

Kestrels, Quirky Birds, and Hopeless
Egocentricity
Raganwald’s collected adventures in Combinatory Logic
and Ruby Meta-Programming

Reginald Braithwaite

This book is for sale at http://leanpub.com/combinators

This version was published on 2013-10-01

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2011 - 2013 Reginald Braithwaite

http://leanpub.com/combinators
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Reginald Braithwaite by spreading the word about this book on Twitter!

The suggested hashtag for this book is #combinators.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search/#combinators

http://twitter.com
https://twitter.com/search/#combinators
https://twitter.com/search/#combinators

Also By Reginald Braithwaite
What I’ve Learned From Failure

How to Do What You Love & Earn What You’re Worth as a Programmer

CoffeeScript Ristretto

JavaScript Allongé

http://leanpub.com/u/raganwald
http://leanpub.com/shippingsoftware
http://leanpub.com/dowhatyoulove
http://leanpub.com/coffeescript-ristretto
http://leanpub.com/javascript-allonge

Contents

0.1 The MIT License . 1
0.2 Preface . 1

1 Introduction . 2
1.1 About this sample . 3

2 Kestrels . 4
2.1 Object initializer blocks . 5
2.2 Inside, an idiomatic Ruby Kestrel . 6
2.3 The Enchaining Kestrel . 7
2.4 The Obdurate Kestrel . 10
2.5 Kestrels on Rails . 11
2.6 Rewriting “Returning” in Rails . 12

3 About The Author . 17
3.1 contact . 17

CONTENTS 1

0.1 The MIT License

All contents Copyright (c) 2004-2011 Reg Braithwaite except as otherwise noted.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Softwarewithout restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM,OUTOFOR INCONNECTIONWITHTHE SOFTWAREORTHEUSEOROTHER
DEALINGS IN THE SOFTWARE.

http://www.opensource.org/licenses/mit-license.php

Cover photo © 2009 Jack Wolf

http://www.flickr.com/photos/wolfraven/3294145307

0.2 Preface

The chapters of this book originally appeared as blog posts. You can still read them online, for free, at
http://github.com/raganwald/homoiconic¹. The original posts were released under the MIT license,
you you can pass them around or incorporate them into your own works as you see fit. I decided to
publish these essays as an e-book as well as online. This format doesn’t replace the original online
essays, it’s a way to present these essays in a more coherent whole that’s easier to read consecutively.
I hope you like it.

–Reginald “Raganwald” Braithwaite², Toronto, November 2011

¹http://github.com/raganwald/homoiconic
²http://braythwayt.com

http://github.com/raganwald/homoiconic
http://braythwayt.com
http://github.com/raganwald/homoiconic
http://braythwayt.com

1 Introduction
Like the Lambda Calculus, Combinatory Logic¹ is a mathematical notation that is powerful enough
to handle set theory and issues in computability.

Combinatory logic is a notation introduced byMoses Sch��nfinkel² and Haskell Curry³
to eliminate the need for variables in mathematical logic. It has more recently been
used in computer science as a theoretical model of computation and also as a basis
for the design of functional programming languages. It is based on combinators. A
combinator is a higher-order function that uses only function application and earlier
defined combinators to define a result from its arguments.

In this book, we’re going to meet some of the standard combinators, and for each one we’ll
explore some of its ramifications when writing programs using the Ruby programming language. In
Combinatory logic, combinators combine and alter each other, and our Ruby examples will focus on
combining and altering Ruby code. From simple examples like the K Combinator and Ruby’s .tap
method, we’ll work our way up to meta-programming with aspects and recursive combinators.

about the bird names

When Combinatory Logic was first invented by Haskell Curry, the standard combinators were given
upper-case letters. For example, the two combinators needed to express everything in the Lambda
Calculus and in Set Theory are the S and K combinators. In 1985, Raymond Smullyan published To
Mock a Mockingbird⁴, an exploration of combinatory logic for the recreational layman. Smullyan
used a forest full of songbirds as a metaphor, with each of the combinators given the name of a
songbird rather than a single letter. For example, the S and K combinators became the Starling and
Kestrel, the I combinator became the Idiot bird, and so forth.

These ornithological nicknames have become part of the standard lexicon for combinatory logic.

thanks

There are too many people to name,but amongst the crowd, Alan Smith stands out.

