalten. Die
Hintergrundkommunikation läuft über Websockets, um regelmäßiges Neuladen der
Seite zu vermeiden. Hierbei soll die wesentliche Spiellogik auf dem Server abgearbeitet
werden, damit auf Seiten des Clients eigentlich nur nochDaten angezeigt und Aktionen
der Spieler entgegengenommen werden.

Die visuelle Darstellung der Komponenten wird mittels Scala.js im Browser erstellt.

Das Online-Spiel 62

Schema des Spielflusses

Zum Schluß wird das Zusammenbringen des Spiels in das bereits erstellte Frontend

beschrieben, so daß der Nutzer später auch eigene Spiele entwickeln und in die
Anwendung integrieren kann. Zu diesen Schritten gehören u.a.:

• Anpassungen und Aktualisierung der Verzeichnisstruktur

• Erstellung geeigneter Websockets für die Kommunikation

• Implementierung eines generischen Controllers für das Einbinden diverser Spiele

• Anpassungen von Template-Dateien

Nachdem das Spiel mit dem Frontend verbunden worden ist, werden verschiedene
Möglichkeiten des Deployment in eine ausführbare Umgebung aufgezeigt.

Das Frontend

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

9. Erstellung und Konfiguration einer
Basis-Play-Anwendung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

10. Einbindung von Silhouette als
Authentifikations-Framework

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

11. Anmeldung der Nutzer am System
This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

11.1 Konfiguration des Backend Store (PostgreSQL)

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

11.2 Definition des Nutzermodells

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

11.3 Erstellen einer Datenbank-Evolution

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

11.4 Tabellendefinition innerhalb der Anwendung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Anmeldung der Nutzer am System 67

11.5 DAOs für den Zugriff auf die Nutzerdaten

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

11.6 Silhouette Konfiguration auf eigene DAOs
umstellen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

11.7 Konfiguration der Social-Provider

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

11.8 Funktionalität für das Löschen eines Accounts

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

12. Suchen und Verwalten von
Freunden

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

12.1 Erweiterung des Nutzermodells um einen
Nutzernamen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

12.2 Registrierung der Nutzer mit Nutzernamen und
E-Mail

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

12.3 Evolution und Tabellendefinitionen für
Freundeslisten

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Suchen und Verwalten von Freunden 69

12.4 Funktionalitäten für Freundeslisten in einem DAO

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

12.5 Erstellen von WebSockets zur dynamischen
Interaktion

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

12.5.1 Erstellen des WebSocket auf Basis eines Actors

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

12.5.2 Controller als Endpunkt für das WebSocket

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

12.5.3 Verbinden der Action innerhalb des Routing

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

12.5.4 Erstellen von Funktionen innerhalb des Javascript, welche
mit demWebSocket zusammen arbeiten

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Suchen und Verwalten von Freunden 70

12.6 Erweiterung des CSR für WebSockets

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

12.7 Visualisierung der Freundeslisten

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

12.8 Erweiterung der Views zur Übergabe von Skripten
und CSS

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

13. Migration auf Play 2.6 und
Silhouette 5

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

13.1 Upgrade der benötigten Abhängigkeiten

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

13.2 Anpassungen für das Upgrade von Silhouette

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

13.3 Änderungen im CustomPostgresDriver

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

13.4 Neue Controller-Klassen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Migration auf Play 2.6 und Silhouette 5 72

13.5 Von WebJarAssets zu AssetsFinder

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

13.6 Anpassungen für die Änderungen in i18n

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

13.7 Impliziter ExecutionContext

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

13.8 Refactoring (Compiler-Warnungen)

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Das Spiel

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

14. Regeln und Spielverlauf
This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

15. Umsetzung
This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.1 Grundlegende Datentypen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.2 Operationen auf einem Spielstand

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.3 Operationen auf einem Spielfeld

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.4 Nutzung von Eq (Cats)

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Umsetzung 76

15.5 Datenbank (Repository)

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.6 Zeichnen von Spielfeldern im Client

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.7 Hilfsfunktionen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.7.1 Websocket-URL berechnen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.7.2 Feldgröße zum Zeichnen berechnen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.7.3 Berechnen der Klickposition in einem Spielfeld

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Umsetzung 77

15.7.4 Logging

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.8 Spielvorbereitung (Preparation)

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.8.1 Globale Variablen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.8.2 Struktur der HTML-Datei

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.8.3 Funktionen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.8.4 Websocket

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.8.5 Aufruf und Initialisierung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Umsetzung 78

15.9 Spielablauf (Game)

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.9.1 Globale Variablen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.9.2 Struktur der HTML-Datei

