André Schitz & Jens Grassel

Webanwendungen mit Scala, Akka,
Scala.js und dem Play Framework

Come out and Play

Webanwendungen schreiben mit Scala, Scala.js, Akka und
dem Play Framework.

Jens Grassel und Andre Schitz
Dieses Buch wird verkauft unter http://leanpub.com /comeoutandplay

Diese Version wurde veroffentlicht am 2019-03-19

)

Leanpub

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von
Lean-Publishing, neue Moglichkeiten des Publizierens. Lean Publishing bedeutet die
wiederholte Veroffentlichung neuer Beta-Versionen eines eBooks unter der
Zuhilfenahme schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei
der Finalisierung und der anschlieffenden Vermarktung des Buches. Lean Publishing
unterstiitzt den Autor darin ein Buch zu schreiben, das auch gelesen wird.

© 2016 - 2019 Jens Grassel und Andre Schiitz

http://leanpub.com/comeoutandplay
http://leanpub.com/
http://leanpub.com/manifesto

Twittere dieses Buch!
Bitte unterstitze Jens Grassel und Andre Schiitz, indem du dieses Buch auf Twitter
weiterempfiehlst!

Vorschlag: Verwende den folgenden Hashtag, wenn du tber dieses Buch twitterst:
#comeoutandplay.

Was sagen andere tber dieses Buch? Klicke hier, um nach diesem Hashtag auf Twitter
zu suchen:

#comeoutandplay

http://twitter.com
https://twitter.com/search?q=%23comeoutandplay
https://twitter.com/search?q=%23comeoutandplay

Inhaltsverzeichnis

1. Vorwort 1
11 Einleitung 2

1.2 AufbaudesBuches 2
121 Konventionen fiir den Quelltext 3

1.3 Schutzmarken und Copyrights 4

14 LogosundBilder. 5

1.5 QuelltextzumBuch 5

Einrichtung der Werkzeuge und Einfiihrung

inScala.......... 1
2. Werkzeuge 2
21 Java . ..o 2
22 SBT . . 2
221 Installation 3

222 Nutzlichesfur SBT 3

2.3 Entwicklungsumgebung L L. 4

3. ProgrammierunginScala 6
3.1 Interaktive ProgrammierungviaREPL 7
3.2 Hinweise zu Datenstrukturen (var,val) 7
3.3 Schnelleinstieg in die funktionale Programmierung. 9
3.31 Auswertungsstrategien (evaluation strategies) 10

332 ScopesundBlocke oo 1

3.3.3 Semikolons und Infix-Operatoren 12

INHALTSVERZEICHNIS

34
3.5

334 Tail-Rekursion 13
3.3.5 Funktionen héherer Ordnung (Higher Order Functions) 14
336 Currying 14
3.37 Polymorphismus 16
3.3.8 Pattern-Matching 18
3.3.9 Implizite Parameter 19
Hilfsmittel zur Unterstlitzung 20
Reduzierung von “Boilerplate”Code 21

Einfithrung und Grundlagen zu den verwen-

deten Technologien 23
4. Play Framework 25
41 Erstellen einer Play Anwendung 25
411 Play Anwendung tber Schablonen erstellen. 25

412 Play Anwendung von Hand erstellen 26

42 Projektstruktur. 29
421 Verzeichnisse, SBT-Einstellungen und Abhingigkeiten 29

422 Unterprojekte 31

4.3 Requests, Routingund Controller 36
431 Requests e 36

432 Routing. 36

433 Controller 36

44 Templates (Twirl) 37
441 Wiederverwendung von Templates 37

4.5 Mehrsprachigkeit (Internationalisierung) 37
451 MessagesObjekt L 37

46 Formulare 37
4.6.1 Formdefinition 37

4.6.2 Form-ObjekteundihreTypen 38

4.6.3 Beispiele fir Formulare 38

4.6.4 Verarbeitung von Formularen 38

4.6.5 Formulardarstellung in Template View 38

4.6.6 Beispiel mit sich wiederholenden Elementen 38

INHALTSVERZEICHNIS

47 Datenbankkonfiguration L L. 38
471 Konfigurationvon SlickfarPlay 38

4.8 Datenbankzugriff 39
4.9 Asynchrone Programmierung mitPlay 39
491 Websockets 39

410 WeDServiCes it 39
411 Migrationvon Play2.5auf2.6 39
4111 Washatsichgedndert. 40
4112 SBTO0.13.15erforderlich 40
4113 Guice und OpenId Unterstiitzung ausgelagert 40
4114 Bereitstellung neuer Controller Klassen 40
4115 ASSELS. . . 40
4116 PlayWS 40

4117 Anpassungenbeii18n. L 40
4118 Cache. 41
4119 Verdnderungen an der Scala Configuration API 41
41110 Entfernung diverser APIs und Bibliotheken 41
41111 play.api.libs.concurrent.Execution ist nun veraltet 42
41112 Neue Standardfilter 42

412 KonfigurationvonEhcache 42
413 Ausfihren mit IntelliJ IDEA und Debuggen 42
5. AKKa 43
5.1 FEinrichten einer Akka Anwendung 43
52 AkkaGrundlagen 44
521 Aktorsystemund Aktoren. 44

522 Supervision 47

5.2.3 Aktorreferenzen e 48

5.24 Nachrichten und deren Auslieferung 48

52,5 Konfiguration 48

5.3 AKEOren 48
531 DeathWatch 48

532 Nachrichten 48

5.3.3 Aktorenbeenden 48

534 FSM . . . 49

INHALTSVERZEICHNIS

535 Persistenz 49

53.6 Tests 49

5.4 Aktorenhilfsmittel o o 49
541 Event-Bus 49

54.2 Logging 49

54.3 Scheduler 50

544 Zeitdauer (Duration) 50

5.4.5 Unterbrecher (Circuit Breaker) 50

5.5 Streams 50

6. Scalajs 51
6.1 Erstellen einer Scalajs Anwendung 52
6.2 Abhdngigkeiten 53
6.3 Module exportieren 54
6.4 Cross-Compile 55
6.5 Testen 55
Anwendungsszenario 56
7. DasFrontend 58
8. DasOnline-Spiel 61
Das Frontend 63
9. Erstellung und Konfiguration einer Basis-Play-Anwendung 64
10. Einbindung von Silhouette als Authentifikations-Framework 65
11. Anmeldung der Nutzeram System 66
11.1 Konfiguration des Backend Store (PostgreSQL) 66
112 Definition des Nutzermodells 66
11.3 Erstellen einer Datenbank-Evolution 66
11.4 Tabellendefinition innerhalb der Anwendung 66

11.5 DAOs fir den Zugriff auf die Nutzerdaten 67

INHALTSVERZEICHNIS

12.

13.

11.6 Silhouette Konfiguration auf eigene DAOs umstellen 67
11.7 Konfiguration der Social-Provider 67
11.8 Funktionalitat fiir das Loschen eines Accounts 67
Suchen und Verwaltenvon Freunden 68
121 Erweiterung des Nutzermodells um einen Nutzernamen 68
12.2 Registrierung der Nutzer mit Nutzernamenund E-Mail 68
12.3 Evolution und Tabellendefinitionen fir Freundeslisten 68
12.4 Funktionalititen fir Freundeslisten in einem DAO 69
12.5 Erstellen von WebSockets zur dynamischen Interaktion 69
12.51 Erstellen des WebSocket auf Basis eines Actors 69
12.5.2 Controller als Endpunkt fiir das WebSocket 69
12.5.3 Verbinden der Action innerhalb des Routing 69
12.5.4 Erstellen von Funktionen innerhalb des Javascript, welche mit
dem WebSocket zusammen arbeiten 69
12.6 Erweiterung des CSR fir WebSockets 70
127 Visualisierung der Freundeslisten 70
12.8 Erweiterung der Views zur Ubergabe von Skripten und CSS 70
Migration auf Play 2.6 und Silhouette5. !
13.1 Upgrade der benétigten Abhangigkeiten 71
13.2 Anpassungen fiir das Upgrade von Silhouette 7
13.3 Anderungen im CustomPostgresDriver 71
13.4 Neue Controller-Klassen 71
13.5 Von WebJarAssets zu AssetsFinder 72
13.6 Anpassungen fiir die Anderungeninil8n 72
13.7 Impliziter ExecutionContext 72
13.8 Refactoring (Compiler-Warnungen) 72

DasSpiel 73

14.

15.

Regeln und Spielverlauf 74

UmSetzung e e 75
151 Grundlegende Datentypen. 75

INHALTSVERZEICHNIS

16.

15.2 Operationen auf einem Spielstand 75
15.3 Operationen auf einem Spielfeld 75
154 Nutzungvon Eq(Cats) 75
15.5 Datenbank (Repository). L 76
15.6 Zeichnen von Spielfeldernim Client 76
15.7 Hilfsfunktionen 76
1571 Websocket-URLberechnen 76
15.7.2 Feldgrofde zum Zeichnen berechnen 76
15.7.3 Berechnen der Klickposition in einem Spielfeld 76
1574 Logging 77
15.8 Spielvorbereitung (Preparation) oL 77
15.8.1 Globale Variablen 77
15.8.2 Strukturder HTML-Datei. 77
15.8.3 Funktionen 77
15.84 Websocket. L 77
15.8.5 Aufruf und Initialisierung L oL 77
15.9 Spielablauf (Game) 78
15.9.1 Globale Variablen, . 78
15.9.2 Strukturder HTML-Datei. 78
15.9.3 Funktionen 78
15.94 Websocket. 78
15.9.5 Aufruf und Initialisierung L oL 78
IntegrationinsFrontend L. 79
16.1 Verzeichnisstruktur L o o 79
16.1.1 Aktoren, Controller, DAOund Modelle 79
16.1.2 View-Templates 79
16.2 Datenbankschicht (Repository)alsDAO 79
16.3 Websocket 79
16.3.1 Eine Websocket-Algebra 80
16.3.2 Komposition zum fertigen Websocket 80
16.4 ControllerundRouting 80
16.4.1 UbersiChtsseiteo v v i 80
16.4.2 Spielerstellung 80

16.4.3 Loschen eines Spielstandes 80

INHALTSVERZEICHNIS

16.4.4 Dem Spielbeitreten 80

16.4.5 DasSpiel 81

16.4.6 Spielvorbereitung 81

16,47 Websocket. 81

16.5 VIEWS . . o 81
Deployment (Auslieferung) 82
17. Konfiguration fiir den Produktivbetrieb 83
18. Erstellen eines Artefakts mit allen Abhédngigkeiten 84
19. Erstellen von Paketen fiir Debian 85
19.1 Systemstart-Skripte. Lo oo 85
20.Auslieferung zu einem Cloud Service 86
20.1 Deployment via Remote Repository 86
20.2 Deployment mittels des Plugins sbt-heroku 86
20.3 Datenbankzugriff bei Heroku 86
Erkenntnisse 87
21. Silhouette 88
21.1 Abhéngigkeiten von anderen Bibliotheken 88
21.2 Aufwand durch inkompatible Anderungen 88
22.CirCe e 89
22.1 ErstellungvonCodecs 89
22.11 Vollautomatische Ableitung 89

22.1.2 Halbautomatische Ableitung 89

22.1.3 Manuelle Implementierung 89

22.2 Geschwindigkeitdes Compilers 89
22.3 Fehlerhaufigkeit 90
23.WTFM - Write that fucking manual! 91

INHALTSVERZEICHNIS

23.2 Vorteile fir neue Entwickler.

24. Danke

1. Vorwort

Die webbasierte Implementierung von Anwendungen hat sich durchgesetzt, um den
Anwendern einen moglichst einfachen und der Zeit entsprechenden Zugang zu er-
moglichen.

Fir die Umsetzung kann man unter diversen Technologien und Herangehensweisen
wiahlen, welche sich je nach Interesse der Entwickler oder durch Vorgaben der Auf-
traggeber ergeben. Eine Vorgehensweise ist die Funktionale Programmierung, welche
in den letzten Jahren einen immer stirker werdenden Zulauf erfihrt, auch wenn die
Grundlagen fiir diese schon seit Jahrzehnten bestehen.

Ein haufiger Werdegang ist das Erlernen einer imperativen, prozeduralen oder objekt-
orientierten Programmiersprache wahrend der wissenschaftlichen oder beruflichen
Ausbildung. Der Einstieg in die Funktionale Programmierung erfolgt dann zu einem
spateren Zeitpunkt tiber Sprachen wie Clojure!, Haskell?, Lisp? oder Scala*.

Die Autoren dieses Buches kamen teilweise auch tber diesen Weg zur Funktionalen
Programmierung, wobei beide auch schon in fritheren Jahren diverse Berithrungspunk-
te mit diesem Bereich hatten.

Den vollstandigen Einstieg und Umstieg in den Bereich der Funktionalen Programmie-
rung mittels Scala vollzogen sie in Zusammenhang mit einem Forschungs- und Ent-
wicklungsprojekt, welches sich mit dem Gebiet der Datenintegration und -migration
beschéftigte. Die Funktionale Programmierung bietet eine besonders gute Grundlage
fir das Verarbeiten, Modifizieren und Integrieren von unterschiedlichen Datenstruk-
turen.

Neben der rein funktionalen Programmierung, werden weitere Technologien in diesem
Buch verwendet, die in unterschiedlichen Projekten eingesetzt wurden. Dazu z&hlen
u.a. das Akka Toolkit, das Play Framework und Scala.js.

IEin hiufiger Grund ist beispielsweise, dafd das Modell in einer API zur Verfiigung gestellt wird. Eine
einfache Anderung an Attributen wiirde so z.B. zu einem Bruch der API fiihren.

2https: //www.haskell.org /

3https: //de.wikipedia.org /wiki/Lisp

“https: //www.scala-lang.org/

Vorwort 2

1.1 Einleitung

Webanwendungen haben sich in den letzten 20 Jahren von einem Nischendasein hin zu
ernstzunehmenden Konkurrenten bzw. Erganzungen von klassischen Anwendungen
entwickelt.

