Coffee Break

A Simple Road to Data Science Mastery
That Fits Into Your Busy Life

MAYER, RIAZ, RIEGER

Coftfee Break Numpy

A Simple Road to Data Science Mastery
That Fits Into Your Busy Life

Christian Mayer, Zohaib Riaz, and Lukas Rieger

November 2018

A puzzle a day to learn, code, and play.

Contents

Contents

1 Introduction

2 Why Learn NumPy?

3 A Case for Puzzle-based Learning

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Overcome the Knowledge Gap
Embrace the Eureka Moment
Divide and Conquer
Improve From Immediate Feedback
Measure Your Skills
Individualized Learning
Small is Beautiful
Active Beats Passive Learning
Make Code a First-class Citizen

1i

ii

CONTENTS iii

3.10 What You See is All Thereis 25
4 The Elo Rating for Python—and NumPy 27
4.1 How to Use This Book 28
4.2 The Ideal Code Puzzle 30
4.3 How to Exploit the Power of Habits? . . . 31
4.4 How to Test and Train Your Skills? 32
4.5 What Can This Book Do For You? 36

5 A Quick Data Science Tutorial: The NumPy

Library 40
5.1 What is NumPy? 41
5.2 What can NumPy do for me? 42
5.3 What are the Limitations of NumPy? . . . 44
5.4 What are the Linear Algebra Basics You
Need to Know? 45

5.5 What are Arrays and Matrices in NumPy? 54
5.6 What are Axes and the Shape of an Array? 57
5.7 How to Create and Initialize NumPy Arrays? 60
5.8 How does indexing and slicing work in Python? 67
5.9 How Does Indexing and Slicing Work in

NumPy? 72

5.10 NumPy Cheat Sheet 79

6 NumPy Basics 81
6.1 NumPy 1D Array Creation. 82
6.2 NumPy 2D Array Creation 84

6.3 Extracting Array Dimensionality 86

iv CONTENTS
6.4 Accessing Array Shape 89
6.5 Averaging 1D Arrays 92
6.6 Working with Not a Number the Wrong

Way 95
6.7 Working with Not a Number the Right Way 97
6.8 Creating Numerical Sequences 99
6.9 Creating Numerical Intervals 101
6.10 Initializing Multi-Dimensional Arrays . . . 103
6.11 Revisiting Linear Algebra 106
6.12 Understanding the Hadamard Product . . 108
6.13 Broadcasting 111
6.14 Practicing Simple Indexing 114
6.15 The Boolean Indexing Trick 117
6.16 Slicing Matrices Like Paper 119
6.17 Simple Array Logic 123
6.18 Mastering Slice Assignments 126
6.19 Sorting an Array (Part 1) 128
6.20 Sorting an Array (Part 2) 130
6.21 Computing Array Element Differences . . 133
6.22 Computing Array of Cumulative Sums . . 135

7 Linear Algebra and Statistics 137
7.1 Calculating 1D Dot Product 137
7.2 Multiplying 2D Matrices 141
7.3 Enhancing Vector Operations 144
7.4 Linear Algebra Made Simple 147
7.5 Revisiting Average 151
7.6 Reshaping 1D Arrays 153

CONTENTS %

7.7 Averaging 2D Arrays 156
7.8 Weighted Averaging Along Axes 158
7.9 Calculating 1D Variance 161
7.10 Axis Variance of a 2D Array 163
7.11 1D Axis Standard Deviation 166
8 Practical Data Science 169
8.1 Statistical Operations 169

8.2 Data Cleaning or Living in an Unperfect
World 172
8.3 Understandig the Basics of Filters 174
8.4 Creating Filters 176
8.5 Mastering the Power of Filters 178
8.6 Applying Filters 180
8.7 Finding Array Elements 182

8.8 Leveraging Data Science to Boost Revenues
I o 184

8.9 Leveraging Data Science to Boost Revenues
Il .. 188

8.10 Finding and Locating Maximum Elements 192
8.11 Computing Number of Hospital Patients . 196
8.12 Finding Chunks of Allocated Memory . . . 199