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.9.3 Funktionen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.9.4 Websocket

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

15.9.5 Aufruf und Initialisierung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

16. Integration ins Frontend
This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.1 Verzeichnisstruktur

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.1.1 Aktoren, Controller, DAO und Modelle

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.1.2 View-Templates

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.2 Datenbankschicht (Repository) als DAO

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.3 Websocket

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Integration ins Frontend 80

16.3.1 Eine Websocket-Algebra

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.3.2 Komposition zum fertigen Websocket

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.4 Controller und Routing

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.4.1 Übersichtsseite

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.4.2 Spielerstellung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.4.3 Löschen eines Spielstandes

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.4.4 Dem Spiel beitreten

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Integration ins Frontend 81

16.4.5 Das Spiel

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.4.6 Spielvorbereitung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.4.7 Websocket

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

16.5 Views

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Deployment (Auslieferung)

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

17. Konfiguration für den
Produktivbetrieb

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

18. Erstellen eines Artefakts mit allen
Abhängigkeiten

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

19. Erstellen von Paketen für Debian
This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

19.1 Systemstart-Skripte

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

20. Auslieferung zu einem Cloud
Service

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

20.1 Deployment via Remote Repository

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

20.2 Deployment mittels des Plugins sbt-heroku

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

20.3 Datenbankzugriff bei Heroku

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Erkenntnisse

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

21. Silhouette
This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

21.1 Abhängigkeiten von anderen Bibliotheken

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

21.2 Aufwand durch inkompatible Änderungen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

22. Circe
This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

22.1 Erstellung von Codecs

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

22.1.1 Vollautomatische Ableitung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

22.1.2 Halbautomatische Ableitung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

22.1.3 Manuelle Implementierung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

22.2 Geschwindigkeit des Compilers

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Circe 90

22.3 Fehlerhäufigkeit

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

23. WTFM - Write that fucking manual!
This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

23.1 Vorteile für bereits involvierte Entwickler

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

23.2 Vorteile für neue Entwickler

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

24. Danke
This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

	Inhaltsverzeichnis
	Vorwort
	Einleitung
	Aufbau des Buches
	Konventionen für den Quelltext

	Schutzmarken und Copyrights
	Logos und Bilder
	Quelltext zum Buch

	Einrichtung der Werkzeuge und Einführung in Scala
	Werkzeuge
	Java
	SBT
	Installation
	Nützliches für SBT

	Entwicklungsumgebung

	Programmierung in Scala
	Interaktive Programmierung via REPL
	Hinweise zu Datenstrukturen (var, val)
	Schnelleinstieg in die funktionale Programmierung
	Auswertungsstrategien (evaluation strategies)
	Scopes und Blöcke
	Semikolons und Infix-Operatoren
	Tail-Rekursion
	Funktionen höherer Ordnung (Higher Order Functions)
	Currying
	Polymorphismus
	Pattern-Matching
	Implizite Parameter

	Hilfsmittel zur Unterstützung
	Reduzierung von ``Boilerplate'' Code

	Einführung und Grundlagen zu den verwendeten Technologien
	Play Framework
	Erstellen einer Play Anwendung
	Play Anwendung über Schablonen erstellen
	Play Anwendung von Hand erstellen

	Projektstruktur
	Verzeichnisse, SBT-Einstellungen und Abhängigkeiten
	Unterprojekte

	Requests, Routing und Controller
	Requests
	Routing
	Controller

	Templates (Twirl)
	Wiederverwendung von Templates

	Mehrsprachigkeit (Internationalisierung)
	Messages Objekt

	Formulare
	Formdefinition
	Form-Objekte und ihre Typen
	Beispiele für Formulare
	Verarbeitung von Formularen
	Formulardarstellung in Template View
	Beispiel mit sich wiederholenden Elementen

	Datenbankkonfiguration
	Konfiguration von Slick für Play

	Datenbankzugriff
	Asynchrone Programmierung mit Play
	Websockets

	Webservices
	Migration von Play 2.5 auf 2.6
	Was hat sich geändert
	SBT 0.13.15 erforderlich
	Guice und OpenId Unterstützung ausgelagert
	Bereitstellung neuer Controller Klassen
	Assets
	Play WS
	Anpassungen bei i18n
	Cache
	Veränderungen an der Scala Configuration API
	Entfernung diverser APIs und Bibliotheken
	play.api.libs.concurrent.Execution ist nun veraltet
	Neue Standardfilter

	Konfiguration von Ehcache
	Ausführen mit IntelliJ IDEA und Debuggen

	Akka
	Einrichten einer Akka Anwendung
	Akka Grundlagen
	Aktorsystem und Aktoren
	Supervision
	Aktorreferenzen
	Nachrichten und deren Auslieferung
	Konfiguration