Da sich die damit einhergehenden Technologien ebenfalls weiterentwickelt haben,
erdffnen sich dementsprechend weitere Moglichkeiten.

Die Anzahl der Programmiersprachen, Basistechnologien und Frameworks, die in
diesem Umfeld angeboten werden sind mehr als zahlreich und entsprechend schwierig
ist es sich einen Uberblick zu verschaffen bzw. geeignete Werkzeuge auszuwihlen.

Wir haben im Laufe unserer Arbeit viele verschiedene Frameworks (inklusive Pro-
grammiersprachen) verwendet und haben uns schlufSendlich in diesem Buch dazu
entschieden das Play Framework zu nutzen.

Die Griinde hierfiir sind vielfaltig und teilweise subjektiv, da personliche Vorlieben
unsere Entscheidungen immer beeinflussen, schliefdlich wollen wir an dem, was wir
tun, auch Freude haben. ;-)

J Play AR akka & Scala

Dartiber hinaus basiert das Play Framework seinerseits auf soliden Basistechnologien
wie Akka, Netty und Scala. Der Code der Anwendung wird compiliert und lauft auf der
Java Virtual Machine (JVM).

1.2 Aufbau des Buches

Wir entwickeln im Verlauf dieses Buchs eine Beispielanwendung, was uns die Arbeit an
konkreten und praxisnahen Problemstellungen erlaubt.

In Teil 1 werden grundlegende Erkldrungen zum Einrichten der Entwicklungsumge-
bung und Werkzeuge sowie eine kurze Einfithrung in Scala gegeben. Leser, denen diese
Themen bereits vertraut sind, konnen diesen Teil somit getrost tiberspringen.

https://www.playframework.com/
http://akka.io/
http://netty.io/
http://scala-lang.org/
http://java.oracle.com/

Vorwort 3

Die verwendeten Technologien werden in Teil 2 beschrieben, um den Einstieg in
die Beispielanwendung zu erleichtern. Dazu gehdren das Play-Framework, Akka und
Scala.js. Wiederum konnen diejenigen Leser, welche mit den Technologien bereits
vertraut sind, diesen Teil Giberspringen und zu Teil 3 voranschreiten.

Teil 3 dient dazu, das Szenario fiir eine Anwendung zu definieren, die im Verlauf dieses
Buches entwickelt werden soll.

Eine grundlegende Komponente ist das Frontend, welches die Interaktion des Nutzers
mit der Beispielanwendung ermdglicht und ihm Zugriff auf die Funktionalitdten gibt.
Die Erstellung des Frontend auf Basis des Play-Framework, die Integration eines
Authentifikations-Frameworks, die Implementierung der Anmeldung des Nutzers am
System, das Durchsuchen und Verwalten von Freundeslisten und die Auswahl und
Ausfiihrung eines Spiels werden in Teil 4 chronologisch erarbeitet. Dartiber hinaus
wurde eine Migrationsanleitung aufgenommen, in der die gesamte Beispielanwendung
plus das integrierte Authentifikations-Framework auf Play 2.6 aktualisiert worden ist
(Wéhrend der Arbeit an dem Buch gab es die Veroffentlichung von Version 2.6, so
dafs eine Migration von Play 2.5 und die damit verbundenen Erkenntnisse aufbereitet
wurden).

In Teil 5 wird das Spiel und dessen Umsetzung sowie Integration in das Frontend
beschrieben, was die Liicke zwischen diesen beiden Komponenten schliefst. Fir die
Ausfithrung der Beispielanwendung und das in diesem Zusammenhang notwendige
Deployment wird eine Anleitung in Teil 6 zusammengefaf3t.

Zum Abschlufs dieses Buches noch eine kurze Anmerkung hinsichtlich “Dokumentation
im Code” und warum diese gewissenhaft und von Anfang an durchgefithrt werden
sollte.

1.2.1 Konventionen fir den Quelltext

Wir folgen weitestgehend dem offiziellen Scala Style Guide. Ein Quelltext sieht bei-
spielsweise wie folgt aus:

http://docs.scala-lang.org/style/

Vorwort 4

Beispiel fiir einen Quelltext

/**
* Ein Kommentar. ..
*/
object Foo {
def someFunction(param: Int): String = {
J*
* Noch ein Kommentar. ..
*/
val someMagicValue = ??7? // Kommentar. ..
// Und wieder ein Kommentar
val einEtwaslLaengererBezeichner = someMagicValue.foldLeft(0)(_ + _) * outOfNowhereVal\
ue + 314
227

Je nach Medium werden Zeilen im Quelltext unterschiedlich umgebrochen. In einer
PDF-Datei konnen diese relativ lang sein (ca. 100 Zeichen). In einem E-Book dagegen
werden sie meist schon nach 45-50 Zeichen umgebrochen, bei grofderen Schriftarten
(je nach Einstellung des Lesegerates) auch deutlich friither. Dies erschwert es, grofere
Quelltextblocke vorzuformatieren, aber wir bemtihen uns um maoglichst gute Lesbar-
keit.

Es kann vorkommen, dafs Zeilen im Quelltext, die sehr lang sind, mit einem
Backslash (\) “zerteilt” umgebrochen werden. Wir werden uns bemiihen den
Code so vorzuformatieren, daf$ dies moglichst selten auftritt.

1.3 Schutzmarken und Copyrights

Folgende Technologien werden in diesem Buch genutzt. (Alphabetische Auflistung)

Vorwort 5
Technologie Rechteinhaber
Akka Lightbend
Java Oracle Corporation

Java Virtual Machine (JVM)
JavaScript

Netty

Play Framework

Sbt

Scala

Scala.js

1.4 Logos und Bilder

Oracle Corporation

Oracle Corporation

The Netty Project

Lightbend

Lightbend

EPFL - Ecole polytechnique fédérale de Lausanne
EPFL - Ecole polytechnique fédérale de Lausanne

Wir bedanken uns recht herzlich fiir die Genehmigung zur Nutzung der folgenden

Logos.
Logo Eigentiimer
Akka Lightbend in Respekt der Trademark Policy
Play Framework Lightbend in Respekt der Trademark Policy
Scala Scala Center and Scala logo courtesy of EPFL, Switzerland
Scala.js Scala Center and Scala logo courtesy of EPFL, Switzerland

Das Titelbild wurde fiir dieses Buch von André Schiitz erstellt. Alle weiteren Abbildun-
gen innerhalb dieses Buches wurden durch die Autoren angefertigt.

1.5 Quelltext zum Buch

Der Quelltext zu der in diesem Buch erstellten Anwendung und die jeweils in den
Kapiteln angelegten Tags konnen im folgenden Repository eingesehen werden:
https: //gitlab.com/comeoutandplay

https://gitlab.com/comeoutandplay

Einrichtung der Werkzeuge und
Einfuhrung in Scala

Dieses Kapitel beschreibt grundlegende Arbeitsweisen und Werkzeuge und kann dem-
entsprechend iibersprungen werden, wenn diese Kenntnisse bereits vorliegen.

Wir beginnen mit einem kurzen Exkurs durch das Okosystem der Programmiersprache
Scala hinsichtlich der zur Verfiigung stehenden Werkzeuge. Diese umfassen Java, SBT
und diverse Entwicklungsumgebungen.

Danach erfolgt eine kurze Einfiihrung in die Programmierung in Scala, welche einen
grundlegenden Uberblick iiber die Moglichkeiten und Vorgehensweisen in dieser
Programmiersprache geben soll. Dazu zihlen u.a. die interaktive Programmierung mit
einer REPL, Hinweise zu vorhandenen Datenstrukturen, ein Schnelleinstieg in die
funktionale Programmierung, Hilfsmittel, welche man zur Unterstiitzung nutzen kann
und ein Uberblick, wie man “Boilerplate” Code reduziert.

2. Werkzeuge

In der praktischen Anwendung geht letztlich nichts ohne die entsprechenden Werk-
zeuge. Daher folgt hier ein kurzer Exkurs zu den bendtigten Hilfsmitteln.

2.1]Java

Da Scala eine Programmiersprache ist, die in der Java Virtual Machine (JVM) lauft
und auch das Play-Framework und sonstige Werkzeuge Java bendtigen, mufd dieses
installiert sein. Zum gegenwartigen Zeitpunkt empfehlen wir die aktuellste Version aus
der 1.8%er Reihe zu nutzen. Ob die Version von Oracle oder das OpenJDK zum Einsatz
kommen ist fiirs Erste nicht weiter von Belang. Wir selbst nutzen vorzugsweise das
OpenJDK.

2.2 SBT

Als Werkzeug zur Projektverwaltung hat sich fiir Scala das “Simple Build Tool”, kurz SBT,
durchgesetzt. Da die Bezeichnung “Simple” durchaus zu Kontroversen fiihrte, wird es
mittlerweile eigentlich nur noch als SBT bezeichnet. ;-)

http://www.oracle.com/technetwork/java/index.html
http://openjdk.java.net/install/
http://www.scala-sbt.org/

Werkzeuge 3

2.2.1 Installation

Fir SBT bestehen ausreichende Pakete fiir verschiedenste Betriebssysteme. Die In-
stallation desselben sollte also tiber die fiir das entsprechende System empfohlenen
Kanile erfolgen.

2.2.2 Nutzliches fiar SBT

Nach derzeitigem Stand kann man SBT global iiber das Verzeichnis ~/.sbt/VERSION/
konfigurieren. Hierbei steht VERSION entweder fiir ©.13 (fir altere Projekte) oder fiir
1.0. Einige Einstellungen, die sehr niitzlich sind, sollten in der folgenden Datei abgelegt
werden: ~/.sbt/VERSION/global.sbt

Niitzliche globale SBT-Einstellungen

// Prevent Strg+C from killing SBT.
cancelable in Global := true
// Use a coloured scala console if possible.
initialize ~= (_ =>

if (Consolelogger . formatEnabled)

sys.props("scala.color") = "true"

Die erste Einstellung verhindert, dafs beim Beenden einer aus SBT heraus gestarteten
Anwendung durch Strg+C, SBT mit beendet wird. Die nichste Einstellung sorgt dafiir,
dafs Syntax-Highlighting in der Konsole aktiviert wird, wenn man diese aus SBT heraus
startet.

2.2.2.1 Globale Plugins

Im Verzeichnis ~/ .sbt/@.13/plugins bzw. ~/.sbt/1.0/plugins konnen globale Plugins
eingebunden werden. Zwei sehr niitzliche Plugins sind sbt-updates und sbt-dependency-
graph. Wer sich mit Ensime beschéftigen mochte, kann dort auch das entsprechende
SBT-Plugin installieren.

https://github.com/rtimush/sbt-updates
https://github.com/jrudolph/sbt-dependency-graph
https://github.com/jrudolph/sbt-dependency-graph
https://ensime.github.io/

Werkzeuge 4

2.2.2.2 Schnelleres Herunterladen von Abhéngigkeiten

Wer mit mehreren Projekten parallel arbeitet, wird recht schnell iiber die Meldung

¢ s
Waltlng for /.ivy2/.sbt.ivy.lock to be available’ stolpern. Dartiber hinaus ladt SBT via Ivy Abhédngigkeiten nur einzeln herunter. Eine sck

Achtung! Da einige andere SBT-Plugins ebenfalls Coursier nutzen, kann es
zu Problemen kommen, wenn verschiedene Versionen davon im Klassenpfad

zu finden sind!

2.2.2.3 Projektplugins

Innerhalb eines Projekts konnen Plugins im Verzeichnis project eingebunden werden.
Der Ubersichtlichkeit halber sollte man einfach eine Datei project/plugins.sbt anle-
gen, in der man die gewtinschten Plugins einbindet. Niitzliche Plugins auf Projektebene
sind beispielsweise:

1. Scalafmt fiir automatisiertes Formatieren von Quelltext (Style Guide) oder alter-

nativ Scalariform

2. Wartremover fiir das Erzwingen von strengeren Regeln hinsichtlich funktionaler
Programmierung

3. sbt-git fir nitzliche Funktionen rund um Git wie z.B. die automatische Ableitung
einer Versionsnummer aus Tags

2.2.2.4 SBT-Version fixieren

Die SBT-Version kann fiir ein Projekt fest eingestellt werden, indem man diese in der
Datei project/build.properties konfiguriert:

SBT-Version in build.properties einstellen

sbt.version=1.2.8

2.3 Entwicklungsumgebung

Mittlerweile gibt es einige Entwicklungsumgebungen (IDEs) fiir Scala wie Scala IDE
und Intelli] Idea. Es ist jedoch auch moéglich mit Texteditoren zu arbeiten. Das Projekt

http://scalameta.org/scalafmt/
https://github.com/sbt/sbt-scalariform
https://github.com/wartremover/wartremover
https://github.com/sbt/sbt-git
https://git-scm.com/
http://scala-ide.org/
https://www.jetbrains.com/idea/

Werkzeuge 5

Ensime bietet Plugins fiir SBT und diverse Editoren an, um fortgeschrittene Funktio-
nalitdten zu ermoglichen. Beliebte Editoren im Umfeld von Scala sind: Emacs, Vim bzw.
Neovim, Sublime Text 2 und Atom.

Seit einiger Zeit gewinnt auch das Projekt Metals immer mehr an Fahrt und macht
einen sehr vielversprechenden Eindruck. Insbesondere in Kombination mit Visual
Studio Code ist es ein sehr schlankes, aber wirkungsvolles Werkzeug. Es gibt auch
Integrationen in andere Editoren.

Wer sich Metals ansehen mochte, sollte zudem einen Blick auf Bloop werfen, da diese
Projekte Hand in Hand gehen.

Die Nutzung von Texteditoren fiir grofSere Projekte ist nur fortgeschrittenen Anwen-
dern zu empfehlen. Fiir den Einstieg sollte eine IDE gewahlt werden. Wir nutzen
vorzugsweise Intelli] Idea, daher bezieht sich die Beschreibung zur Einrichtung der
Entwicklungsumgebung darauf. Damit IntelliJ Idea genutzt werden kann, muf$ das
Scala-Plugin installiert werden.