¹http://en.wikipedia.org/wiki/Combinatory_logic
²http://en.wikipedia.org/wiki/Moses_Sch��nfinkel
³http://en.wikipedia.org/wiki/Haskell_Curry
⁴http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=

B00A1P096Y&linkCode=as2&tag=raganwald001-20

http://en.wikipedia.org/wiki/Combinatory_logic
http://en.wikipedia.org/wiki/Moses_Schรถnfinkel
http://en.wikipedia.org/wiki/Haskell_Curry
http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&linkCode=as2&tag=raganwald001-20
http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&linkCode=as2&tag=raganwald001-20
http://en.wikipedia.org/wiki/Combinatory_logic
http://en.wikipedia.org/wiki/Moses_Schรถnfinkel
http://en.wikipedia.org/wiki/Haskell_Curry
http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&linkCode=as2&tag=raganwald001-20
http://www.amazon.com/gp/product/B00A1P096Y/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=B00A1P096Y&linkCode=as2&tag=raganwald001-20

Introduction 3

1.1 About this sample

This sample edition of the book includes the first full chapter, “Kestrels.” The full book adds chapters
about Thrushes and permuting the order of method pipelining, Cardinals and constructing our
own monad-like maybe function, Quirky Birds and meta-programming with methods, Bluebirds
and Aspect-Oriented Programming, Recursive Combinators, Hopelessly Egocentric birds and the
semantics of nil, and more.

2 Kestrels
In Combinatory Logic, a Kestrel (or “K Combinator”) is a function that returns a constant function,
normally written Kxy = x. In Ruby, it might look like this:

for *any* x,

kestrel.call(:foo).call(x)

=> :foo

Kestrels are to be found in Ruby. You may be familiar with their Ruby 1.9 name, #tap. Let’s say you
have a line like address = Person.find(...).address and you wish to log the person instance.
With tap, you can inject some logging into the expression without messy temporary variables:

address = Person.find(...).tap { |p| logger.log "person #{p} found" }.address

tap is a method in all objects that passes self to a block and returns self, ignoring whatever the last
item of the block happens to be. Ruby on Rails programmers will recognize the Kestrel in slightly
different form:

address = returning Person.find(...) do |p|

logger.log "person #{p} found"

end.address

Again, the result of the block is discarded, it is only there for side effects. This behaviour is the
same as a Kestrel. Remember kestrel.call(:foo).call(x)? If I rewrite it like this, you can see the
similarity:

Kestrel.call(:foo) do

x

end

=> :foo

Both returning and tap are handy for grouping side effects together. Methods that look like this:

Kestrels 5

def registered_person(params = {})

person = Person.new(params.merge(:registered => true))

Registry.register(person)

person.send_email_notification

person

end

Can be rewritten using returning:

def registered_person(params = {})

returning Person.new(params.merge(:registered => true)) do |person|

Registry.register(person)

person.send_email_notification

end

end

It is obvious from the first line what will be returned and it eliminates an annoying error when the
programmer neglects to make person the last line of the method.

2.1 Object initializer blocks

The Kestrel has also been sighted in the form of object initializer blocks. Consider this example using
Struct¹:

Contact = Struct.new(:first, :last, :email) do

def to_hash

Hash[*members.zip(values).flatten]

end

end

The method Struct#new creates a new class. It also accepts an optional block, evaluating the block
for side effects only. It returns the new class regardless of what happens to be in the block (it happens
to evaluate the block in class scope, a small refinement).

You can use this technique when writing your own classes:

¹http://blog.grayproductions.net/articles/all_about_struct

http://blog.grayproductions.net/articles/all_about_struct
http://blog.grayproductions.net/articles/all_about_struct

Kestrels 6

class Bird < Creature

def initialize(*params)

do something with the params

yield self if block_given?

end

end

Forest.add(

Bird.new(:name => 'Kestrel) { |k| combinators << k }

)

The pattern of wanting a Kestrel/returning/tap when you create a new object is so common that
building it into object initialization is useful. And in fact, it’s built into ActiveRecord. Methods like
new and create take optional blocks, so you can write:

class Person < ActiveRecord::Base

...

end

def registered_person(params = {})

Person.new(params.merge(:registered => true)) do |person|

Registry.register(person)

person.send_email_notification

end

end

In Rails, returning is not necessary when creating instances of your model classes, thanks to
ActiveRecord’s built-in object initializer blocks.

