

[image: Kestrels, Quirky Birds, and Hopeless Egocentricity]



  Kestrels, Quirky Birds, and Hopeless Egocentricity


  Raganwald's collected adventures in Combinatory Logic and Ruby Meta-Programming

  


  Reginald Braithwaite

  

  This book is for sale at http://leanpub.com/combinators

  This version was published on 2013-10-01

  [image: publisher's logo]

    *****

  This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

  *****


  

© 2011 - 2013 Reginald Braithwaite



Table of Contents


  	
    
      	
        0.1 The MIT License
      

      	
        0.2 Preface
      

    

  

  	
    1 Introduction
    
      	
        1.1 About this sample
      

    

  

  	
    2 Kestrels
    
      	
        2.1 Object initializer blocks
      

      	
        2.2 Inside, an idiomatic Ruby Kestrel
      

      	
        2.3 The Enchaining Kestrel
      

      	
        2.4 The Obdurate Kestrel
      

      	
        2.5 Kestrels on Rails
      

      	
        2.6 Rewriting “Returning” in Rails
      

    

  

  	
    3 About The Author
    
      	
        3.1 contact
      

    

  








0.1 The MIT License


All contents Copyright (c) 2004-2011 Reg Braithwaite except as otherwise noted.


Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:


The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.


THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.


http://www.opensource.org/licenses/mit-license.php


Cover photo  © 2009 Jack Wolf


http://www.flickr.com/photos/wolfraven/3294145307


0.2 Preface


The chapters of this book originally appeared as blog posts. You can still read them online, for free, at http://github.com/raganwald/homoiconic. The original posts were released under the MIT license, you you can pass them around or incorporate them into your own works as you see fit. I decided to publish these essays as an e-book as well as online. This format doesn’t replace the original online essays, it’s a way to present these essays in a more coherent whole that’s easier to read consecutively. I hope you like it.


–Reginald “Raganwald” Braithwaite, Toronto, November 2011





1 Introduction


Like the Lambda Calculus, Combinatory Logic is a mathematical notation that is powerful enough to handle set theory and issues in computability.



  Combinatory logic is a notation introduced by Moses Schรถnfinkel and Haskell Curry to eliminate the need for variables in mathematical logic. It has more recently been used in computer science as a theoretical model of computation and also as a basis for the design of functional programming languages. It is based on combinators. A combinator is a higher-order function that uses only function application and earlier defined combinators to define a result from its arguments.




In this book, we’re going to meet some of the standard combinators, and for each one we’ll explore some of its ramifications when writing programs using the Ruby programming language. In Combinatory logic, combinators combine and alter each other, and our Ruby examples will focus on combining and altering Ruby code. From simple examples like the K Combinator and Ruby’s .tap method, we’ll work our way up to meta-programming with aspects and recursive combinators.



  about the bird names



When Combinatory Logic was first invented by Haskell Curry, the standard combinators were given upper-case letters. For example, the two combinators needed to express everything in the Lambda Calculus and in Set Theory are the S and K combinators. In 1985, Raymond Smullyan published To Mock a Mockingbird, an exploration of combinatory logic for the recreational layman. Smullyan used a forest full of songbirds as a metaphor, with each of the combinators given the name of a songbird rather than a single letter. For example, the S and K combinators became the Starling and Kestrel, the I combinator became the Idiot bird, and so forth.


These ornithological nicknames have become part of the standard lexicon for combinatory logic.



  thanks



There are too many people to name,but amongst the crowd, Alan Smith stands out.


1.1 About this sample


This sample edition of the book includes the first full chapter, “Kestrels.” The full book adds chapters about Thrushes and permuting the order of method pipelining, Cardinals and constructing our own monad-like maybe function, Quirky Birds and meta-programming with methods, Bluebirds and Aspect-Oriented Programming, Recursive Combinators, Hopelessly Egocentric birds and the semantics of nil, and more.