8.13 Giving Meaning to the Mean 203
9 Final Remarks 207
Your skill level 208

Where to go from here? 209

1

Introduction

In the 21st century, a new skill penetrates every area of
our lives. As you will see, it is one of the most powerful
skills in the world. Harvard Business Review (HBR) la-
beled the profession that comes with this skill as the “sex-
iest job of the 21st century.” You can use it for good (e.g.,
improving the health of society) or for bad (e.g., hacking
democracy via massive-scale social network manipula-
tion). It threatens, directly or indirectly, every single hu-
man profession: millions of professional drivers, factory
workers, writers, medical doctors, researchers, teachers,
coders, retailers, salespeople, and small business owners.
Those people and many more may lose their job—only
because of this one skill. Why? Because it has the power
to create machines that surpass human-level performance
by magnitudes.

2 CHAPTER 1. INTRODUCTION

This skill is a new way of coding: data science.

The CEO of Siemens, Joe Kaeser, believes that data is
the new powerful asset class of the 21st century:

“Data is the oil, some say the gold, of the 21st
century — the raw material that our economaes,
societies and democracies are increasingly be-
ing built on.”

If data is the new asset class of the information society,
data scientists are the new investment bankers.

What is data science?

“Data science is an interdisciplinary field that
uses scientific methods, processes, algorithms,
and systems to extract knowledge and insights
from data in various forms, both structured
and unstructured.” ?

Data scientists use computers to gain insights from mas-
sive amounts of data. These insights have a profound
influence on the products we see, the medicines we take,
the education we enjoy, the movies we watch, the routes

https://www.linkedin.com/pulse/
technology-society-digital-transformation-joe-kaeser/
’https://en.wikipedia.org/wiki/Data_science

we drive, the holidays we choose, and the foods we pro-
duce and consume.

A powerful tool in the tool belts of data scientists is
machine learning. Machine learning, at its core, is the
discipline of teaching machines to detect patterns and
perform tasks by presenting them training data. In gen-
eral, the more training data, the better machines perform
in various tasks such as medical analysis, financial anal-
ysis, biotechnology, research, games, fraud detection—
with hundreds of new applications getting published ev-
ery day in diverse research disciplines such as biology,
mathematics, finance, engineering, history, and law the-
ory. More training data leads to a higher degree of au-
tomation which, in turn, generates better results much
quicker and cheaper than ever before.

So data is indeed the new asset class of the 21st cen-
tury. As of 2019, six of the ten world’s largest companies
(by market capitalization) are tech companies (Microsoft,
Google, Amazon, Apple, Facebook, Alibaba). FEach of
those companies expends significant effort to acquire a
growing chunk of this valuable asset class. For exam-
ple, those data sets consist of GPS location trajectories,
customer behaviors, social network activities, web surf-
ing behavior, health indicators, search interests—just to
name a few.

It’s a modern-day gold rush, and this book gives you the

4 CHAPTER 1. INTRODUCTION

shovel to participate. This book aims to be a stepping
stone on your path to becoming a master data scientist.
It helps you learn faster by making use of proven princi-
ples of good teaching. It offers you ten to twenty hours
of thorough training using a fun and effective training
technique, called practice testing. Practice testing is sci-
entifically proven to be one of the most efficient training
techniques (see Chapter 3.8). More than 60,000 online
students have successfully applied this learning system at
my Python online learning platform Finxter.com. And
practice testing will work for you, too.

This book focuses on one of the most popular program-
ming languages for data science and machine learning:
Python. A recent StackOverflow article The Incredible
Growth of Python?® shows that Python is one of the fastest
growing major programming languages. But this book
is not a general Python introduction like its predecessor
Coffee Break Python®. Instead, this book teaches you the
ins and outs of the NumPy library, which is used for nu-
merical computations, for data science, and—more and
more—for machine learning.

Let’s be blunt: without understanding the concepts and
ideas behind NumPy, you will not become a successful
data scientist.

Shttps://stackoverflow.blog/2017/09/06/
incredible-growth-python/
‘https://blog.finxter.com/coffee-break-python

P 2 P
Why Learn NumPy?