2.2 Inside, an idiomatic Ruby Kestrel

Whenwe discussed Struct above, we noted that its initializer block has a slightly different behaviour
than tap or returning. It takes an initializer block, but it doesn’t pass the new class to the block as
a parameter, it evaluates the block in the context of the new class.

Putting this into implementation terms, it evaluates the block with self set to the new class. This
is not the same as returning or tap, both of which leave self untouched. We can write our own
version of returning with the same semantics. We will call it inside:

Kestrels 7

module Kernel

def inside(value, &block)

value.instance_eval(&block)

value

end

end

You can use this variation on a Kestrel just like returning, only you do not need to specify a
parameter:

inside [1, 2, 3] do

uniq!

end

=> [1, 2, 3]

This isn’t particularly noteworthy. Of more interest is your access to private methods and instance
variables:

sna = Struct.new('Fubar') do

attr_reader :fu

end.new

inside(sna) do

@fu = 'bar'

end

=> <struct Struct::Fubar >

sna.fu

=> 'bar'

inside is a Kestrel just like returning. No matter what value its block generates, it returns its
primary argument. The only difference between the two is the evaluation environment of the block.

2.3 The Enchaining Kestrel

In Kestrels, we looked at #tap from Ruby 1.9 and returning from Ruby on Rails. No we’ll going to
look at another use for tap. As already explained, Ruby 1.9 includes the new method Object#tap.
It passes the receiver to a block, then returns the receiver no matter what the block contains. The
canonical example inserts some logging in the middle of a chain of method invocations:

Kestrels 8

address = Person.find(...).tap { |p| logger.log "person #{p} found" }.address

Object#tap is also useful when you want to execute several method on the same object without
having to create a lot of temporary variables, a practice Martin Fowler calls [Method Chain-
ing](http://martinfowler.com/dslwip/MethodChaining.html “”). Typically, you design such an ob-
ject so that it returns itself in response to every modifier message. This allows you to write things
like:

HardDrive.new.capacity(150).external.speed(7200)

Instead of:

hd = HardDrive.new

hd.capacity = 150

hd.external = true

hd.speed = 7200

And if you are a real fan of the Kestrel, you would design your class with an object initializer block
so you could write:

hd = HardDrive.new do

@capacity = 150

@external = true

@speed = 7200

end

But what do you do when handed a class that was not designed with method chaining in mind?
For example, Array#pop returns the object being popped, not the array. Before you validate every
criticism levelled against Ruby for allowing programmers to rewrite methods in core classes,
consider using #tap with Symbol#to_proc or String#to_proc to chain methods without rewriting
them.

So instead of

def fizz(arr)

arr.pop

arr.map! { |n| n * 2 }

end

We can write:

Kestrels 9

def fizz(arr)

arr.tap(&:pop).map! { |n| n * 2 }

end

I often use #tap to enchain methods for those pesky array methods that sometimes do what you
expect and sometimes don’t. My most hated example is Array#uniq!²:

arr = [1,2,3,3,4,5]

arr.uniq, arr

=> [1,2,3,4,5], [1,2,3,3,4,5]

arr = [1,2,3,3,4,5]

arr.uniq!, arr

=> [1,2,3,4,5], [1,2,3,4,5]

arr = [1,2,3,4,5]

arr.uniq, arr

=> [1,2,3,4,5], [1,2,3,4,5]

arr = [1,2,3,4,5]

arr.uniq!, arr

=> nil, [1,2,3,4,5]

Let’s replay that last one in slow motion:

[1, 2, 3, 4, 5].uniq!

=> nil

That might be a problem. For example:

[1,2,3,4,5].uniq!.sort!

=> NoMethodError: undefined method `sort!' for nil:NilClass

Object#tap to the rescue: When using a method like #uniq! that modifies the array in place and
sometimes returns the modified array but sometimes helpfully returns nil, I can use #tap to make
sure I always get the array, which allows me to enchain methods:

[1,2,3,4,5].tap(&:uniq!).sort!

=> [1,2,3,4,5]

So there’s another use for #tap (along with Symbol#to_proc for simple cases): We can use it when
we want to enchain methods, but the methods do not return the receiver.