2 Kestrels


In Combinatory Logic, a Kestrel (or “K Combinator”) is a function that returns a constant function, normally written Kxy = x. In Ruby, it might look like this:



# for *any* x,
kestrel.call(:foo).call(x)
  => :foo 







Kestrels are to be found in Ruby. You may be familiar with their Ruby 1.9 name, #tap. Let’s say you have a line like address = Person.find(...).address and you wish to log the person instance. With tap, you can inject some logging into the expression without messy temporary variables:



address = Person.find(...).tap { |p| logger.log "person #{p} found" }.address







tap is a method in all objects that passes self to a block and returns self, ignoring whatever the last item of the block happens to be. Ruby on Rails programmers will recognize the Kestrel in slightly different form:



address = returning Person.find(...) do |p| 
  logger.log "person #{p} found"
end.address







Again, the result of the block is discarded, it is only there for side effects. This behaviour is the same as a Kestrel. Remember kestrel.call(:foo).call(x)? If I rewrite it like this, you can see the similarity:



Kestrel.call(:foo) do
  x
end
  => :foo







Both returning and tap are handy for grouping side effects together. Methods that look like this:



def registered_person(params = {})
  person = Person.new(params.merge(:registered => true))
  Registry.register(person)
  person.send_email_notification
  person
end







Can be rewritten using returning:



def registered_person(params = {})
  returning Person.new(params.merge(:registered => true)) do |person|
    Registry.register(person)
    person.send_email_notification
  end
end







It is obvious from the first line what will be returned and it eliminates an annoying error when the programmer neglects to make person the last line of the method.


2.1 Object initializer blocks


The Kestrel has also been sighted in the form of object initializer blocks. Consider this example using Struct:



Contact = Struct.new(:first, :last, :email) do
  def to_hash
    Hash[*members.zip(values).flatten]
  end
end







The method Struct#new creates a new class. It also accepts an optional block, evaluating the block for side effects only. It returns the new class regardless of what happens to be in the block (it happens to evaluate the block in class scope, a small refinement).


You can use this technique when writing your own classes:



class Bird < Creature
  def initialize(*params)
    # do something with the params
    yield self if block_given?
  end
end

Forest.add(
	Bird.new(:name => 'Kestrel) { |k| combinators << k }
)







The pattern of wanting a Kestrel/returning/tap when you create a new object is so common that building it into object initialization is useful. And in fact, it’s built into ActiveRecord. Methods like new and create take optional blocks, so you can write:



class Person < ActiveRecord::Base
  # ...
end

def registered_person(params = {})
  Person.new(params.merge(:registered => true)) do |person|
    Registry.register(person)
    person.send_email_notification
  end
end







In Rails, returning is not necessary when creating instances of your model classes, thanks to ActiveRecord’s built-in object initializer blocks.


2.2 Inside, an idiomatic Ruby Kestrel


When we discussed Struct above, we noted that its initializer block has a slightly different behaviour than tap or returning. It takes an initializer block, but it doesn’t pass the new class to the block as a parameter, it evaluates the block in the context of the new class.


Putting this into implementation terms, it evaluates the block with self set to the new class. This is not the same as returning or tap, both of which leave self untouched. We can write our own version of returning with the same semantics. We will call it inside:



module Kernel
  
  def inside(value, &block)
    value.instance_eval(&block)
    value
  end
  
end







You can use this variation on a Kestrel just like returning, only you do not need to specify a parameter:



inside [1, 2, 3] do
  uniq!
end
  => [1, 2, 3]







This isn’t particularly noteworthy. Of more interest is your access to private methods and instance variables:



sna = Struct.new('Fubar') do
  attr_reader :fu
end.new

inside(sna) do
  @fu = 'bar'
end
  => <struct Struct::Fubar >

sna.fu
  => 'bar'







inside is a Kestrel just like returning. No matter what value its block generates, it returns its primary argument. The only difference between the two is the evaluation environment of the block.


2.3 The Enchaining Kestrel


In Kestrels, we looked at #tap from Ruby 1.9 and returning from Ruby on Rails. No we’ll going to look at another use for tap. As already explained, Ruby 1.9 includes the new method Object#tap. It passes the receiver to a block, then returns the receiver no matter what the block contains. The canonical example inserts some logging in the middle of a chain of method invocations:



address = Person.find(...).tap { |p| logger.log "person #{p} found" }.address







Object#tap is also useful when you want to execute several method on the same object without having to create a lot of temporary variables, a practice Martin Fowler calls [Method Chaining](http://martinfowler.com/dslwip/MethodChaining.html “”). Typically, you design such an object so that it returns itself in response to every modifier message. This allows you to write things like:



HardDrive.new.capacity(150).external.speed(7200)







Instead of:



hd = HardDrive.new
hd.capacity = 150
hd.external = true
hd.speed = 7200







And if you are a real fan of the Kestrel, you would design your class with an object initializer block so you could write:



hd = HardDrive.new do
	@capacity = 150
	@external = true
	@speed = 7200
end







But what do you do when handed a class that was not designed with method chaining in mind? For example, Array#pop returns the object being popped, not the array. Before you validate every criticism levelled against Ruby for allowing programmers to rewrite methods in core classes, consider using #tap with Symbol#to_proc or String#to_proc to chain methods without rewriting them.