To show you the importance of NumPy, let us clarify
NumPy’s distinguished position as a crucial Python li-
brary among other existing libraries such as Pandas.

First and foremost, NumPy adds strongly to the basic
data structures in Python such as lists and dictionaries.
It does so by providing the fundamental array data struc-
ture and supports it with a pack of powerful functions for
data science. For example, you can easily compute basic
statistics on NumPy arrays such as average, variance,
standard deviation, and a lot of aggregator functions
(e.g., summing over a subset of values). Coupled with
these powerful functions, arrays can be used to process
high dimensional data while reducing the coding effort to
the minimum.

At the same time, NumPy offers you the flexibility of im-

6 CHAPTER 2. WHY LEARN NUMPY?

plementation which may be hard to achieve with other
high-level libraries for Python. For instance, consider the
Pandas library. Pandas is more specialized in handling
tabular data, i.e., rows and columns of values, which
is a popular format for many datasets. For this pur-
pose, Pandas offers a popular Datakrame object type,
which can read-in and manipulate data from standard
file formats such as the comma-separated-values (CSV).
DatakFrames offer a variety of 'data-crunching’ functions
such as grouping, merging, and statistics. However, we
may not always deal with tabular data in our data-science
pipeline. On many occasions, we may need to compute
special numerical functions over arrays or matrices. Here,
NumPy is more specialized and offers the needed flexi-
bility.

In our view, since Numpy adds to the basic capabilities
of Python (with its arrays), programmers who wish to
learn Python from the bottom up should learn NumPy
first. This view is also substantiated by understand-
ing how other popular data-processing tools work. For
example, the well-known MATLAB environment offers
NumPy like array/matrix handling capability as a basic
feature. Then as a high-level data-structure, it also offers
the handling of tabular data in the "table’ data-structure.

Hence, due to the powerful basic functionality offered
by NumPy, it clearly distinguishes itself among other
Python libraries. Moreover, it also forms a building block

to support the functionality of high-level libraries such as
Pandas.

3

A Case for Puzzle-based Learning

Definition: A code puzzle is an educative
snippet of source code that teaches a single
computer science concept by activating the
learner’s curiosity and involving them in the
learning process.

Like the other books in the Coffee Break Python series,
this book is based on the popular concept of puzzle-based
learning to code—tried and tested by tens of thousands
of online students and proven by educational science to
be superior to most other learning techniques.

But before diving into practical puzzle solving, let us first
study 10 reasons for puzzle-based learning—and why it
helps you to learn NumPy faster and keep the basics
longer. Feel free to skip this bonus chapter if you

8

already know about the benefits of puzzle-based
learning from previous learning material. As you
will see in this chapter, there is robust evidence in psy-
chological science for each of these reasons. Yet, none
of the existing coding books lift code puzzles to being
first-class citizens. Instead, they are mostly focused on
one-way teaching: the teacher speaks and you have to
listen. This book attempts to change that. In brief, the
10 reasons for puzzle-based learning are the following.

—_

. Overcome the Knowledge Gap (Section 3.1)

2. Embrace the Eureka Moment (Section 3.2)

3. Divide and Conquer (Section 3.3)

4. Improve From Immediate Feedback (Section 3.4)
5. Measure Your Skills (Section 3.5)

6. Individualized Learning (Section 3.6)

7. Small is Beautiful (Section 3.7)

8. Active Beats Passive Learning (Section 3.8)

9. Make Source Code a First-class Citizen (Section 3.9)

10. What You See is All There is (Section 3.10)

CHAPTER 3. A CASE FOR PUZZLE-BASED
10 LEARNING

3.1 Overcome the Knowledge
Gap

The great teacher Socrates delivered complex knowledge
by asking a sequence of questions. Each question built on
answers to previous questions provided by the student.
This more than 2400 year old teaching technique is still
in widespread use today. A good teacher opens a gap be-
tween their knowledge and the learner’s. The knowledge
gap makes the learner realize that they do not know the
answer to a burning question. This creates a tension in
the learner’s mind. To close this gap, the learner awaits
the missing piece of knowledge from the teacher. Better
yet, the learner starts developing their own answers. The
learner craves knowledge.