Das Erstellen von Projektstrukturen erfolgt jedoch mittels SBT. Diese Strukturen
werden dann in die IDE importiert.

https://ensime.github.io/
https://www.gnu.org/software/emacs/index.html
http://www.vim.org/
https://neovim.io/
https://www.sublimetext.com/2
https://atom.io/
https://scalameta.org/metals/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://scalacenter.github.io/bloop/

3. Programmierung in Scala

£ Scala

Scala ist eine objektorientierte und ebenso eine funktionale Programmiersprache. Fir
Ein- und Umsteiger, die Erfahrungen in objektorientierter Programmierung (insbeson-
dere mit Java) haben, bietet sich so die Méglichkeit eines recht einfachen Ubergangs.
Man kann erstmal “besseres Java” schreiben und ist nicht gezwungen gleich komplett
in die funktionale Programmierung einzutauchen. Ein interessantes Feature von Scala
ist auch die Moglichkeit Java- und Scalaklassen beliebig zu mischen bzw. Bibliotheken
gegenseitig zu nutzen.

Es gibt zahlreiche Literatur zur Programmierung in Scala. Die folgenden Biicher sind
unserer Ansicht nach zu empfehlen:

Programming in Scala - Martin Odersky, Lex Spoon, Bill Venners
Scala for the Impatient - Cay S. Horstmann

Functional Programming in Scala - Runar Bjarnason, Paul Chiusano
Functional Programming for Mortals - Sam Halliday

Scala with Cats - Noel Welsh, Dave Gurnell

gl W N =

“Functional Programming in Scala” ist definitiv kein Einsteigerbuch, aber nichtsdesto-
trotz ein sehr gutes Buch fiir jemanden, der sich intensiv mit funktionaler Program-
mierung auseinandersetzen mochte. Die beiden letztgenannten Biicher bieten einen
guten Einstieg mit dem Schwerpunkt jeweils auf Scalaz bzw. Cats als Bibliotheken.

Programmierung in Scala 7

Eine umfassende Einfithrung in Scala wiirde den Rahmen dieses Kapitels sprengen,
daher werden wir hier nur kurz auf einige im Rahmen des Buches wichtige Aspekte
eingehen und verweisen auf die bereits erwdhnte Literatur.

3.1 Interaktive Programmierung via REPL

Das Kiirzel REPL steht fiir “read eval print loop” und wertet Nutzereingaben direkt in
der verwendeten Programmiersprache aus. Dieses Prinzip der interaktiven Program-
mierung ist je nach bisherigem Erfahrungshintergrund eventuell bekannt. Sollte dieses
Konstrukt Neuland sein, kénnen wir nur empfehlen, sich damit auseinanderzusetzen.
Auch wenn wir fir das Entwickeln grofSerer Anwendungen eine IDE nutzen, so bietet
eine REPL jedoch den Vorteil schnell Code auszuprobieren und zu verfeinern.

Scala bietet eine Standard-REPL, die einfach via scala bzw. scala -Dscala.color
gestartet werden kann.

Zum Kopieren grofderer Quelltextausschnitte ist es hilfreich die Scala-REPL
in den Einfligemodus zu schalten. Dies geschieht durch den Befehl :paste.

Eine Alternative zur Scala-REPL ist die Ammonite-REPL. Sie bietet einige interessante
Erweiterungen zur Standard-REPL, ist aber fiir das Ausprobieren der Codeschnipseln
in diesem Buch nicht zwingend erforderlich.

Des Weiteren besteht die Moglichkeit in IDEs (Intelli] Idea, Scala IDE) ein sogenanntes
“Worksheet” anzulegen. Hierzu mufs ein Scalaprojekt erstellt werden, in welchem dann
der Worksheet erzeugt werden kann. Diese Moglichkeit bietet alle Annehmlichkeiten
einer integrierten Entwicklungsumgebung und weitaus bessere Speichermoglichkei-
ten als eine REPL.

3.2 Hinweise zu Datenstrukturen (var, val)

Man kann Datenstrukturen in den folgenden Varianten definieren:

http://www.lihaoyi.com/Ammonite/#Ammonite-REPL

Programmierung in Scala 8

Immutable

Datenstrukturen, die nicht verinderbar sind. Scala stellt eine Reihe von Daten-
typen bereit, die unter scala.collection.immutable zu finden sind. Ein solcher
Datentyp kann nach seiner Initialisierung nicht wieder verandert werden. Man
kann lediglich eine verdnderte Kopie von selbigem erzeugen.

Mutable

Var

Val

Datenstrukturen, die verdanderbar sind. Ein solcher Datentyp ist nach seiner
Initialisierung beliebig verinderbar und kann mehrmals zugewiesen werden.
Auch hierfiir bietet Scala eine Reihe von Datentypen, die analog zu den vorherigen
unter scala.collection.mutable zu finden sind.

Eine Variable, deren Inhalt gedndert werden kann. Sie kann einen beliebigen
Datentyp (immutable oder mutable) enthalten und kann jederzeit mit einem
neuen Wert belegt werden.

Eine Variable, deren Inhalt nicht gedndert werden kann. Auch sie kann einen
beliebigen Datentyp (immutable oder mutable) enthalten, aber nach ihrer Initia-
lisierung nicht wieder mit einem neuen Wert belegt werden.

Hieraus ergeben sich die folgenden Kombinationsmaoglichkeiten:

3.2.0.1 Immutable Val

Perfekt

Die optimale Kombination im Hinblick auf Datensicherheit. Man muf$ sich keine
Gedanken darum machen, daf$ ein Wert, den man weitergibt oder erhalten hat von
einer anderen Stelle aus gedndert werden konnte.

3.2.0.2 Immutable Var

In Ordnung

Programmierung in Scala 9

Die Nutzung eines unverdnderbaren Datentyps in einer Variablen kann sinnvoll sein,
wenn diese nur innerhalb eines bestimmten Kontextes (z.B. fiir den Zustand eines
Aktors) genutzt wird.

3.2.0.3 Mutable Val

73y

Méglichst vermeiden

Die Nutzung von veranderbaren Datentypen kann unter Umstanden sinnvoll sein, aber
man mufs sicherstellen, daf$ man diese niemals weitergibt! Wer sich nicht sicher ist,
sollte diese Kombination vermeiden.

3.2.0.4 Mutable Var

Niemals!

Um es kurz zu machen: Nie, aber auch wirklich nie sollte diese Kombination verwendet
werden!

3.3 Schnelleinstieg in die funktionale Programmierung

Unter funktionaler Programmierung versteht man gemeinhin den Aufbau von Pro-
grammen aus Funktionen unter der Pradmisse, dafs Nebenwirkungen (Seiteneffekte)
bewufst vermieden werden. Sogenannte “reine funktionale” Programmiersprachen
schliefSen die Verwendung von Elementen aus, die diesem Paradigma zuwider laufen.
Scala ist keine reine (pure) funktionale Programmiersprache. Allerdings ist Scala eine
rein objektorientierte Sprache. Im Gegensatz zu Java bedeutet dies, dafs auch primitive
Datentypen Objekte sind. Interfaces kdnnen tiber sogenannte Traits realisiert werden,
die jedoch nicht nur die Deklarationen sondern auch konkrete Implementierungen
beinhalten konnen. Des Weiteren konnen Klassen in Scala mehrere Traits erweitern,

Programmierung in Scala 10

was jedoch keine Mehrfachvererbung ist sondern ein Mixin-Mechanismus. Statische
Felder und Methoden koénnen nicht in Klassen definiert werden, allerdings in einem
object. Ein solches object stellt ein Singleton dar und bildet im Zusammenhang mit
einer gleichnamigen Klasse ein sogenanntes Companion-Object.

Die funktionale Programmierung wird in Scala dadurch mdéglich, daf§ Funktionen
sogenannte First-Class-Objects sind. Auch Funktionen hoherer Ordnung werden un-
terstiitzt. Dartiber hinaus werden wichtige Eigenschaften wie Pattern-Matching und
Closures unterstiitzt. Scala ist eine statisch typisierte Programmiersprache mit einem
sehr umfangreichen Typisierungssystem.

3.3.1 Auswertungsstrategien (evaluation strategies)

Man unterscheidet die beiden Strategien “Call by value” und “Call by name”

Erstere wertet den angegebenen Ausdruck immer aus, aber dafiir nur einmal. Letztere
wertet den Ausdruck nur aus, wenn er auch benutzt wird, dafiir wird er immer wieder
ausgewertet.

Beide Strategien setzen voraus, daf$ die angegebenen Ausdriicke reine Funktionen sind
und auch terminieren.

Scala verwendet “Call by value”, unterstiitzt aber auch “Call by name” dessen Verwen-
dung sinnvoll sein kann, wenn teure Auswertungen evtl. nicht notwendig sind.

call-by-value

scala> val a =1
a: Int =1

call-by-name

scala> def f(a: Int, b: => Int): Int = {
if (a == Q)
a+1
else
b

}
f: (a: Int, b: => Int)Int

scala> f(@, extremLangsameFunktion)
res4: Int =1

Programmierung in Scala 1

Jede Funktion, die fir “Call by value” terminiert, terminiert auch fir “Call by name”
Umgekehrt gilt dies nicht.

Funktionsparameter konnen als “by value” oder “by name” iibergebene werden. Dies
gilt gleichermaf3en fiir die Definition von Ausdriicken. Wobei def fiir “by name” und
val fir “by value” genutzt wird.

3.3.2 Scopes und Blécke

In Scala konnen Funktionen auch innerhalb anderer Funktionen definiert werden. Dies
ist sehr hilfreich, wenn sehr spezifische Hilfsfunktionen genutzt werden.

Funktionen in Funktionen

def foo(a: Int) = {
def bar(x: Int, y: Int) = 77?7
bar(a, 1)

Blocke werden durch geschweifte Klammern geoffnet und geschlossen. Sie kdnnen
eine Reihe von Definitionen oder Ausdriicken enthalten und das letzte Element des
Blocks bestimmt dessen Riickgabewert. Ein Block ist wiederum ein Ausdruck und kann
an allen Stellen genutzt werden, an denen auch ein Ausdruck stehen kann.

Bei der Schachtelung von Funktionen und bei Blocken, ist die Sichtbarkeit von Werten
zu beachten.

Sichtbarkeit in geschachteltem Code

def foo(a: Int) = {
val x = 283
def bar(a: Int) = {
x + a // x ist gleich 23
}

val r

{
val x = bar(42) + a

X * // x ist gleich 42 + 23 + a

>

Programmierung in Scala 12

Definitionen und Werte innerhalb eines Blocks sind auch nur in diesem sichtbar.
Ausdriicke von aufSerhalb des Blocks sind in diesem sichtbar, es sei denn, darin sind
identisch benannte definiert. Dies nennt man “shadowing”

3.3.3 Semikolons und Infix-Operatoren

In Scala ist die Verwendung von Semikolons im Gegensatz zu Java optional, d.h. man
kann eine Zeile mit einem Semikolon beenden, mufs dies aber nicht tun. Gemeinhin
lasst man das Semikolon weg. Lediglich wenn zwei Befehle hintereinander geschrieben
werden, miissen diese durch ein Semikolon getrennt werden.

Semikolon

// Korrekte Syntax

val a =1

// Auch korrekt, aber nicht notwendig.
val b = 2;

// Semikolon notwendig

val c =a+b; ¢ * 2

Bei Ausdriicken, die iiber mehrere Zeilen gehen, miissen die Infix-Operatoren an das
Ende der vorhergehenden Zeile gesetzt werden. Alternativ konnte man den gesamten
Ausdruck in Klammern setzen.

Ausdriicke iiber mehrere Zeilen

// Wird interpretiert als a;, + b
a

+ b

// Wird interpretiert als a + b
a +

b

// Wird interpretiert als a + b
(a

+ b)

Programmierung in Scala 13

3.3.4 Tail-Rekursion

Wenn der letzte Befehl einer Funktion der Aufruf einer anderen ist, nennt man dies
einen Tail-Call, da dann der Stack fiir beide Funktionen gentigt. Nutzt man diese
Technik in rekursiven Funktionen, werden diese tail-recursive genannt. Eine solche
Funktion ist ein iterativer Prozess und kann vom Compiler zu einer einfachen Schleife
optimiert werden.

Tail-Rekursion bringt erhebliche Leistungsvorteile. Allerdings sind tail-rekursive Funk-
tionen meist nicht so leicht lesbar wie rein rekursive. Deswegen sollte man abwigen ob
der Aufwand fir die Implementierung einer Tail-Rekursion notwendig ist. Manchmal
ist es auch schlichtweg nicht moéglich einen Algorithmus tail-rekursiv zu implementie-
ren.

Fakultiat mit Rekursion

object Factorial {
def fac(n: Long): Long = {
if (n == 0)
1L
else

n * fac(n - 1)

Fakultiat mit Tail-Rekursion

import scala.annotation.tailrec
object Factorial {
def fac(n: Long): Long = {
@tailrec
def fact(acc: Long, x: Long): Long = {
if (x == 0)
acc
else
fact(acc * x, x - 1)
}
fact(1, n)

Programmierung in Scala 14

3.3.5 Funktionen h6éherer Ordnung (Higher Order Functions)

Durch die Behandlung von Funktionen als First-Class-Objects konnen diese wie je-
der andere Wert verwendet werden. Dies bedeutet, dafs Funktionen implementiert
werden, die andere Funktionen als Parameter empfangen und Funktionen als Riickga-
bewerte liefern konnen. Solche Funktionen nennt man Funktionen héherer Ordnung
(Higher-Order Functions).

Der Typ fiir Funktionen lautetA => B, demnach impliziert die NotationString => Int
eine Funktion, die einen String empfangt und eine Ganzzahl (Integer) zurickgibt. Damit
man nicht jede benutzte Funktion explizit definieren muf3, kann man auch sogenannte
anonyme Funktionen definieren.