So instead of



def fizz(arr)
	arr.pop
	arr.map! { |n| n * 2 }
end







We can write:



def fizz(arr)
  arr.tap(&:pop).map! { |n| n * 2 }
end







I often use #tap to enchain methods for those pesky array methods that sometimes do what you expect and sometimes don’t. My most hated example is Array#uniq!:



arr = [1,2,3,3,4,5]
arr.uniq, arr
	=> [1,2,3,4,5], [1,2,3,3,4,5]
arr = [1,2,3,3,4,5]
arr.uniq!, arr
	=> [1,2,3,4,5], [1,2,3,4,5]
arr = [1,2,3,4,5]
arr.uniq, arr
	=> [1,2,3,4,5], [1,2,3,4,5]
arr = [1,2,3,4,5]
arr.uniq!, arr
	=> nil, [1,2,3,4,5]







Let’s replay that last one in slow motion:



[  1,  2,  3,  4,  5  ].uniq!
	=> nil







That might be a problem. For example:



[1,2,3,4,5].uniq!.sort!
	=> NoMethodError: undefined method `sort!' for nil:NilClass







Object#tap to the rescue: When using a method like #uniq! that modifies the array in place and sometimes returns the modified array but sometimes helpfully returns nil, I can use #tap to make sure I always get the array, which allows me to enchain methods:



[1,2,3,4,5].tap(&:uniq!).sort!
	=> [1,2,3,4,5]







So there’s another use for #tap (along with Symbol#to_proc for simple cases): We can use it when we want to enchain methods, but the methods do not return the receiver.



  In Ruby 1.9, #tap works exactly as described above. Ruby 1.8 does not have #tap, but you can obtain it by installing the andand gem. This version of #tap also works like a Quirky Bird, so you can write things like HardDrive.new.tap.capacity(150) for enchaining methods that take parameters and/or blocks. To get andand, sudo gem install andand. Rails users can also drop andand.rb in config/initializers.




2.4 The Obdurate Kestrel


The andand gem includes Object#tap for Ruby 1.8. It also includes another kestrel called #dont. Which does what it says, or rather doesn’t do what it says.



:foo.tap { p 'bar' }
bar
	=> :foo # printed 'bar' before returning a value!
	
:foo.dont { p 'bar' }
	=> :foo # without printing 'bar'!







Object#dont simply ignores the block passed to it. So what is it good for? Well, remember our logging example for #tap?



address = Person.find(...).tap { |p| logger.log "person #{p} found" }.address







Let’s turn the logging off for a moment:



address = Person.find(...).dont { |p| logger.log "person #{p} found" }.address







And back on:



address = Person.find(...).tap { |p| logger.log "person #{p} found" }.address







I typically use it when doing certain kinds of primitive debugging. And it has another trick up its sleeve:



arr.dont.sort!







Look at that, it works with method calls like a quirky bird! So you can use it to NOOP methods. Now, you could have done that with Symbol#to_proc:



arr.dont(&:sort!)







But what about methods that take parameters and blocks?



JoinBetweenTwoModels.dont.create!(...) do |new_join|
	# ...
end







Object#dont is the Ruby-semantic equivalent of commenting out a method call, only it can be inserted inside of an existing expression. That’s why it’s called the obdurate kestrel. It refuses to do anything!


If you want to try Object#dont, or want to use Object#tap with Ruby 1.8, sudo gem install andand. Rails users can also drop andand.rb in config/initializers as mentioned above. Enjoy!