Code puzzles open an immediate knowledge gap. When
looking at the code, you first do not understand the
meaning of the puzzle. The puzzle’s semantics are hid-
den. But only you can transform the unsolved puzzle into
a solved one. Look at this riddle: “What pulls you down
and never lets go?” Can you feel the tension? Opening
and closing a knowledge gap is a very powerful method
for effective learning.!

Bad teachers open a knowledge gap that is too large. The
learner feels frustrated because they cannot overcome the

!The answer is Grawvity.

3.2. EMBRACE THE EUREKA MOMENT 11

gap. Suppose you are standing before a river that you
must cross. But you have not learned to swim yet. Now,
consider two rivers. The first is the Colorado River that
carved out the Grand Canyon—quite a gap. The sec-
ond is Rattlesnake Creek. The fact that you have never
heard of this river indicates that it is not too big of an
obstacle. Most likely, you will not even attempt to swim
through the big Colorado River. But you could swim
over the Rattlesnake if you stretch your abilities just a
little bit. You will focus, pep-talk yourself, and overcome
the obstacle. As a result, your swimming skills and your
confidence will grow a little bit.

Puzzles are like the Rattlesnake—they are not too great
a challenge. You must stretch yourself to solve them, but
you can do it, if you go all-out.

Constantly feeling a small but non-trivial knowledge gap
creates a healthy learning environment. Stretch your lim-
its, overcome the knowledge gap, and become better—
one puzzle at a time.

3.2 Embrace the Eureka Moment

Humans are unique because of their ability to learn. Fast
and thorough learning has always increased our chances
of survival. Thus, evolution created a brilliant biological
reaction to reinforce learning in your body. Your brain

CHAPTER 3. A CASE FOR PUZZLE-BASED
12 LEARNING

is wired to seek new information; it is wired to always
process data, to always learn.

Did you ever feel the sudden burst of happiness after
experiencing a eureka moment? Your brain releases en-
dorphins, the moment you close a knowledge gap. The
instant gratification from learning is highly addictive, but
this addiction makes you smarter. Solving a puzzle gives
your brain instant gratification. Easy puzzles lead to
small, hard puzzles, which lead to large knowledge gaps.
Overcome any of them and learn in the process.

3.3 Divide and Conquer

Learning to code is a complex task. You must learn a
myriad of new concepts and language features. Many
aspiring coders are overwhelmed by the complexity. They
seek a clear path to mastery.

People tend to prioritize specific activities with clearly
defined goals. If the path is not clear, we tend to drift
away toward more specific paths. Most aspiring coders
think they have a goal: becoming a better coder. Yet,
this is not a specific goal at all. So what is a specific goal?
Watching Breaking Bad after dinner, Series 2 Episode 1
is as specific as it can be. Due to the specificity, watching
Netflix is more powerful than the fuzzy path of learning
to code. Hence, watching Netflix wins most of the time.

3.3. DIVIDE AND CONQUER 13

As any productivity expert will tell you: break a big
task or goal into a series of smaller steps. Finishing each
tiny step brings you one step closer to your big goal.
Divide and conquer makes you feel in control, pushing
you one step closer toward mastery. You want to become
a master coder? DBreak the big coding skill into a list
of sub-skills—understanding language features, designing
algorithms, reading code—and then tackle each sub-skill
one at a time.

But how can you do this if you don’t know anything
about the topic yet? You cannot really comprehend the
important subtopics of the skill to be acquired—without
a mentor who has already been there and done that, your
learning speed will be slow. You don’t have time to waste,
do you?

Fortunately, code puzzles do this for you. They break up
the huge task of learning to code into a series of smaller
learning units. The student experiences laser focus on
one learning task such as matriz multiplication, the stan-
dard deviation, or slicing. Don’t worry if you do not un-
derstand these concepts yet—after working through this
book, you will.

A good code puzzle delivers a single idea from the au-
thor’s into the student’s head. You can digest one puzzle
at a time. Each puzzle is a step toward your bigger goal
of mastering data science. Keep solving puzzles and you

CHAPTER 3. A CASE FOR PUZZLE-BASED
14 LEARNING

keep improving your skills.