	Aktoren
	DeathWatch
	Nachrichten
	Aktoren beenden
	FSM
	Persistenz
	Tests

	Aktorenhilfsmittel
	Event-Bus
	Logging
	Scheduler
	Zeitdauer (Duration)
	Unterbrecher (Circuit Breaker)

	Streams

	Scala.js
	Erstellen einer Scala.js Anwendung
	Abhängigkeiten
	Module exportieren
	Cross-Compile
	Testen

	Anwendungsszenario
	Das Frontend
	Das Online-Spiel

	Das Frontend
	Erstellung und Konfiguration einer Basis-Play-Anwendung
	Einbindung von Silhouette als Authentifikations-Framework
	Anmeldung der Nutzer am System
	Konfiguration des Backend Store (PostgreSQL)
	Definition des Nutzermodells
	Erstellen einer Datenbank-Evolution
	Tabellendefinition innerhalb der Anwendung
	DAOs für den Zugriff auf die Nutzerdaten
	Silhouette Konfiguration auf eigene DAOs umstellen
	Konfiguration der Social-Provider
	Funktionalität für das Löschen eines Accounts

	Suchen und Verwalten von Freunden
	Erweiterung des Nutzermodells um einen Nutzernamen
	Registrierung der Nutzer mit Nutzernamen und E-Mail
	Evolution und Tabellendefinitionen für Freundeslisten
	Funktionalitäten für Freundeslisten in einem DAO
	Erstellen von WebSockets zur dynamischen Interaktion
	Erstellen des WebSocket auf Basis eines Actors
	Controller als Endpunkt für das WebSocket
	Verbinden der Action innerhalb des Routing
	Erstellen von Funktionen innerhalb des Javascript, welche mit dem WebSocket zusammen arbeiten

	Erweiterung des CSR für WebSockets
	Visualisierung der Freundeslisten
	Erweiterung der Views zur Übergabe von Skripten und CSS

	Migration auf Play 2.6 und Silhouette 5
	Upgrade der benötigten Abhängigkeiten
	Anpassungen für das Upgrade von Silhouette
	Änderungen im CustomPostgresDriver
	Neue Controller-Klassen
	Von WebJarAssets zu AssetsFinder
	Anpassungen für die Änderungen in i18n
	Impliziter ExecutionContext
	Refactoring (Compiler-Warnungen)

	Das Spiel
	Regeln und Spielverlauf
	Umsetzung
	Grundlegende Datentypen
	Operationen auf einem Spielstand
	Operationen auf einem Spielfeld
	Nutzung von Eq (Cats)
	Datenbank (Repository)
	Zeichnen von Spielfeldern im Client
	Hilfsfunktionen
	Websocket-URL berechnen
	Feldgröße zum Zeichnen berechnen
	Berechnen der Klickposition in einem Spielfeld
	Logging

	Spielvorbereitung (Preparation)
	Globale Variablen
	Struktur der HTML-Datei
	Funktionen
	Websocket
	Aufruf und Initialisierung

	Spielablauf (Game)
	Globale Variablen
	Struktur der HTML-Datei
	Funktionen
	Websocket
	Aufruf und Initialisierung

	Integration ins Frontend
	Verzeichnisstruktur
	Aktoren, Controller, DAO und Modelle
	View-Templates

	Datenbankschicht (Repository) als DAO
	Websocket
	Eine Websocket-Algebra
	Komposition zum fertigen Websocket

	Controller und Routing
	Übersichtsseite
	Spielerstellung
	Löschen eines Spielstandes
	Dem Spiel beitreten
	Das Spiel
	Spielvorbereitung
	Websocket

	Views

	Deployment (Auslieferung)
	Konfiguration für den Produktivbetrieb
	Erstellen eines Artefakts mit allen Abhängigkeiten
	Erstellen von Paketen für Debian
	Systemstart-Skripte

	Auslieferung zu einem Cloud Service
	Deployment via Remote Repository
	Deployment mittels des Plugins sbt-heroku
	Datenbankzugriff bei Heroku

	Erkenntnisse
	Silhouette
	Abhängigkeiten von anderen Bibliotheken
	Aufwand durch inkompatible Änderungen

	Circe
	Erstellung von Codecs
	Vollautomatische Ableitung
	Halbautomatische Ableitung
	Manuelle Implementierung

	Geschwindigkeit des Compilers
	Fehlerhäufigkeit

	WTFM - Write that fucking manual!
	Vorteile für bereits involvierte Entwickler
	Vorteile für neue Entwickler

	Danke