2.5 Kestrels on Rails


As mentioned, Ruby on Rails provides #returning, a method with K Combinator semantics:



returning(expression) do |name|
  # name is bound to the result of evaluating expression
  # this block is evaluated and the result is discarded
end
  => # the result of evaluating the expression is now returned







Rails also provides object initializer blocks for ActiveRecord models. Here’s an example from one of my unit tests:



@board = Board.create(:dimension => 9) do |b|
  b['aa'] = 'black'
  b['bb'] = 'black'
  b['cb'] = 'black'
  b['da'] = 'black'
  b['ba'] = 'white'
  b['ca'] = 'white'
end







So, it looks like in Rails you can choose between an object initializer block and #returning:



@board = returning(Board.create(:dimension => 9)) do |b|
  b['aa'] = 'black'
  b['bb'] = 'black'
  b['cb'] = 'black'
  b['da'] = 'black'
  b['ba'] = 'white'
  b['ca'] = 'white'
end







In both cases the created object is returned regardless of what the block would otherwise return. But beyond that, the two Kestrels have very different semantics. “Returning” fully evaluates the expression, in this case creating the model instance in its entirety, including all of its callbacks. The object initializer block, on the other hand, is called as part of initializing the object before starting the lifecycle of the object including its callbacks.


“Returning” is what you want when you want to do stuff involving the fully created object and you are trying to logically group the other statements with the creation. In my case, that’s what I want, I am trying to say that @board is a board with black stones on certain intersections and white stones on other intersections.


Object initialization is what you want when you want to initialize certain fields by hand and perform some calculations or logic before kicking off the object creation lifecycle. That wasn’t what I wanted in this case because my []= method depended on the object being initialized. So my code had a bug that was fixed when I changed from object initializers to #returning.


Summary: In Rails, object initializers are evaluated before the object’s life cycle is started, #returning’s block is evaluated afterwards. And that is today’s lingua obscura.


2.6 Rewriting “Returning” in Rails


One of the most useful tools provided by Ruby on Rails is the #returning method, a simple but very useful implementation of the K Combinator or Kestrel. For example, this:



def registered_person(params = {})
  person = Person.new(params.merge(:registered => true))
  Registry.register(person)
  person.send_email_notification
  person
end







Can and should be expressed using #returning as this:



def registered_person(params = {})
  returning Person.new(params.merge(:registered => true)) do |person|
    Registry.register(person)
    person.send_email_notification
  end
end







Why? Firstly, you avoid the common bug of forgetting to return the object you are creating:



def broken_registered_person(params = {})
  person = Person.new(params.merge(:registered => true))
  Registry.register(person)
  person.send_email_notification
end







This creates the person object and does the initialization you want, but doesn’t actually return it from the method, it returns whatever #send_email_notification happens to return. If you’ve worked hard to create fluent interfaces you might be correct by accident, but #send_email_notification could just as easily return the email it creates. Who knows?


Second, in methods like this as you read from top to bottom you are declaring what the method returns right up front:



def registered_person(params = {})
  returning Person.new(params.merge(:registered => true)) do # ...
    # ...
  end
end







It takes some optional params and returns a new person. Very clear. And the third reason I like #returning is that it logically clusters the related statements together:



returning Person.new(params.merge(:registered => true)) do |person|
  Registry.register(person)
  person.send_email_notification
end







It is very clear that these statements are all part of one logical block. As a bonus, my IDE respects that and it’s easy to fold them or drag them around as a single unit. All in all, I think #returning is a big win and I even look for opportunities to refactor existing code to use it whenever I’m making changes.



  DWIM



All that being said, I have observed a certain bug or misapplication of #returning from time to time. It’s usually pretty subtle in production code, but I’ll make it obvious with a trivial example. What does this snippet evaluate to?



returning [1] do |numbers|
  numbers << 2
  numbers += [3]
end







This is the kind of thing that sadistic interviewers use in coding quizzes. The answer is [1, 2], not [1, 2, 3]. The << operator mutates the value assigned to the numbers variable, but the += statement overwrites the reference assigned to the numbers variable without changing the original value. #returning remembers the value originally assigned to numbers and returns it. If you have some side-effects on that value, those count. But assignment does nothing to the value.


This may seem obvious, but in my experience it is a subtle point that causes difficulty. Languages with referential transparency escape the confusion entirely, but OO languages like Ruby have this weird thing where we have to keep track of references and labels on references in our head.