Funktionen und anonyme Funktionen

@ def check(x: Int)(f: Int => Boolean) = f(x)
defined function check

@ def isEven(a: Int) = a % 2 == 0

defined function isEven

@ // Funktion explizit (bergeben.

@ check(3)(isEven)

res2: Boolean = false

@ // Eine anonyme Funktion (libergeben.

@ check(3)((a: Int) => a % 2 !=0)

res3: Boolean = true

3.3.6 Currying

Mit Currying meint man die Umwandlung einer Funktion mit mehreren Argumenten in
eine mit einem Argument. Praktisch bedeutet dies, dafs durch die Implementierung von
Funktionen, die wiederum Funktionen zurtickgeben weitere Generalisierungen und
Vereinfachungen moglich sind. Wenn also eine Funktion definiert ist, die n Argumente
erfordert und auf ein Argument angewendet wird, so verarbeitet sie dieses und gibt
eine Funktion zurtck, die ihrerseits nochn - 1 Argumente verlangt.

Der Aufruf foo(bar)(42, "Die Antwort.") wird linksassoziativ ausgewertet, d.h. er
16st auf zu (foo (bar)) (42, "Die Antwort."). Der Ausdruck foo(bar) wendet die
Funktion foo auf bar an und die daraus zurickgegebene Funktion wird mit den {ibrigen
Parametern aufgerufen.

Programmierung in Scala 15

Beispiel fiir Currying

Kok
* Multipliziere alle Zahlen beginnend mit
* “x° und endend mit ‘y . Hierbei wird auf
* jede Zahl die (libergebene Funktion “f°
* angewendet bevor die Multiplikation
* durchgefihrt wird.
*/
def mult(f: Int => Int): (Int, Int) => Int = {
def applyF(x: Int, y: Int): Int = {
if (x> y)
1
else
f(x) * applyF(x + 1, y)
}
applyF
}
// Identitédt
mult((a: Int) => a)(1, 1) // => 1
mult((a: Int) => a)(1, 2) // => 2
mult((a: Int) => a)(1, 8) // => 6
// Quadrieren
mult((a: Int) => a * a)(1, 1) // => 1
mult((a: Int) => a * a)(1, 2) // => 4
mult((a: Int) => a * a)(1, 3) // => 36

Scala unterstiitzt eine spezielle Syntax, um die Definition derartiger Funktionen zu
vereinfachen. Es konnen mehrere Parameterlisten angegeben werden.

Programmierung in Scala 16

Currying mit spezieller Syntax

Kok
* Vereinfachte Definition durch multiple
* Parameterlisten.
*/
def mult(f: Int => Int)(x: Int, y: Int): Int = {
if (x> y)
1
else
f(x) * mult(f)(x + 1, vy)
}
// Identitét
mult((a: Int) => a)(1, 1) // => 1
mult((a: Int) => a)(1, 2) // = 2
mult((a: Int) => a)(1, 3) // => 6
// Quadrieren
mult((a: Int) => a * a)(1, 1) // => 1
mult((a: Int) => a * a)(1, 2) // => 4
mult((a: Int) => a * a)(1, 3) // => 36

3.3.7 Polymorphismus

Scala unterstiitzt polymorphe Funktionen, d.h. man kann angeben fiir welche Typen
eine Funktion anwendbar ist. Nehmen wir z.B. die folgende Funktion, die generisch auf
einem Datentyp Person arbeitet und das Gehalt der Person zurtickgibt, wenn diese
ein Angestellter ("EMPLOYEE") ist. Anderenfalls wird ein Ausnahmefehler (Exception)
geworfen.

Programmierung in Scala 17

final case class Person(...)

def getSalary(p: Person) = {
if (p.category == "EMPLOYEE") {

}
else

throw new IllegalArgumentException("Cannot get salary of non-employee!™)

Dieser Ansatz hat sicherlich mehr als ein Problem, aber wir konzentrieren uns darauf,
dafs die Funktion nur auf Datentypen anwendbar sein sollte, welche die erforderlichen
Bedingungen erfiillen. Mit Hilfe der Typisierung ist eine andere Losung denkbar:

trait Person {

final case class Stranger(...) extends Person
final case class Employee(...) extends Person

def getSalary[A <: Employee](p: A) = {

Nun verlangt die Funktion getSalary einen Datentyp, der ein untergeordneter Typ
von Employee ist. Anwender der Funktion sehen nun direkt an deren Signatur, dafs
ein solcher erforderlich ist. Dariiber hinaus konnen Tests eingespart werden, da der
Compiler nun priift ob ein korrekter Typ tibergeben wurde. Des Weiteren kann dieser
Optimierungen vornehmen, da nur bestimmte Typen zugelassen sind.

Auch komplett generische Angaben sind mdglich:

def apply[A, B](a: A)(f: A => B): B = f(a)

Es lohnt sich dieses Thema zu vertiefen, da es hiermit moglich ist den
Implementierungsraum einer Funktionsdefinition einzuschrénken.

Man vergleiche z.B. die mdglichen Implementierungen fiir def f(a:
String): String mit denen fiirdef f[A,B](a: A)(b: A => B): B.

Programmierung in Scala 18

3.3.8 Pattern-Matching

Das Problem der Dekomposition in der Programmierung lasst sich in funktionalen
Programmiersprachen mit Hilfe von Pattern-Matching (Musterabgleich) 16sen. Ge-
nerell geht es um die Fragestellung, welche Klasse bzw. Unterklasse mit welchen
Konstruktorparametern benutzt wurde.

Folgendes Beispiel soll das Prinzip verdeutlichen.

Beispiel fiir Pattern-Matching

scala>

fn: (x:

scala>
resd:
scala>
resl:
scala>
res2:
scala>
res3:
scala>
res4:
scala>

resS:

def fn(x: Any): String = x match {

case Some(value) => value.toString

case None => "None"
case (v1, v2) => s"Pair($vi, $v2)"
case xh :: xs => "List"
case _ = "o
}
Any)String

fn(Option(123))

String = 1283
fn(None)

String = None
fn(Option(List(1,2,3)))

String = List(1, 2, 3)
fn(List(1,2,3))

String = List
tn((1,2))

String = Pair(1, 2)
n((1,2,3))

String

Noch

einige Anmerkungen zum Beispiel:

1. Die Verwendung von Any als Datentyp dient hier lediglich der Demonstration.

Der Ausdruck Some(. . .) wird genutzt um auf eine Option zu treffen.

Mit (v1, v2) trifft man ein Paar (Tuple) und extrahiert die einzelnen Elemente
direkt.

Der letzte Ausdruck _ trifft auf alles.

Programmierung in Scala 19

Die Unterstrichnotation (_) im Pattern-Matching bedeutet, daf§ der Wert
selbst nicht verwendet werden soll. So trifft z.B. das Pattern Some(_) auf eine

Option, aber der Inhalt derselben ist nicht relevant.

3.3.9 Implizite Parameter

Bei der Nutzung von Currying mit mehreren Parameterlisten ist es manchmal hinder-
lich, wenn alle Parameter jeweils explizit angegeben werden miissen. Durch die Defini-
tion eines Wertes als implicit innerhalb eines Bereichs (Scope) wird der entsprechen-
de Ausdruck automatisch genutzt. Allerdings diirfen nicht zwei implizite Ausdriicke
im selben Bereich definiert sein, wenn die Funktion genutzt werden soll. Implizite
Parameter konnen auch explizit belegt werden, um dieses Problem zu umgehen.

Beispiel fiir implizite Parameter

scala> def increment(n: Int)(incBy: Int) =
| n + incBy

increment: (n: Int)(ineBy: Int)Int

scala> increment(3)

<console>:14: error: missing argument list for method increment

scala> increment(3)(4)
res@: Int = 7
scala> def increment(n: Int)
| (implicit incBy: Int): Int = n + incBy
increment: (n: Int)(implicit incBy: Int)Int
scala> increment(3)(4)
resl: Int = 7
scala> implicit val i = 10
i: Int = 10
scala> increment(3)(4)
res2: Int = 7
scala> increment(3)
res3: Int = 13
scala> implicit val foo =1
foo: Int = 1
scala> increment(3)

<console>:15: error: ambiguous implicit values:

Programmierung in Scala 20

both value i of type => Int
and value foo of type => Int
match expected type Int
increment(3)
scala> increment(3)(foo)
res7: Int = 4

3.4 Hilfsmittel zur Unterstitzung

Es gibt einige niitzliche Plugins fiir SBT, die es erlauben, die Codequalitit bzw. die
Konformitdt hinsichtlich funktionaler Standards, zu tberprifen. Fiir uns hat sich
Wartremover als tiberaus hilfreich erwiesen. Wenn Akka genutzt wird, muf$ tiber der
Implementierung von receive jedoch immer die Annotation stehen, die Warnungen
flr Any unterdrickt. Dies sieht dann zum Beispiel so aus:

Annotation zum Unterdriicken von Any-Warnungen bei Aktoren

class FancyActor extends Actor {

@SuppressWarnings(
Array("org.wartremover.warts.Any")

)

override def receive: Receive = 777

Man kann mit Wartremover einen funktionalen Programmierstil forcieren, ohne diesen
unausweichlich zu erzwingen. Insbesondere in einer Ubergangs- bzw. Lernphase kann
dies praktisch sein, sollte jedoch nicht dazu verleiten, ein SuppressWarnings einer
sauberen Losung vorzuziehen.

In einigen Fallen (wie z.B. im vorher erwdhnten Aktor) kann es zu Fehlalarmen kommen,
die dann entsprechend unterdriickt werden kénnen.

Des Weiteren steht mit Scalafix ein neues Werkzeug zur Verfiigung. Es tiberschneidet
sich etwas mit Wartremover, stellt aber auch sehr gute andere Moglichkeiten zur
Verfugung. Als Beispiel sei hier nur das Unterdriicken des generischen Vergleichs via
== genannt.

https://github.com/wartremover/wartremover
https://scalacenter.github.io/scalafix/

Programmierung in Scala 21

3.5 Reduzierung von “Boilerplate” Code

Eine sehr niitzliche Eigenschaft von Scala ist die Definition von Case-Classes. Dadurch
lassen sich einfach Datencontainer implementieren, ohne den von Java gewohnten
umfangreichen Code zu schreiben (oft “Boilerplate” genannt). Im Folgenden zwei kleine
Beispiele, wovon eines in Java und das andere in Scala umgesetzt sind:

Datencontainer in Java

class Person
private String firstname = "";
private String surname = "";

private String phone = "";

public Person(String fn,
String sn,
String ph) {
this.firstname = fn;
this.surname = fn;

this.phone = ph;

public String getFirstname() {

return firstname;

public String getSurname() {

return surname;

public String getPhone() {

return phone;

Programmierung in Scala 22

Datencontainer in Scala

final case class Person(firstname: String,
surname: String,

phone: String)

Der geringere Aufwand ist deutlich ersichtlich und dartiber hinaus bieten Case-Classes
noch weitere niitzliche Funktionen wie z.B. Nichtverdnderbarkeit (Immutablility) und
Hilfsfunktionen wie beispielsweise copy. Damit kann man einfach eine modifizierte
Kopie der Daten erzeugen.

Copy mit Case-Classes

@ final case class Person(firstname: String,
surname: String,
phone: String)

defined class Person

@ val p = Person(

"Max",
"Mustermann",
"555-12345")
p: Person = Person("Max", "Mustermann", "555-12345")
@ p.copy(firstname = "Franz")
res2: Person = Person("Franz", "Mustermann", "555-12345")

Bei tief verschachtelten Datenstrukturen wird die Verwendung von copy
sehr umsténdlich. Eine mogliche Losung bieten “Optics” (Lenses). Fir
Scala empfiehlt sich die Bibliothek Monocle.

http://julien-truffaut.github.io/Monocle/

Einfuhrung und Grundlagen zu
den verwendeten Technologien

Dieses Kapitel beschreibt die grundlegenden Technologien, welche bei der Implemen-
tierung der spateren Beispielanwendung verwendet werden.

o Py MAakka |

Play Framework
Das Play Framework (im Folgenden oft auch nur einfach Play genannt) ist ein
Web-Framework, welches die Erstellung einer Oberfliche zur Interaktion zwi-
schen der Anwendung und dem Nutzer erleichtert.

Akka
Akka ist ein Toolkit, welches die Erstellung verteilter, asynchroner und paralle-
ler Anwendungen ermdglicht, die zudem hochperformante Aufgabenstellungen
mittels einfacher Skalierung bereitstellt.

Scala.js
Scala.js kombiniert die Typisierung von Scala Code mit den vielfaltigen Moglich-
keiten und vorhandenen Bibliotheken von JavaScript. Dadurch wird die Erstellung
von Frontend-Anwendungen erleichtert und in eine vorhandene Scala Umgebung
fliefSend integriert.

Programmierung in Scala 24

Je nach vorhandenen Vorkenntnissen kann das folgende Kapitel oder Teile davon
Uibersprungen werden.

4. Play Framework

play

Dieses Kapitel beschreibt die Grundlagen fiir die Arbeit mit dem Play Framework und
kann bei entsprechenden Vorkenntnissen tibersprungen werden.

Das Play Framework ist ein Web Framework fiir Java und Scala, kann in beiden
Programmiersprachen genutzt und hinsichtlich der Anforderungen angepasst werden.
Das zu Grunde liegende asynchrone Modell wurde auf Grundlage von Akka konzipiert
und bietet nicht-blockierende (asynchrone), zustandslose Anwendungen (stateless),
welche eine planbare und robuste Skalierung erméglichen.

4.1 Erstellen einer Play Anwendung

Play Anwendungen kénnen auf unterschiedlichem Wege mittels sbt erstellt werden.
Seit Version ©.13.13 von sbt ist es moglich vorgefertigte Projektschablonen tiber den
Befehl sbt new zu nutzen.