²http://ruby-doc.org/core/classes/Array.html#M002238

http://ruby-doc.org/core/classes/Array.html#M002238
http://ruby-doc.org/core/classes/Array.html#M002238

Kestrels 10

In Ruby 1.9, #tapworks exactly as described above. Ruby 1.8 does not have #tap, but you
can obtain it by installing the andand gem. This version of #tap also works like a Quirky
Bird, so you can write things like HardDrive.new.tap.capacity(150) for enchaining
methods that take parameters and/or blocks. To get andand, sudo gem install andand.
Rails users can also drop andand.rb in config/initializers.

2.4 The Obdurate Kestrel

The andand gem³ includes Object#tap for Ruby 1.8. It also includes another kestrel called #dont.
Which does what it says, or rather doesn’t do what it says.

:foo.tap { p 'bar' }

bar

=> :foo # printed 'bar' before returning a value!

:foo.dont { p 'bar' }

=> :foo # without printing 'bar'!

Object#dont simply ignores the block passed to it. So what is it good for? Well, remember our
logging example for #tap?

address = Person.find(...).tap { |p| logger.log "person #{p} found" }.address

Let’s turn the logging off for a moment:

address = Person.find(...).dont { |p| logger.log "person #{p} found" }.address

And back on:

address = Person.find(...).tap { |p| logger.log "person #{p} found" }.address

I typically use it when doing certain kinds of primitive debugging. And it has another trick up its
sleeve:

arr.dont.sort!

Look at that, it works with method calls like a quirky bird! So you can use it to NOOPmethods. Now,
you could have done that with Symbol#to_proc:

³http://github.com/raganwald/andand/tree

http://github.com/raganwald/andand/tree
http://github.com/raganwald/andand/tree

Kestrels 11

arr.dont(&:sort!)

But what about methods that take parameters and blocks?

JoinBetweenTwoModels.dont.create!(...) do |new_join|

...

end

Object#dont is the Ruby-semantic equivalent of commenting out a method call, only it can be
inserted inside of an existing expression. That’s why it’s called the obdurate kestrel. It refuses to do
anything!

If youwant to try Object#dont, or want to use Object#tapwith Ruby 1.8, sudo gem install andand.
Rails users can also drop andand.rb in config/initializers as mentioned above. Enjoy!

2.5 Kestrels on Rails

As mentioned, Ruby on Rails provides #returning, a method with K Combinator semantics:

returning(expression) do |name|

name is bound to the result of evaluating expression

this block is evaluated and the result is discarded

end

=> # the result of evaluating the expression is now returned

Rails also provides object initializer blocks for ActiveRecord models. Here’s an example from one of
my unit tests:

@board = Board.create(:dimension => 9) do |b|

b['aa'] = 'black'

b['bb'] = 'black'

b['cb'] = 'black'

b['da'] = 'black'

b['ba'] = 'white'

b['ca'] = 'white'

end

So, it looks like in Rails you can choose between an object initializer block and #returning:

Kestrels 12

@board = returning(Board.create(:dimension => 9)) do |b|

b['aa'] = 'black'

b['bb'] = 'black'

b['cb'] = 'black'

b['da'] = 'black'

b['ba'] = 'white'

b['ca'] = 'white'

end

In both cases the created object is returned regardless of what the block would otherwise return.
But beyond that, the two Kestrels have very different semantics. “Returning” fully evaluates the
expression, in this case creating the model instance in its entirety, including all of its callbacks. The
object initializer block, on the other hand, is called as part of initializing the object before starting
the lifecycle of the object including its callbacks.

“Returning” is what you want when you want to do stuff involving the fully created object and you
are trying to logically group the other statements with the creation. In my case, that’s what I want, I
am trying to say that @board is a board with black stones on certain intersections and white stones
on other intersections.

Object initialization is what youwant when youwant to initialize certain fields by hand and perform
some calculations or logic before kicking off the object creation lifecycle. That wasn’t what I wanted
in this case because my []=method depended on the object being initialized. So my code had a bug
that was fixed when I changed from object initializers to #returning.

Summary: In Rails, object initializers are evaluated before the object’s life cycle is started, #return-
ing’s block is evaluated afterwards. And that is today’s lingua obscura.