Here’s something contrived to look a lot more like production code. First, without #returning:



def working_registered_person(params = {})
  person = Person.new(params.merge(:registered => true))
  if Registry.register(person)
    person.send_email_notification
  else
    person = Person.new(:default => true)
  end
  person
end







And here we’ve refactored it to use #returning:



def broken_registered_person(params = {})
  returning Person.new(params.merge(:registered => true)) do |person|
    if Registry.register(person)
      person.send_email_notification
    else
      person = Person.new(:default => true)
    end
  end
end







Oops! This no longer works as we intended. Overwriting the person variable is irrelevant, #returning returns the unregistered new person no matter what. So what’s going on here?


One answer is to “blame the victim.” Ruby has a certain well-documented behaviour around variables and references. #returning has a certain well-documented behaviour. Any programmer who makes the above mistake is–well–mistaken. Fix the code and set the bug ticket status to Problem Between Keyboard And Chair (“PBKAC”).


Another answer is to suggest that the implementation of #returning is at fault. If you write:



returning ... do |var|
  # ...
  var = something_else
  # ...
end







You intended to change what you are returning from #returning. So #returning should be changed to do what you meant. I’m on the fence about this. When folks argue that designs should cater to programmers who do not understand the ramifactions of the programming language or of the framework, I usually retort that you cannot have progress and innovation while clinging to familiarity, an argument I first heard from Jef Raskin. The real meaning of “The Principle of Least Surprise” is that a design should be internally consistent, which is not the same thing as familiar.


Ruby’s existing use of variables and references is certainly consistent. And once you know what #returning does, it remains consistent. However, this design decision isn’t really about being consistent with Ruby’s implementation, we are debating how an idiom should be designed. I think we have a blank canvas and it’s reasonable to at least consider a version of #returning that handles assignment to the parameter.



  Rewriting #returning



The RewriteRails plug-in adds syntactic abstractions like Andand to Rails projects without monkey-patching. RewriteRails now includes its own version of #returning that overrides the #returning shipping with Rails.


When RewriteRails is processing source code, it turns code like this:



def registered_person(params = {})
  returning Person.new(params.merge(:registered => true)) do |person|
    if Registry.register(person)
      person.send_email_notification
    else
      person = Person.new(:default => true)
    end
  end
end







Into this:



def registered_person(params = {})
  lambda do |person|
    if Registry.register(person)
      person.send_email_notification
    else
      person = Person.new(:default => true)
    end
    person
  end.call(Person.new(params.merge(:registered => true)))
end







Note that in addition to turning the #returning “call” into a lambda that is invoked immediately, it also makes sure the new lambda returns the person variable’s contents. So assignment to the variable does change what #returning appears to return.


Like all processors in RewriteRails, #returning is only rewritten in .rr files that you write in your project. Existing .rb files are not affected, including all code in the Rails framework: RewriteRails will never monkey with other people’s expectations. RewriteRails doesn’t physically modify the .rr files you write: The rewritten code is put in another file that the Ruby interpreter sees. So you see the code you write and RewriteRails figures out what to show the interpreter. This is a little like a Lisp macro. 





3 About The Author


When he’s not shipping Ruby, Javascript and Java applications scaling out to millions of users, Reg “Raganwald” Braithwaite has authored libraries for Javascript and Ruby programming such as Katy, JQuery Combinators, YouAreDaChef, andand, and others.


He writes about programming on his “Homoiconic” un-blog as well as general-purpose ruminations on his posterous space. He is also known for authoring the popular raganwald programming blog from 2005-2008.


3.1 contact


Twitter: @raganwald

Email: raganwald@gmail.com



  [image: Reginald Braithwaite ]Reginald Braithwaite 




(Author’s Photograph (c) 2008 Joseph Hurtado, All Rights Reserved. http://www.flickr.com/photos/trumpetca/. Cover Photograph (c) 2011 Biker Jun. Some rights reserved.)



OEBPS/images/leanpub_warning.png





OEBPS/images/leanpub_exercise.png





OEBPS/images/leanpub_leanpub_logo.png
Leanpub






OEBPS/images/leanpub_information.png
1





OEBPS/images/leanpub_discussion.png





OEBPS/images/leanpub_question.png





OEBPS/images/leanpub_tip.png





OEBPS/images/leanpub_error.png





OEBPS/images/author_300dpi.jpg





OEBPS/images/leanpub-logo.png
Leanpub
EYy—33






OEBPS/images/title_page.jpg