4.1.1 Play Anwendung uber Schablonen erstellen

Fir die Erstellung eines Projekts mit Play und Scala gentigt der folgende Befehl:

Play Framework 26

Erstellung einer play-scala Anwendung via sbt new

sbt new playframework/play-scala-seed.g8

4.1.2 Play Anwendung von Hand erstellen

Eine neue Play Anwendung kann direkt mittels sbt erstellt und nach den eigenen
Bediirfnissen konfiguriert werden.

Nach der Erstellung eines neuen Ordners, welcher die Grundlage fiir das Projekt bildet,
missen die folgenden Zeilen in die Datei project/plugins.sbt innerhalb eines project
Ordners eingetragen werden.

Erstellung einer Play Anwendung mit SBT: plugins.sbt

// Repository of the Typesafe plugins
resolvers +=
"Typesafe repository" at

"https://repo.typesafe.com/typesafe/maven-releases/"

// The Play sbt plugin for the creation of Play projects
// Replace the “x° for the actual version of the plugin

// example: 2.5.15° or '2.6.3°
addSbtPlugin("com.typesafe.play" % "sbt-plugin" % "2.5.x")

Die zu verwendende SBT Version kann in der project/build.properties definiert werden.

Erstellung einer Play Anwendung mit SBT: build.properties

sbt.version = 0.13.16

Abhingig von der Version des Play Framework kann die Version von SBT variieren.
Daraus ergeben sich die folgenden Kombinationen aus SBT und Play Framework.

* Play 2.5 und SBT 0.13.x
* Play 2.6 und SBT 1x

Eine grundlegende build.sbt wird rudimentér folgendermaf3en aussehen.

Play Framework 27

Erstellung einer Play Anwendung mit SBT: build.sbt

name := "play-test”

version := "0.0.1"

lazy val root = (project in file(".")).enablePlugins(PlayScala)

scalaVersion := "2.11.11"

Die Version von Scala variiert wie die SBT Version in Abhangigkeit von der gewahlten
Play Version. Daraus ergeben sich die folgenden Kombinationen.

* Play 2.5 und Scala 2.11.x
* Play 2.6 und Scala 2.12.x

Die gesamte bisherige Verzeichnisstruktur ergibt sich daraus wie folgt.

Erstellung einer Play Anwendung mit SBT: Verzeichnisstruktur

play-test
|_ build.sbt
|_ project
|_ build.properties

|_ plugins.sbt

Es werden noch diverse SBT-Plugins fiir ein Play-Projekt benotigt, welche in der Datei
project/plugins.sbt eingetragen werden.

Play Framework 28

SBT-Plugins fiir Play-Projekte

// The Play sbt plugin for the creation of Play projects
// Replace the “x° for the actual version of the plugin

// example: 2.5.9°

addSbtPlugin("com.typesafe.play" % "sbt-plugin" % "2.5.x")

// web plugins

addSbtPlugin("com.typesafe.sbt" % "sbt-coffeescript" % "1.0.0")
addSbtPlugin("com.typesafe.sbt" % "sbt-less" % "1.1.0")
addsbtPlugin("com.typesafe.sbt" % "sbt-jshint" % "1.0.4")
addSbtPlugin("com.typesafe.sbt" % "sbt-rjs" % "1.0.8")
addsbtPlugin("com.typesafe.sbt" % "sbt-digest" % "1.1.1")
addSbtPlugin("com.typesafe.sbt" % "sbt-mocha" % "1.1.0")

// If you enable sassify then you need to have libsass installed.

//addSbtPlugin("org.irundaia.sbt" % "sbt-sassify" % "1.4.6")

Dartiber hinaus kann die build.sbt erweitert werden, um weitere externe Abhéngigkei-
ten hinzuzufiigen und in das Projekt einzubinden.

Einbindungen in der build.sbt fiir Play-Projekte

name := "play-test"

version := "0.0.1"

lazy val root = (project in file(".")).enablePlugins(PlayScala)

scalaVersion := "2.11.11"

libraryDependencies ++= Seq(
jdbe,
cache,
ws,

"org.scalatestplus.play" %% "scalatestplus-play" % "1.5.1" % Test

Die Variable libraryDependencies enthdlt die eingebundenen Abhidngigkeiten. Ange-
fangen mit Zeile (10) werden diese eingebunden, so daf$ sie in der Anwendung zur
Verfugung stehen. Darunter sind der Zugriff auf Datenbanken (jdbc), die Nutzung eines
internen Cache (cache) und web services (ws).

Play Framework 29

4.2 Projektstruktur

Der Aufbau einer Play Anwendung ist standardisiert und trennt wichtige Teile der
Kernanwendung, Konfiguration und Administration in separate Projektpfade. Im fol-
genden Abschnitt wird die Standardstruktur um einige Ordner erweitert, die fir
die konzeptionelle Planung von Vorteil sind und die Administration des Projektes
erleichtern.

4.2.1 Verzeichnisse, SBT-Einstellungen und Abhangigkeiten

Die Verzeichnisstruktur einer Play Anwendung' gliedert sich grundlegend in die fol-

genden Teile (Ordner mit einem * wurden hinzugefiigt):

Struktur einer Play Anwendung

app -> Anwendungsdateien
|_ actors -> Actor Definitionen
|_ adt -> Abstrakte Datentypen
|_ assets
| _ stylesheets -> Normalerweise LESS CSS Dateien
| _ javascripts -> Normalerweise Coffeescript Dateien
|_ controllers -> Anwendungscontroller
| _ dao* -> Datenzugriffsobjekte
|_ forms* -> Formulardefinitionen
| _ models -> Anwendungsgeschaftsschicht
|_ views -> Templates
conf -> Konfigurationsdateien
|_ application.conf -> Hauptkonfigurationsdatei
|_ routes -> Routing
dist -> Diverse weitere Projektdateien
public -> Offentliche Dateien
|_ stylesheets -> CSS Dateien
|_ javascripts -> Javascript Dateien
|_ images -> Bilddateien
project -> SBT Konfigurationsdateien

|_ build.properties -»

|_ plugins.sbt

->

Grundeinstellungen des SBT Projektes
SBT Plugins

Thttps: //www.playframework.com/documentation/2.5.x /Anatomy

Play Framework 30

lib -> Manuelle Bibliotheksabhdngigkeiten
logs -> Log-Datei Ordner
|_ application.log -> Standard Log-Datei
target -> Erstellte Projektdateien
|_ resolution-cache -> Informationen Uber Abhangigkeiten
|_ scala-2.11
|_ api -> Erstellte API Dokumentation
| _ classes -> Kompilierte Class Dateien
|_ routes -> Von “routes” erstellt
|_ twirl -> Von “templates® erstellt
| _ universal -> Packaging
|_ web -> Kompilierte Web Ressourcen
test -> Ordner flUr diverse Testdateien
build.sbt -> Skript zum Erstellen der Anwendung

Die folgende Ubersicht stellt einen Uberblick tiber die Verwendung der einzelnen
Verzeichnisse und ihrer Bedeutung im Projekt dar. (Eine ausfithrliche Beschreibung
der einzelnen Verzeichnisse findet sich in der Play Dokumentation?.)

Das /app Verzeichnis

Dieses Verzeichnis enthélt alle ausfiihrbaren Java und Scala Dateien, Templates
und kompilierte Medieninhalte. Die grundlegende MVC (Model-View-Controller)
Architektur gliedert sich in die drei Grundverzeichnisse app/models, app/views
und app/controllers. Dartiber hinaus wurden einige Verzeichnisse zur Standard-
struktur hinzu gefigt, welche die folgenden Bedeutungen haben. Das app/ac-
tors Verzeichnis beherbergt Actor Definitionen, im app/adt Verzeichnis werden
abstrakte Datentypen definiert, welche nicht in das app/models Verzeichnis
gehoren, das app/dao Verzeichnis beinhaltet Datenzugriffsobjekte (Data Access
Objects), welche den Datenzugriff auf verschiedene Datenquellen regeln und das
app/forms Verzeichnis beinhaltet eigene Formulardefinitionen, welche aus den
anderen Codeteilen ausgelagert wurden.

Das /conf Verzeichnis

Dieses Verzeichnis enthélt die Konfigurationsdateien fiir die Anwendung,.

Das /public Verzeichnis

Im /public Verzeichnis sind statische Ressourcen hinterlegt, welche direkt vom

2https: //www.playframework.com/documentation/2.5.x /Anatomy

Play Framework 31

Webserver ausgeliefert werden. Dazu zahlen unter anderem CSS Dateien, Bilder
und Javascript Dateien.

Das /project Verzeichnis
In diesem Verzeichnis werden die sbt Informationen hinterlegt, welche fiir die
Erstellung der finalen Anwendung notwendig sind. Dazu gehoren u.a. verwendete
Plugins und die Version von sbt, welche fiir die Kompilierung der Anwendung
genutzt wird.

Das /lib Verzeichnis
Dieses optionale Verzeichnis beinhaltet alle manuell hinterlegten JAR Bibliotheks-
dateien, welche automatisch zum Klassenpfad (Classpath) hinzu gefiigt werden.

Das /logs Verzeichnis
Dieses Verzeichnis enthélt Log-Daten der Anwendung, welche automatisch in die
Standard-Logdatei geschrieben werden.

Das /target Verzeichnis
Das /target Verzeichnis enthilt alle Dateien, welche durch den Kompilierungs-
prozefs vom System erstellt werden. Dazu gehoren u.a. kompilierte Klassen der
Java und Scala Dateien, kompilierte CSS und Javascript Dateien oder die erstellten
Template Inhalte.

Diese Grundstruktur ist bei allen Play Projekten grundsatzlich dhnlich und kann
dartiber hinaus an den personlichen Programmierstil angepasst werden.

4.2.2 Unterprojekte

Oftmals ist es sinnvoll, ein Projekt in mehrere Unterprojekte (Multiprojekt) aufzuteilen,
um eine Trennung zwischen den einzelnen Komponenten der Anwendung zu erhalten
und die Wartbarkeit der Code-Basis zu erleichtern. Ein Grund kann u.a. die Aufteilung
der Anwendung in diverse Teilkomponenten sein, welche sich iber definierte Schnitt-
stellen miteinander unterhalten und eine getrennte Skalierung ermoglichen.

Unterprojekte teilen sich die build.sbt das Hauptprojektes, indem die einzelnen Pro-
jektdefinitionen aufgenommen werden. Dadurch wird der komplette Erstellungspro-
zef$ Gber eine zentrale Datei ermdglicht.

Hauptprojekte konnen als Play Anwendung erstellt werden oder mittels SBT Mul-
tiprojekt die Play Anwendung als Unterprojekt beinhalten. Dadurch ergeben sich

Play Framework 32
unterschiedliche Projektstrukturen und Definitionen fiir die Anwendung.

4.2.2.1 Play Anwendung als Hauptprojekt

Eine Play Anwendung kann selbst das Hauptprojekt sein und diverse Unterprojekte
enthalten, die tber die build.sbt definiert werden. Im folgenden Beispiel wird eine
Play Anwendung um zwei weitere Unterprojekte erweitert, die einen Datenbankservice
und einen Authentifikationsservice via Akka bereitstellen.

Definition einer Play Anwendung mit 2 Akka-Unterprojekten in der build.sbt

name := "main-play-project"

version := "@.9"

lazy val commonSettings = Seq(

organization := "com.my.organization",
scalaVersion := "2.11.11",
scalaOptions ++= Seq(...),
javaOptions ++= Seq(...),

lazy val mainPlayProject = project.in(file("."))
.settings(commonSettings: _*)
.aggregate(subProjectDatabase, subProjectAuthentication)

.enablePlugins(...)

lazy val subProjectDatabase = project
.in(file("subProjectDatabase"))

.settings(commonSettings: _*)

.settings(
name := "sub-project-database”,
libraryDependencies ++= List(...)
)

lazy val subProjectAuthentication = project
.in(file("subProjectAuthentication"))
.settings(commonSettings: _*)
.settings(

name := "sub-project-authentication",

Play Framework 33

libraryDependencies ++= List(...)

Das mainPlayProject (Zeile 16) stellt das Hauptprojekt der Anwendung dar und gliedert
sich in die zwei Unterprojekte subProjectDatabase (Zeile 21) und subProjectAuthentica-
tion (Zeile 31).

Die Verzeichnisstruktur wiirde sich wie folgt darstellen.

Verzeichnisstruktur einer Play Anwendung mit 2 Akka-Unterprojekten

mainPlayProject

|_ build.sbt

|_ app

|_ conf

|_ logs

| _ project

|_ public

| _ subProjectDatabase
| _ packaging.sbt
|_ project
|_ src
|_ target

| _ subProjectAuthentication
| _ packaging.sbt
|_ project
|_ srec
| _ target

| _ target

|_ test

Wie in einem normalen Projekt gibt es eine build.sbt und diverse weitere Ordner, die
fir alle Unterprojekte giiltig sind. Dartiber hinaus werden spezifische Dateien, welche
in die jeweiligen Unterprojekte gehoren, jeweils unter einem Order angelegt, der gleich
dem Namen des Unterprojektes ist.

4.2.2.2 Play Anwendung als Unterprojekt eines SBT Multiprojektes

Bei der Wahl eines SBT Multiprojektes als Hauptprojekt, werden alle Komponenten
der Anwendung als Unterprojekte definiert. Dadurch wird das Hauptprojekt von den

Play Framework 34

Verzeichnisstrukturen der Unterprojekte befreit und die Trennung zwischen den
einzelnen Komponenten erweitert.

Im folgenden Beispiel wird ein SBT Multiprojekt erstellt, welches 3 Unterprojekte
beinhaltet. Das Projekt gliedert sich in eine Play Anwendung, welche das Frontend
darstellt und zwei Akka Anwendungen, die einen Datenbankservice und einen Authen-
tifikationsservice bereitstellen.