2.6 Rewriting “Returning” in Rails

One of the most useful tools provided by Ruby on Rails is the #returning method, a simple but very
useful implementation of the K Combinator or Kestrel. For example, this:

def registered_person(params = {})

person = Person.new(params.merge(:registered => true))

Registry.register(person)

person.send_email_notification

person

end

Can and should be expressed using #returning as this:

Kestrels 13

def registered_person(params = {})

returning Person.new(params.merge(:registered => true)) do |person|

Registry.register(person)

person.send_email_notification

end

end

Why? Firstly, you avoid the common bug of forgetting to return the object you are creating:

def broken_registered_person(params = {})

person = Person.new(params.merge(:registered => true))

Registry.register(person)

person.send_email_notification

end

This creates the person object and does the initialization you want, but doesn’t actually return it
from the method, it returns whatever #send_email_notification happens to return. If you’ve worked
hard to create fluent interfaces youmight be correct by accident, but #send_email_notification could
just as easily return the email it creates. Who knows?

Second, in methods like this as you read from top to bottom you are declaring what the method
returns right up front:

def registered_person(params = {})

returning Person.new(params.merge(:registered => true)) do # ...

...

end

end

It takes some optional params and returns a new person. Very clear. And the third reason I like
#returning is that it logically clusters the related statements together:

returning Person.new(params.merge(:registered => true)) do |person|

Registry.register(person)

person.send_email_notification

end

It is very clear that these statements are all part of one logical block. As a bonus, my IDE respects
that and it’s easy to fold them or drag them around as a single unit. All in all, I think #returning is
a big win and I even look for opportunities to refactor existing code to use it whenever I’m making
changes.

Kestrels 14

DWIM

All that being said, I have observed a certain bug or misapplication of #returning from time to time.
It’s usually pretty subtle in production code, but I’ll make it obvious with a trivial example. What
does this snippet evaluate to?

returning [1] do |numbers|

numbers << 2

numbers += [3]

end

This is the kind of thing that sadistic interviewers use in coding quizzes. The answer is [1, 2], not [1,
2, 3]. The << operator mutates the value assigned to the numbers variable, but the += statement
overwrites the reference assigned to the numbers variable without changing the original value.
#returning remembers the value originally assigned to numbers and returns it. If you have some
side-effects on that value, those count. But assignment does nothing to the value.

This may seem obvious, but in my experience it is a subtle point that causes difficulty. Languages
with referential transparency escape the confusion entirely, but OO languages like Ruby have this
weird thing where we have to keep track of references and labels on references in our head.

Here’s something contrived to look a lot more like production code. First, without #returning:

def working_registered_person(params = {})

person = Person.new(params.merge(:registered => true))

if Registry.register(person)

person.send_email_notification

else

person = Person.new(:default => true)

end

person

end

And here we’ve refactored it to use #returning:

Kestrels 15

def broken_registered_person(params = {})

returning Person.new(params.merge(:registered => true)) do |person|

if Registry.register(person)

person.send_email_notification

else

person = Person.new(:default => true)

end

end

end

Oops! This no longer works as we intended. Overwriting the person variable is irrelevant, #returning
returns the unregistered new person no matter what. So what’s going on here?

One answer is to “blame the victim.” Ruby has a certain well-documented behaviour around
variables and references. #returning has a certain well-documented behaviour. Any programmer
whomakes the abovemistake is–well–mistaken. Fix the code and set the bug ticket status to Problem
Between Keyboard And Chair (“PBKAC”).

Another answer is to suggest that the implementation of #returning is at fault. If you write:

returning ... do |var|

...

var = something_else

...

end

You intended to change what you are returning from #returning. So #returning should be changed
to do what you meant. I’m on the fence about this. When folks argue that designs should cater
to programmers who do not understand the ramifactions of the programming language or of
the framework, I usually retort that you cannot have progress and innovation while clinging to
familiarity, an argument I first heard from Jef Raskin⁴. The real meaning of “The Principle of Least
Surprise” is that a design should be internally consistent, which is not the same thing as familiar.

Ruby’s existing use of variables and references is certainly consistent. And once you know what
#returning does, it remains consistent. However, this design decision isn’t really about being
consistent with Ruby’s implementation, we are debating how an idiom should be designed. I think
we have a blank canvas and it’s reasonable to at least consider a version of #returning that handles
assignment to the parameter.