Definition eines SBT Multiprojektes mit 3 Unterprojekten

name := "main-project"

version := "0.9"

lazy val commonSettings = Seq(
organization := "com.my.organization",
scalaVersion := "2.11.11",

scalaOptions ++= Seq(

),

javaOptions ++= Seq(

),

lazy val mainProject = project.in(file("."))
.settings(commonSettings: _*)
.aggregate(subProjectPlay,
subProjectDatabase, subProjectAuthentication)

.enablePlugins(...)

lazy val subProjectPlay = project
.in(file("subProjectPlay"))
.settings(commonSettings: _*)
.settings(
name := "sub-project-play",

libraryDependencies ++= List(

lazy val subProjectDatabase = project

Play Framework 35

.in(file("subProjectDatabase"))
.settings(commonSettings: _*)
.settings(

name := "sub-project-database”,

libraryDependencies ++= List(

lazy val subProjectAuthentication = project
.in(file("subProjectAuthentication"))
.settings(commonSettings: _*)
.settings(
name := "sub-project-authentication",

libraryDependencies ++= List(

Das mainProject bildet das Geriist und beinhaltet die Play Anwendung subProjectPlay
und die beiden Akka Anwendungen subProjectDatabase und subProjectAuthentication.

Die Verzeichnisstruktur wiirde sich wie folgt darstellen.

Verzeichnisstruktur eines SBT Multiprojektes mit 3 Unterprojekten

mainProject

[_ bin

|_ build.sbt

|_ logs

| _ project

| _ subProjectAuthentication
|_ packaging.sbt
| _ project
|_ srec
| _ target

| _ subProjectDatabase
|_ packaging.sbt
| _ project
|_ src

| _ target

Play Framework 36

| _ subProjectPlay

|_ app

|_ conf

|_ logs

| _ project

|_ public

| _ target

|_ test

Das Hauptprojekt beinhaltet gemeinsame Dateien, welche von allen Unterprojekten
genutzt werden. Spezifische Dateien, welche speziell zu den Unterprojekten gehoren,
werden in Ordnern angelegt, welche den Namen des Unterprojektes tragen.

4.3 Requests, Routing und Controller

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

4.3.1 Requests

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.3.2 Routing

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

4.3.3 Controller

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Play Framework 37

4.4 Templates (Twirl)

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

4.4.1 Wiederverwendung von Templates

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.5 Mehrsprachigkeit (Internationalisierung)

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.5.1 Messages Objekt

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

4.6 Formulare

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.6.1 Formdefinition

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Play Framework 38

4.6.2 Form-Objekte und ihre Typen

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

4.6.3 Beispiele fur Formulare

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.6.4 Verarbeitung von Formularen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.6.5 Formulardarstellung in Template View

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.6.6 Beispiel mit sich wiederholenden Elementen

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

4.7 Datenbankkonfiguration

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

4.7.1 Konfiguration von Slick fir Play

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Play Framework 39

4.8 Datenbankzugriff

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

4.9 Asynchrone Programmierung mit Play

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

4.9.1 Websockets

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.9.1.1 Websockets mit Akka Stream und Aktoren

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.10 Webservices

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

4.11 Migration von Play 2.5 auf 2.6

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Play Framework 40

4.11.1 Was hat sich gedndert

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.11.2 SBT 0.13.15 erforderlich

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

4.11.3 Guice und OpenlId Unterstiutzung ausgelagert

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

4.11.4 Bereitstellung neuer Controller Klassen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.11.5 Assets

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

4.11.6 Play WS

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

4.11.7 Anpassungen bei i18n

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Play Framework 41

4.11.7.1 Entfernung von Implicit Default Lang

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

4.11.7.2 Refactoring der Message API zu Traits

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

4.11.7.3 118nSupport benodtigt impliziten Request

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

4.11.7.4 Einfachere Einbindung von 118nSupport

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.11.8 Cache

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

4.11.9 Veranderungen an der Scala Configuration API

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

4.11.10 Entfernung diverser APIs und Bibliotheken

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Play Framework 42

4.11.11play.api.libs.concurrent.Execution ist nun veraltet

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.11.12 Neue Standardfilter

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

4.12 Konfiguration von Ehcache

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

4.13 Ausfuhren mit IntelliJ IDEA und Debuggen

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

5. Akka

A& akka

Akka ist ein Toolkit fiir die Erstellung von asynchronen, parallelen und verteilten
Anwendungen, die von kleinen Anwendungsfillen bis hin zu hochperformanten Auf-
gabenstellungen skaliert werden konnen.

Das Aktormodell ermoglicht die Abstraktion komplexer Aufgabenstellungen hin zu
fehlertoleranten, belastbaren Komponenten, die untereinander kommunizieren und
ein transparentes Konstrukt darstellen.

Zusammengefasst ist Akka:

Parallelisierung und Verteilung von Anwendungen durch Aktoren

Asynchroner, nicht-blockierender Nachrichtenaustausch zwischen den Aktoren
Fehlertoleranz durch Supervision und dem let it crash Modell

Verteilte Anwendungen durch reinen Nachrichtenaustausch

Persistenz durch Recovery Strategien

* JVM

5.1 Einrichten einer Akka Anwendung

Die Einrichtung einer Akka Anwendung kann via Maven, SBT, Gradle, etc. erfolgen.
Anleitungen fiir diverse Wege gibt es in dem Getting Started Abschnitt der offiziellen
Akka Dokumentation.

Das folgende Beispiel zeigt die Installation einer Akka Anwendung via SBT. Zuerst wird
ein Projektordner angelegt und eine grundsatzliche build.sbt Datei erstellt.

http://doc.akka.io/docs/akka/2.4/intro/getting-started.html

Akka 44

SBT-Konfiguration fiir ein Akka-Projekt

name := "AkkaProject"

version := "0@.1"

scalaVersion := "2.11.11"

libraryDependencies += "com.typesafe.akka" %% "akka-actor" 7% "2.4.12"

5.2 Akka Grundlagen

Nebenlaufigkeit und Parallelismus

Nebenlaufigkeit (concurrency) und Parallelismus haben einige feine Unterschiede,
welche sich in einem Akka System widerspiegeln. Nebenldufigkeit bedeutet, dafd zwei
Prozesse eigenstindig voranschreiten kdnnen, auch wenn sie nicht parallel ausgefiihrt
werden. Parallelismus hingegen bedeutet, daf die Prozesse wirklich parallel ausgefiihrt
werden.

Synchron und Asynchron

Ein synchroner Methodenaufruf bedeutet, dafs der aufrufende Prozess erst weiterma-
chen kann, wenn die aufgerufene Methode ein Ergebnis geliefert hat. Wohingegen ein
asynchroner Methodenaufruf den aufrufenden Prozess nicht blockiert, so dafs dieser
weiter in seiner Abarbeitung voranschreiten kann.

Blockierend und nicht-blockierend

Blockierend bedeutet, daf$ eine Ressource exklusiv von einem Thread genutzt und
dadurch den Zugriff anderer Threads auf diese Ressource verhindert. Im Kontrast dazu
verhindern nicht-blockierende Prozesse den exklusiven Zugriff nur eines Threads auf
eine Ressource und werden generell blockierenden Strukturen vorgezogen.

5.2.1 Aktorsystem und Aktoren

Ein Aktorsystem verwaltet die in ihm laufenden Aktoren und gibt der Anwendung eine
hierarchische Struktur. Dartiber hinaus werden grundlegende Konfigurationen wie

Akka 45

das Logging, die Fehlerbehandlung oder das Verhalten des Systems im Vergleich zu
anderen Aktorsystemen, definiert.

Aktoren sind Teile eines Aktorsystems und gliedern sich in dessen Hierarchie. In dieser
Hierarchie gibt es Aufsichtsaktoren, welche die Erstellung anderer Aktoren und deren
Fehlerbehandlung tiberwachen und steuern. Weitere Aktoren ibernehmen die ihnen
definierten Funktionalititen und kommunizieren untereinander mittels Nachrichten.

Aktorsystem

Top-Level

Nutzer-Level
Hierarchie

Aktorsystem und Aktoren

Dadurch bilden Aktoren die kleinste Einheit in einem Aktorensystem und sollten

Akka 46

im Gesamtkonzept moglichst einfach gehalten und mit einer klar definierten Auf-
gabe versehen sein. Dieses herunterbrechen der Komplexitit in einfache, in sich
geschlossene Einheiten, ermdglicht eine klare Trennung von sich tiberschneidenden
Verantwortlichkeiten und Abhéngigkeiten.

Ein Aktor kann tber seine Aktorreferenz aufgelost und angesprochen werden. Da-
hinter verbirgt sich ein Container aus Zustand, Verhalten, einer Nachrichtenbox, Kind-
aktoren, die von diesem Aktor erstellt wurden und eine Strategie flir den eigenen
Lebenszyklus und die Fehlerbehandlung der von ihm erstellten Kindaktoren.

Aktorreferenz

Eine Aktorreferenz ist ein Objekt, welches den Aktor nach aufden hin abschottet und
frei tibergeben werden kann. Dadurch ist das Ansprechen der Aktoren von diversen
Orten aus moglich und ermdglicht eine lose Kopplung im gesamten Aktorensystem.
Diese dezentrale Haltung der Aktoreinheiten ermoglicht das Durchstarten eines Aktors
ohne Erneuerung seiner Aktorenreferenz, das Ansprechen eines Aktors auf entfernten
Systemen (Remote) oder die Kommunikation mit Aktoren aus anderen Applikationen.

Eine Aktorenreferenz kann auch als eine Art Abschottung angesehen werden, durch
welche alle Aktoren ihre internen Zustdnde nach auf$en hin verbergen und nur preis-
geben, was sie preisgeben wollen.

Zustand

Jeder Aktor verfiigt iiber seinen eigenen leichtgewichteten Thread, welcher die Daten
und damit den Zustand des Aktors gegentiiber anderen Aktoren verbirgt. Solch ein Zu-
stand kann direkt tiber eine Zustandsmaschine (FMS - Finite State Machine) abgebildet
werden oder aus internen Variablen, Nachrichten oder Anfragen bestehen.

Verhalten

Das Verhalten eines Aktors spiegelt sich in den Aktionen wieder, welche als Reaktion auf
erhaltene Nachrichten ausgefiihrt werden. Dabei kann sich das Verhalten im Verlaufe
der Zeit dndern und je nach Zustand anpassen.

Nachrichtenbox

Aktoren erhalten Nachrichten von anderen Aktoren oder aus anderen Systemen. Diese
Nachrichten werden in der Nachrichtenbox des empfangenden Aktors abgelegt und in
der Reihenfolge ihres Eintreffens abgearbeitet.

Werden Nachrichten von einem Aktor an einen anderen versendet, bleibt die Reihen-

Akka 47

folge, in der die Nachrichten versendet worden sind, beim empfangenden Aktor gleich.
Versenden hingegen verschiedene Aktoren Nachrichten an einen Aktor, kann sich die
Reihenfolge der Nachrichten im empfangenden Aktor unterscheiden, da diese diversen
Aktoren innerhalb unterschiedlicher Threads agieren.

Kindaktoren

Jeder Aktor kann mehrere Kindaktoren erstellen und tiber diese die Aufsicht haben.
Er wird dann zum Aufsichtsaktor tiber seine Kindaktoren. Wenn dieser Aufsichtsaktor
beendet wird, beenden sich auch seine Kindaktoren.

Stategie fiir den Lebenszyklus und die Fehlerbehandlung

Wahrend des Lebenszyklus von Kindaktoren eines Aktors konnen sich Fehler ergeben,
welche von dem Aktor je nach vorgesehener Strategie behandelt werden.

Je nach Strategie kann dies zum Neustart der Kindaktoren, dem Weiterfiihren ihres
Prozesses, dem Anhalten der Kindaktoren oder der Eskalation des Fehlers fiihren, so
dafs das gesamte System beendet wird.

Dartiber hinaus ist es auch moglich, eigene Strategien und Ablaufpfade zu definieren,
welche unter bestimmten eintretenden Situationen durchgefiihrt werden.

Das Kapitel “Supervision and Monitoring” in der Akka Dokumentation gibt einen
ausfiihrlichen Uberblick tiber die vorhandenen Strategien und deren Bedeutung.

Die Strategie, welche fiir Kindaktoren genutzt werden soll, kann nach der Erstellung
des Kindaktors nicht mehr gedndert werden. Sollen in diesem Zusammenhang ver-
schiedene Strategien genutzt werden, um diverse Fehler bei verschiedenen Aktoren
zu behandeln, mufd man die Aktorhierarchie dahingehend anpassen.

Aktoren, welche die gleiche Fehlerbehandlungsstrategie erhalten, sollten unter Auf-
sichtsaktoren gruppiert werden, welche diese definieren und diese Aktoren erzeugen.

5.2.2 Supervision

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

http://doc.akka.io/docs/akka/2.4/general/supervision.html
http://leanpub.com/comeoutandplay

Akka 48

5.2.3 Aktorreferenzen

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

5.2.4 Nachrichten und deren Auslieferung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

5.2.5 Konfiguration

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

5.3 Aktoren

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

5.3.1 DeathWatch

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

5.3.2 Nachrichten

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

5.3.3 Aktoren beenden

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Akka 49

5.3.4 FSM

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

5.3.5 Persistenz

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

5.3.5.1 Aufbau

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

5.3.6 Tests

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

5.4 Aktorenhilfsmittel

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

5.4.1 Event-Bus

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

5.4.2 Logging

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Akka 50

5.4.3 Scheduler

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

5.4.4 Zeitdauer (Duration)

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

5.4.5 Unterbrecher (Circuit Breaker)

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

5.5 Streams

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

6. Scala.js

Scala.js ist ein Compiler, der Scala-Quelltext in entsprechendes Javascript tibersetzt.
Dies ermoglicht es Scala zu schreiben und das Programm in einem Webbrowser oder
anderen Javascriptumgebungen (z.B. Node.js) auszufiihren.

Javascript wird von den gangigen Webbrowsern unterstiitzt und ist letztlich die einzige
Wahl, wenn man interaktive Webanwendungen schreiben mochte. Obwohl es zahlrei-
che Versuche gab, andere Technologien tiber Browserplugins hierfiir zu nutzen (z.B.
Flash, Java Applets, Silverlight), konnten sich diese nicht durchsetzen. Dartiber hinaus
ist Javascript die einzige Technologie, die auf mobilen Browsern verfiigbar ist.

Als Programmiersprache ist Javascript geeignet fiir kleinere bis mittlere Projekte. In
grofseren leidet das Projekt unter diversen Eigenheiten und Schwichen der Sprache.
Andererseits ist Javascript auch eine Plattform mit sehr interessanten Eigenschaften:

1. Die Anwendung mufs nicht mehr heruntergeladen und installiert werden.
2. Sandbox, d.h. die Anwendung lauft per se abgesichert.
3. Verweise zu anderen Anwendungen sind dank Hyperlinks trivial.

Trotz aller Probleme der Sprache und zugehoriger Werkzeuge (HTML, CSS) bietet es
sich an, die Starken der Webplattform zu nutzen. Hierfiir kommt Scala.js gelegen, das
es ermoglicht in einer statisch typisierten funktionalen Programmiersprache Weban-
wendungen zu schreiben.

Scala,js 52

Dies ist sicherlich nicht notwendig bei kleinen Anwendungen, aber je grofSer ein
Projekt wird, desto mehr sind Fehlerursachen nicht in externen Bibliotheken, sondern
innerhalb des eigenen Codes zu suchen und zu finden. Wer je mit einer gréfseren Code-
Basis in Javascript konfrontiert war, wird wissen wie aufwendig und schwierig dies ist.
Die Nutzung von typisierten Sprachen ermoglicht es, einen Teil dieser Arbeit bereits
beim Schreiben des Codes vom Compiler erledigen zu lassen.

Das dies in der Tat ein gewichtiger Punkt ist, kann man an den Bemihungen aller nam-
haften Internetkonzerne ersehen, die seit einiger Zeit versuchen, typisierte Varianten
von Javascript zu schaffen (z.B. Dart, Flow, Typescript).

Dartiber hinaus bietet Scalajs eine gute Moglichkeit fiir geteilten Code, d.h. Client
und Server koénnen gemeinsam Code verwenden, der nur einmal geschrieben und
dann jeweils in JVM-Bytecode bzw. Javascript tbersetzt wird. Zahlreiche etablierte
Bibliotheken fiir Scala werden mittlerweile auch fiir Scala.js angeboten.

Es ergeben sich also die folgenden Vorteile durch geteilten Code:

1. Man muf$ nicht linger zwei Bibliotheken finden, welche die gleiche Funktionalitat
bieten.

2. Man muf$ nicht langer die gleiche Sache auf zwei verschiedene Arten tun.

3. Man mufs nicht langer den gleichen Algorithmus in zwei verschiedenen Program-
miersprachen implementieren und danach schwer zu findende Fehler suchen, die
eben daraus resultieren.

4. Man muf$ nicht langer komplexe Konstrukte bauen, um Logikdoppelungen zwi-
schen Client und Server zu vermeiden.

Im folgenden erklaren wir kurz das Aufsetzen eines einfachen Projekts mit Scala.js.

6.1 Erstellen einer Scala.js Anwendung

Hierfiir nutzt man Plugins fiir SBT, welche unter project/plugins.sbt eingebunden
werden:

Scala.js 53

Scala js Plugins fiir SBT

addSbtPlugin("org.scala-js" % "sbt-scalajs" % "0.6.26")
addSbtPlugin("org.portable-scala" % "sbt-scalajs-crossproject" % "0.6.0")

AnschliefSend muf3 das Plugin noch aktiviert werden, dies geschieht in der build.sbt
z.B. durch folgende Einstellung:

Scala.js SBT Plugin aktivieren

enablePlugins(ScalaJSPlugin)

Das Compilieren erfolgt ganz normal via compile an der SBT-Konsole, allerdings
konnen die daraus generierten Dateien (.sjsir und .class) so nicht in einem JVM-
Projekt benutzt werden!

Damit eine Javascriptdatei generiert wird muf3 der Befehl fastOptJs genutzt werden.
Alternativ dazu kann man auch fullOptJS nutzen, was jedoch wahrend der Entwick-
lung nicht zu empfehlen ist, da es deutlich langer dauert.

Insofern die entwickelte Anwendung keine Bibliothek ist, sondern ausgefiihrt werden
soll, mufs noch die folgende Einstellung getatigt werden:

scaladSUseMainModulelnitializer := true

Zusammen mit einem Top-Level-Objekt, das eine Methode main hat, kann die Anwen-
dung via run von der SBT-Konsole gestartet werden.

Haupteinsprungspunkt fiir eine Javascriptanwendung

object Main {
def main(args: Array[String]): Unit = {
println("Hallo Welt!")

6.2 Abhangigkeiten

Verwendete Bibliotheken werden wie gewohnt in der SBT-Konfiguration eingetragen
jedoch mit drei(!) statt zwei Prozentzeichen.

Scala,js 54

Abhingigkeiten fiir Scala.js-Projekte

libraryDependencies ++= Seq(
"org.scala-js" %%% "scalajs-dom" % "©.9.6",
"org.typelevel" %%% "cats-core" % "1.5.0",
"org.scalatest" %%% "scalatest" % "3.0.5" % Test

Mochte man Javascriptbibliotheken einbinden, konnen diese via Webjars integriert
werden:

Einbinden von Webjars-Bibliotheken

libraryDependencies += "org.webjars" % "jquery" % "2.1.4"

Zusatzlich ist es erforderlich die Bibliotheken in der Direktive jsDependencies zu
definieren, damit sie korrekt verflighar gemacht werden:

jsDependencies += "org.webjars" % "jquery" % "2.1.4" / "2.1.4/jquery.js"

Das Scoping funktioniert fiir jsDependencies genauso wie fiir die
“klassischen” Abhangigkeiten, d.h. jsDependencies += "org.webjars"

% "jquery" % "2.1.4" / "jquery.js" % "test" grenzt in diesem Fall

JQuery auf den Testmodus ein.

Lokale Javascriptbibliotheken kénnen tiber den Helfer ProvidedJs spezifiziert werden.
Die folgende Konfiguration sucht in den Projektressourcen nach der Datei foo. js:

Lokale Javascriptbibliotheken einbinden

jsDependencies += ProvidedJsS / "foo. js"

6.3 Module exportieren

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

https://www.webjars.org/
http://leanpub.com/comeoutandplay

Scala.js 55

6.4 Cross-Compile

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

6.5 Testen

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Anwendungsszenario

Das Ziel der zu entwickelnden Anwendung ist es, eine Spieleplattform zu entwickeln.
Auf dieser soll es die Moglichkeit geben, dafs sich Nutzer registrieren, ihre Freundes-
listen verwalten und Online-Spiele gegen andere Nutzer spielen.

Die verfligbaren Online-Spiele sind zudem auch ein Teil der Anwendung, werden
separat entwickelt und auf der Plattform eingebunden.

Daraus ergibt sich eine Einteilung in folgende Unterprojekte:

* Frontend fiir die Nutzerinteraktion (frontend)
* Online-Spiel, welches tiber das Frontend ausgewahlt werden kann (seabattle)
und sich unterteilt in:
- serverseitigen Code (server)
- clientseitigen Code (client)

- gemeinsamen Code (shared)
Die Implementierung der Anwendung erfolgt in iterativen Schritten:

¢ Erstellung der grundlegenden Play Anwendung

* Einrichtung des Projektverzeichnisses

» Konfiguration des Projektes in Unterprojekten

* Erstellung der grundlegenden Frontend Methoden fiir Autorisierung und
Authentifikation

* Implementierung der Nutzerverwaltung

* Erstellung eines Spiels

* Integration des Spiels in die Anwendung

Scala.js 57

* Ausfiihrung des Spiels
* Deployment der Anwendung auf einen Server

Im Anschluf$ werden einige Erkenntnisse aufgezeigt, welche sich aus der Entwicklung
der Anwendung ergeben und zu einem interessanten Wissensschatz fiir kommende
Projekte entwickelt haben.

* Nutzung der Bibliothek Silhouette fiir die Autorisierung und Authentifikation
* Nutzung der Bibliothek Circe fiir den Umgang mit JSON

Dartiberhinaus wird die Migration der Anwendung von einer vorherigen auf eine aktu-
ellere Version des Play Framework durchgefiihrt. Diese hdufig vorkommende Aufgabe
im Laufe eines Softwarelebenszyklusses beinhaltet diverse Schritte wie u.a.:

» Aktualisierung der genutzten Bibliotheken (Abhangigkeiten)

* Anpassungen des bestehenden Codes, wenn abhidngige Bibliotheken interne
Methoden und Konzepte verdndern

¢ Anpassungen an Anderungen in den Konzepten des Play Frameworks

* generelles Refactoring

7. Das Frontend

Application flow

Frontend

Spieler finden
Registrierung > »| Spielen
Spiel wahlen

W = e e

User User

Anwendungsfluss im Frontend

Das Frontend dient der Interaktion zwischen den Nutzern untereinander und des
Nutzers mit der Anwendung selbst. Folgende Funktionalitdten sollen tiber das Frontend
dem Nutzer zur Verfiigung stehen:

* Registrierung auf der Webseite via E-Mail und Pafwort oder via Facebook
* Andern des Pa3worts

* Loschen des eigenen Accounts

* Abmelden von der Webseite

* Erstellen und Verwalten von Freundeslisten

Das Frontend 59

Suchen nach potentiellen Freunden
* Anzeigen der eigenen Freunde

Freundschaftsanfrage senden

Freundschaftsanfragen annehmen oder abbrechen

Nutzer blockieren

Ubersicht der verfiigbaren Online-Spiele

Auswahl und Starten eines Online-Spiels
* Anzeigen der gespielten Spiele

Bei der Implementierung des Frontend wurden die folgenden Aspekte besonders
berticksichtigt, da sie einen entscheidenden Einfluss auf die Funktionalititen der
Anwendung haben.

* Die Wahl einer geeigneten Bibliothek ermdglicht die Registrierung und Anmel-
dung der Nutzer tber diverse Authentifikationsmethoden.

* Das Speichern der Daten in die unterliegende Datenbank sollte durch einen
unterstiitzenden Datenbank-Layer erfolgen, welcher den Zugriff und die Arbeit
mit den Daten erleichtert.

* Das dynamische Laden von Inhalten in Bezug auf die durch den Nutzer durchge-
fihrten Aktionen fiihrt zu einer Minimierung von zu ladenden Komponenten und
einer Beschleunigung der Seite.

Eine beispielhafte Nutzung des Frontend durch einen Nutzer soll nach der Implemen-
tierung folgendermaf3en moglich sein:

* Der Nutzer kann die Startseite aufrufen und bekommt die Moglichkeit, einen
Account zu erstellen.

* Ein Registrierungsformular ermoglicht dem Nutzer alle notwendigen Informatio-
nen einzugeben und den Account zu erstellen.

* Der Account muf$ durch das Aufrufen eines Bestitigungslinks freigeschaltet
werden.

* Der Nutzer kann sich mit seinen Anmeldedaten einloggen.

* Im Freundebereich koénnen andere Nutzer zu einer personlichen Freundesliste
hinzugefiigt werden.

Das Frontend 60

* Freundesanfragen konnen abgelehnt oder bestatigt werden.

* Der Nutzer kann sich die auf der Plattform verfiigbaren Spiele anzeigen lassen.

* Der Nutzer kann ein Spiel auswahlen und einen anderen Spieler einladen gegen
ihn zu spielen.

* Das Spiel wird eingerichtet und die Spieler konnen gegeneinander spielen.

* Gespielte Spiele werden aufgelistet.

* Der Nutzer kann sich von der Plattform abmelden.

* Der Nutzer kann seinen Account von der Plattform l6schen.

8. Das Online-Spiel

Im Rahmen dieses Buches wird das allseits bekannte Spiel “Schiffe versenken” im-
plementiert und in das Frontend integriert. Dieses Spiel bietet diverse interessante
Herausforderungen, welche wihrend der Implementierung gelost werden miissen:

Mehrspielerbetrieb

Rundenbasierte Dynamik

Benachrichtigung der Spieler {iber die Aktionen der Gegenspieler

Erstellung eines eigenstdndigen Spiels, welches in die Hauptanwendung inte-
griert wird
» Nachrichtenaustausch zwischen diversen Komponenten

Das Spiel muf$ verschiedene Komponenten zur Verfiigung stellen, die entweder auf
dem Server (JVM), auf dem Client im Webbrowser (Javascript) oder in beiden Um-
gebungen laufen. Letzteres sind hauptsichlich Datentypen, damit man diese nicht
mehrfach implementieren muf3. Dadurch ergibt sich eine verringerte Fehleranfalligkeit
hinsichtlich Typisierung und eine Reduzierung des zu schreibenden Codes.

Auf Seiten des Servers miussen Funktionen fiir die Spiellogik und die Speicherung der
relevanten Informationen (Spielstand) implementiert werden.

Damit der Anwender auch spielen kann, miissen im Client alle Funktionalitdten rund
um die Darstellung, sowie Nutzerinteraktion und Nachrichtenfluf$ mit dem Server, im-
plementiert werden. Die Spieler nutzen also einen Webbrowser, der vom Frontend eine
HTML-Seite bzw. Seiten serviert bekommt, die den notwendigen Code enthalten. Die
Hintergrundkommunikation l4uft iber Websockets, um regelméafsiges Neuladen der
Seite zu vermeiden. Hierbei soll die wesentliche Spiellogik auf dem Server abgearbeitet
werden, damit auf Seiten des Clients eigentlich nur noch Daten angezeigt und Aktionen
der Spieler entgegengenommen werden.

Die visuelle Darstellung der Komponenten wird mittels Scala. js im Browser erstellt.