Rewriting #returning

⁴http://weblog.raganwald.com/2008/01/programming-language-cannot-be-better.html

http://weblog.raganwald.com/2008/01/programming-language-cannot-be-better.html
http://weblog.raganwald.com/2008/01/programming-language-cannot-be-better.html

Kestrels 16

The RewriteRails⁵ plug-in adds syntactic abstractions like Andand⁶ to Rails projects without
monkey-patching⁷. RewriteRails now includes its own version of #returning that overrides the
#returning shipping with Rails.

When RewriteRails is processing source code, it turns code like this:

def registered_person(params = {})

returning Person.new(params.merge(:registered => true)) do |person|

if Registry.register(person)

person.send_email_notification

else

person = Person.new(:default => true)

end

end

end

Into this:

def registered_person(params = {})

lambda do |person|

if Registry.register(person)

person.send_email_notification

else

person = Person.new(:default => true)

end

person

end.call(Person.new(params.merge(:registered => true)))

end

Note that in addition to turning the #returning “call” into a lambda that is invoked immediately, it
alsomakes sure the new lambda returns the person variable’s contents. So assignment to the variable
does change what #returning appears to return.

Like all processors in RewriteRails, #returning is only rewritten in .rr files that you write in your
project. Existing .rb files are not affected, including all code in the Rails framework: RewriteRails
will never monkey with other people’s expectations. RewriteRails doesn’t physically modify the .rr
files you write: The rewritten code is put in another file that the Ruby interpreter sees. So you see
the code you write and RewriteRails figures out what to show the interpreter. This is a little like a
Lisp macro.

⁵http://github.com/raganwald-deprecated/rewrite_rails/tree/master
⁶http://github.com/raganwald-deprecated/rewrite_rails/tree/master/doc/andand.textile
⁷http://avdi.org/devblog/2008/02/23/why-monkeypatching-is-destroying-ruby/

http://github.com/raganwald-deprecated/rewrite_rails/tree/master
http://github.com/raganwald-deprecated/rewrite_rails/tree/master/doc/andand.textile
http://avdi.org/devblog/2008/02/23/why-monkeypatching-is-destroying-ruby/
http://avdi.org/devblog/2008/02/23/why-monkeypatching-is-destroying-ruby/
http://github.com/raganwald-deprecated/rewrite_rails/tree/master
http://github.com/raganwald-deprecated/rewrite_rails/tree/master/doc/andand.textile
http://avdi.org/devblog/2008/02/23/why-monkeypatching-is-destroying-ruby/

3 About The Author
When he’s not shipping Ruby, Javascript and Java applications scaling out to millions of users, Reg
“Raganwald” Braithwaite has authored libraries¹ for Javascript and Ruby programming such as Katy,
JQuery Combinators, YouAreDaChef, andand, and others.

He writes about programming on his “Homoiconic²” un-blog as well as general-purpose ruminations
on his posterous space³. He is also known for authoring the popular raganwald programming blog⁴
from 2005-2008.

3.1 contact

Twitter: @raganwald
Email: raganwald@gmail.com

¹http://github.com/raganwald
²http://github.com/raganwald/homoiconic
³http://raganwald.posterous.com
⁴http://weblog.raganwald.com

http://github.com/raganwald
http://github.com/raganwald/homoiconic
http://raganwald.posterous.com
http://weblog.raganwald.com
http://github.com/raganwald
http://github.com/raganwald/homoiconic
http://raganwald.posterous.com
http://weblog.raganwald.com

About The Author 18

Reginald Braithwaite

(Author’s Photograph (c) 2008 JosephHurtado, All Rights Reserved. http://www.flickr.com/photos/trumpetca/.
Cover Photograph (c) 2011 Biker Jun. Some rights reserved⁵.)

⁵http://creativecommons.org/licenses/by-sa/2.0/deed.en

http://creativecommons.org/licenses/by-sa/2.0/deed.en
http://creativecommons.org/licenses/by-sa/2.0/deed.en

	Table of Contents
	The MIT License
	Preface
	Introduction
	About this sample

	Kestrels
	Object initializer blocks
	Inside, an idiomatic Ruby Kestrel
	The Enchaining Kestrel
	The Obdurate Kestrel
	Kestrels on Rails
	Rewriting ``Returning'' in Rails

	About The Author
	contact