Das Online-Spiel 62

O X
| Client |<—>| Websocket }<—>| Server |<—>'|; fl
X '
/\ Datenbank

/

Nutzer B Y
Websocket
A

\

Y

Client

Nutzer A
Schema des Spielflusses

Zum Schlufs wird das Zusammenbringen des Spiels in das bereits erstellte Frontend
beschrieben, so daf$ der Nutzer spiter auch eigene Spiele entwickeln und in die
Anwendung integrieren kann. Zu diesen Schritten gehoren u.a.:

* Anpassungen und Aktualisierung der Verzeichnisstruktur

* Erstellung geeigneter Websockets fiir die Kommunikation

* Implementierung eines generischen Controllers fiir das Einbinden diverser Spiele
* Anpassungen von Template-Dateien

Nachdem das Spiel mit dem Frontend verbunden worden ist, werden verschiedene
Moglichkeiten des Deployment in eine ausfithrbare Umgebung aufgezeigt.

Das Frontend

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay

9. Erstellung und Konfiguration einer
Basis-Play-Anwendung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay

10. Einbindung von Silhouette als
Authentifikations-Framework

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay

11. Anmeldung der Nutzer am System

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

11.1 Konfiguration des Backend Store (PostgreSQL)

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

11.2 Definition des Nutzermodells

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

11.3 Erstellen einer Datenbank-Evolution

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

11.4 Tabellendefinition innerhalb der Anwendung

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Anmeldung der Nutzer am System 67

11.5 DAOs fur den Zugriff auf die Nutzerdaten

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

11.6 Silhouette Konfiguration auf eigene DAOs
umstellen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

11.7 Konfiguration der Social-Provider

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

11.8 Funktionalitat fir das Loschen eines Accounts

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

12. Suchen und Verwalten von
Freunden

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

12.1 Erweiterung des Nutzermodells um einen
Nutzernamen

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

12.2 Registrierung der Nutzer mit Nutzernamen und
E-Mail

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

12.3 Evolution und Tabellendefinitionen fur
Freundeslisten

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Suchen und Verwalten von Freunden 69

12.4 Funktionalitaten fiir Freundeslisten in einem DAO

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

12.5 Erstellen von WebSockets zur dynamischen
Interaktion

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

12.5.1 Erstellen des WebSocket auf Basis eines Actors

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

12.5.2 Controller als Endpunkt fiir das WebSocket

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

12.5.3 Verbinden der Action innerhalb des Routing

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

12.5.4 Erstellen von Funktionen innerhalb des Javascript, welche
mit dem WebSocket zusammen arbeiten

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Suchen und Verwalten von Freunden 70

12.6 Erweiterung des CSR fir WebSockets

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

12.7 Visualisierung der Freundeslisten

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

12.8 Erweiterung der Views zur Ubergabe von Skripten
und CSS

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

13. Migration auf Play 2.6 und
Silhouette 5

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

13.1 Upgrade der benotigten Abhangigkeiten

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

13.2 Anpassungen fur das Upgrade von Silhouette

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

13.3 Anderungen im CustomPostgresDriver

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

13.4 Neue Controller-Klassen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Migration auf Play 2.6 und Silhouette 5 72

13.5 Von WebjarAssets zu AssetsFinder

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

13.6 Anpassungen fiir die Anderungen in i18n

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

13.7 Impliziter ExecutionContext

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

13.8 Refactoring (Compiler-Warnungen)

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Das Spiel

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay

14. Regeln und Spielverlauf

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

15. Umsetzung

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

15.1 Grundlegende Datentypen

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

15.2 Operationen auf einem Spielstand

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

15.3 Operationen auf einem Spielfeld

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

15.4 Nutzung von Eq (Cats)

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Umsetzung 76

15.5 Datenbank (Repository)

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

15.6 Zeichnen von Spielfeldern im Client

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

15.7 Hilfsfunktionen

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

15.7.1 Websocket-URL berechnen

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

15.7.2 FeldgroBe zum Zeichnen berechnen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

15.7.3 Berechnen der Klickposition in einem Spielfeld

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Umsetzung 77

15.7.4 Logging

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

15.8 Spielvorbereitung (Preparation)

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

15.8.1 Globale Variablen

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

15.8.2 Struktur der HTML-Datei

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

15.8.3 Funktionen

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

15.8.4 Websocket

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

15.8.5 Aufruf und Initialisierung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Umsetzung 78

15.9 Spielablauf (Game)

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

15.9.1 Globale Variablen

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

15.9.2 Struktur der HTML-Datei

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

15.9.3 Funktionen

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

15.9.4 Websocket

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

15.9.5 Aufruf und Initialisierung

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

16. Integration ins Frontend

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

16.1 Verzeichnisstruktur

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

16.1.1 Aktoren, Controller, DAO und Modelle

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

16.1.2 View-Templates

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

16.2 Datenbankschicht (Repository) als DAO

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

16.3 Websocket

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Integration ins Frontend 80

16.3.1 Eine Websocket-Algebra

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

16.3.2 Komposition zum fertigen Websocket

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

16.4 Controller und Routing

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

16.4.1 Ubersichtsseite

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

16.4.2 Spielerstellung

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

16.4.3 L6schen eines Spielstandes

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

16.4.4 Dem Spiel beitreten

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Integration ins Frontend 81

16.4.5 Das Spiel

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

16.4.6 Spielvorbereitung

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

16.4.7 Websocket

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

16.5 Views

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Deployment (Auslieferung)

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay

17. Konfiguration fur den
Produktivbetrieb

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay

18. Erstellen eines Artefakts mit allen
Abhangigkeiten

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay

19. Erstellen von Paketen fur Debian

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

19.1 Systemstart-Skripte

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

20. Auslieferung zu einem Cloud
Service

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

20.1 Deployment via Remote Repository

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

20.2 Deployment mittels des Plugins sbt-heroku

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

20.3 Datenbankzugriff bei Heroku

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Erkenntnisse

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay

21. Silhouette

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

21.1 Abhangigkeiten von anderen Bibliotheken

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

21.2 Aufwand durch inkompatible Anderungen

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

22. Circe

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

22.1 Erstellung von Codecs

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

22.1.1 Vollautomatische Ableitung

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

22.1.2 Halbautomatische Ableitung

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

22.1.3 Manuelle Implementierung

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

22.2 Geschwindigkeit des Compilers

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

Circe 90

22.3 Fehlerhaufigkeit

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

23. WTFM - Write that fucking manual!

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

23.1 Vorteile fur bereits involvierte Entwickler

This content is not available in the sample book. The book can be purchased on Leanpub
at http: / /leanpub.com /comeoutandplay.

23.2 Vorteile fur neue Entwickler

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com /comeoutandplay.

http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay
http://leanpub.com/comeoutandplay

24. Danke

This content is not available in the sample book. The book can be purchased on Leanpub
at http:/ /leanpub.com/comeoutandplay.

http://leanpub.com/comeoutandplay

	Inhaltsverzeichnis
	Vorwort
	Einleitung
	Aufbau des Buches
	Konventionen für den Quelltext

	Schutzmarken und Copyrights
	Logos und Bilder
	Quelltext zum Buch

	Einrichtung der Werkzeuge und Einführung in Scala
	Werkzeuge
	Java
	SBT
	Installation
	Nützliches für SBT

	Entwicklungsumgebung

	Programmierung in Scala
	Interaktive Programmierung via REPL
	Hinweise zu Datenstrukturen (var, val)
	Schnelleinstieg in die funktionale Programmierung
	Auswertungsstrategien (evaluation strategies)
	Scopes und Blöcke
	Semikolons und Infix-Operatoren
	Tail-Rekursion
	Funktionen höherer Ordnung (Higher Order Functions)
	Currying
	Polymorphismus
	Pattern-Matching
	Implizite Parameter

	Hilfsmittel zur Unterstützung
	Reduzierung von ``Boilerplate'' Code

	Einführung und Grundlagen zu den verwendeten Technologien
	Play Framework
	Erstellen einer Play Anwendung
	Play Anwendung über Schablonen erstellen
	Play Anwendung von Hand erstellen

	Projektstruktur
	Verzeichnisse, SBT-Einstellungen und Abhängigkeiten
	Unterprojekte

	Requests, Routing und Controller
	Requests
	Routing
	Controller

	Templates (Twirl)
	Wiederverwendung von Templates

	Mehrsprachigkeit (Internationalisierung)
	Messages Objekt

	Formulare
	Formdefinition
	Form-Objekte und ihre Typen
	Beispiele für Formulare
	Verarbeitung von Formularen
	Formulardarstellung in Template View
	Beispiel mit sich wiederholenden Elementen

	Datenbankkonfiguration
	Konfiguration von Slick für Play

	Datenbankzugriff
	Asynchrone Programmierung mit Play
	Websockets

	Webservices
	Migration von Play 2.5 auf 2.6
	Was hat sich geändert
	SBT 0.13.15 erforderlich
	Guice und OpenId Unterstützung ausgelagert
	Bereitstellung neuer Controller Klassen
	Assets
	Play WS
	Anpassungen bei i18n
	Cache
	Veränderungen an der Scala Configuration API
	Entfernung diverser APIs und Bibliotheken
	play.api.libs.concurrent.Execution ist nun veraltet
	Neue Standardfilter

	Konfiguration von Ehcache
	Ausführen mit IntelliJ IDEA und Debuggen

	Akka
	Einrichten einer Akka Anwendung
	Akka Grundlagen
	Aktorsystem und Aktoren
	Supervision
	Aktorreferenzen
	Nachrichten und deren Auslieferung
	Konfiguration

	Aktoren
	DeathWatch
	Nachrichten
	Aktoren beenden
	FSM
	Persistenz
	Tests

	Aktorenhilfsmittel
	Event-Bus
	Logging
	Scheduler
	Zeitdauer (Duration)
	Unterbrecher (Circuit Breaker)

	Streams

	Scala.js
	Erstellen einer Scala.js Anwendung
	Abhängigkeiten
	Module exportieren
	Cross-Compile
	Testen

	Anwendungsszenario
	Das Frontend
	Das Online-Spiel

	Das Frontend
	Erstellung und Konfiguration einer Basis-Play-Anwendung
	Einbindung von Silhouette als Authentifikations-Framework
	Anmeldung der Nutzer am System
	Konfiguration des Backend Store (PostgreSQL)
	Definition des Nutzermodells
	Erstellen einer Datenbank-Evolution
	Tabellendefinition innerhalb der Anwendung
	DAOs für den Zugriff auf die Nutzerdaten
	Silhouette Konfiguration auf eigene DAOs umstellen
	Konfiguration der Social-Provider
	Funktionalität für das Löschen eines Accounts

	Suchen und Verwalten von Freunden
	Erweiterung des Nutzermodells um einen Nutzernamen
	Registrierung der Nutzer mit Nutzernamen und E-Mail
	Evolution und Tabellendefinitionen für Freundeslisten
	Funktionalitäten für Freundeslisten in einem DAO
	Erstellen von WebSockets zur dynamischen Interaktion
	Erstellen des WebSocket auf Basis eines Actors
	Controller als Endpunkt für das WebSocket
	Verbinden der Action innerhalb des Routing
	Erstellen von Funktionen innerhalb des Javascript, welche mit dem WebSocket zusammen arbeiten

	Erweiterung des CSR für WebSockets
	Visualisierung der Freundeslisten
	Erweiterung der Views zur Übergabe von Skripten und CSS

	Migration auf Play 2.6 und Silhouette 5
	Upgrade der benötigten Abhängigkeiten
	Anpassungen für das Upgrade von Silhouette
	Änderungen im CustomPostgresDriver
	Neue Controller-Klassen
	Von WebJarAssets zu AssetsFinder
	Anpassungen für die Änderungen in i18n
	Impliziter ExecutionContext
	Refactoring (Compiler-Warnungen)

	Das Spiel
	Regeln und Spielverlauf
	Umsetzung
	Grundlegende Datentypen
	Operationen auf einem Spielstand
	Operationen auf einem Spielfeld
	Nutzung von Eq (Cats)
	Datenbank (Repository)
	Zeichnen von Spielfeldern im Client
	Hilfsfunktionen
	Websocket-URL berechnen
	Feldgröße zum Zeichnen berechnen
	Berechnen der Klickposition in einem Spielfeld
	Logging

	Spielvorbereitung (Preparation)
	Globale Variablen
	Struktur der HTML-Datei
	Funktionen
	Websocket
	Aufruf und Initialisierung

	Spielablauf (Game)
	Globale Variablen
	Struktur der HTML-Datei
	Funktionen
	Websocket
	Aufruf und Initialisierung

	Integration ins Frontend
	Verzeichnisstruktur
	Aktoren, Controller, DAO und Modelle
	View-Templates

	Datenbankschicht (Repository) als DAO
	Websocket
	Eine Websocket-Algebra
	Komposition zum fertigen Websocket

	Controller und Routing
	Übersichtsseite
	Spielerstellung
	Löschen eines Spielstandes
	Dem Spiel beitreten
	Das Spiel
	Spielvorbereitung
	Websocket

	Views

	Deployment (Auslieferung)
	Konfiguration für den Produktivbetrieb
	Erstellen eines Artefakts mit allen Abhängigkeiten
	Erstellen von Paketen für Debian
	Systemstart-Skripte

	Auslieferung zu einem Cloud Service
	Deployment via Remote Repository
	Deployment mittels des Plugins sbt-heroku
	Datenbankzugriff bei Heroku

	Erkenntnisse
	Silhouette
	Abhängigkeiten von anderen Bibliotheken
	Aufwand durch inkompatible Änderungen

	Circe
	Erstellung von Codecs
	Vollautomatische Ableitung
	Halbautomatische Ableitung
	Manuelle Implementierung

	Geschwindigkeit des Compilers
	Fehlerhäufigkeit

	WTFM - Write that fucking manual!
	Vorteile für bereits involvierte Entwickler
	Vorteile für neue Entwickler

	Danke