3.4 Improve From Immediate
Feedback

The right feedback is critical for your success. As a child,
you learned to walk by trial and error—try, get feedback,
adapt, and repeat. Unconsciously, you minimize nega-
tive and maximize positive feedback. You avoid falling
because it hurts. You seek the approval of your par-
ents. Feedback supervised your learning progress along
the way.

But not only organic life benefits from the great learning
technique of trial and error. In machine learning, algo-
rithms learn by guessing an output and adapting their
guesses based on their correctness. To learn anything,
you need feedback such that you can adapt your actions.

However, an excellent learning environment provides you
not only with feedback but with immediate feedback for
your actions.

In contrast, poor learning environments do not provide
any feedback at all or only with a large delay. Examples
are activities with good short-term and bad long-term
effects such as smoking, alcohol, or damaging the envi-
ronment. People cannot control these activities because

3.5. MEASURE YOUR SKILLS 15

of the delayed feedback. If you were to slap your friend
each time he lights a cigarette—a not overly drastic mea-
sure to safe his life—he would quickly stop smoking. If
you want to learn fast, make sure that your environment
provides immediate feedback. Your brain will find rules
and patterns to maximize the reinforcement from the im-
mediate feedback.

This book offers you an environment with immediate
feedback to make learning to code NumPy easy and fast.
Over time, your brain will absorb the meaning of a code
snippet quicker and with higher precision this way. Learn-
ing this skill pushes you toward the top 10% of all coders.
There are other environments with immediate feedback,
like executing code and checking correctness, but puzzle-
based learning is the most direct one: Each puzzle edu-
cates with immediate feedback.

3.5 Measure Your Skills

You need to have a definite goal to be successful. A
definite goal is a powerful motivator and pushes you to
stretch your skills constantly. The more definite and con-
crete it is, the stronger it becomes. Holding a definite
goal in your mind is the first and foremost step toward
its physical manifestation. Your beliefs bring your goal
into reality.

CHAPTER 3. A CASE FOR PUZZLE-BASED
16 LEARNING

Think about an experienced Python programmer you
know, e.g., your nerdy colleague or class mate. How good
are their Python skills compared to yours? On a scale
from your grandmother to Bill Gates, where is your col-
league and where are you? These questions are difficult
to answer because there is no simple way to measure the
skill level of a programmer. This creates a severe problem
for your learning progress: the concept of being a good
programmer becomes fuzzy and diluted. What you can’t
measure, you can’t improve. Not being able to measure
your coding skills diverts your focus from systematic im-
provement. Your goal becomes less definite.

So what should be your definite goal when learning a pro-
gramming language? To answer this, let us travel briefly
to the world of chess, which happens to provide an ex-
cellent learning environment for aspiring players. Every
player has an Elo rating number that measures their skill
level. You get an Elo rating when playing against other
players—if you win, your Elo rating increases. Victories
against stronger players lead to a greater increase of the
Elo rating. Every ambitious chess player simply focuses
on one thing: increasing their Elo rating. The ones that
manage to push their Elo rating very high, earn grand
master titles. They become respected among chess play-
ers and in the outside world.

Every chess player dreams of being a grandmaster. The
goal is as definite as it can be: reaching an Elo of 2400

3.5. MEASURE YOUR SKILLS 17

and master level (see Section 4). Thus, chess is a great
learning environment—every player is always aware of
their skill level. A player can measure how decisions and
habits impact their Elo number. Do they improve when
sleeping enough before important games? When training
opening variants? When solving chess puzzles? What
you can measure, you can improve.

The main idea of this book, and the associated learning
app Finxter.com, is to transfer this method of measur-
ing skills from the chess world to programming. Suppose
you want to learn Python. The Finxter website assigns
you a rating number that measures your coding skills.
Every Python puzzle has a rating number as well, ac-
cording to its difficulty level. You ‘play’ against a puzzle
at your difficulty level: The puzzle and you will have
more or less the same Elo rating so that you can enjoy
personalized learning. If you solve the puzzle, your Elo
increases and the puzzle’s Elo decreases. Otherwise, your
Elo decreases and the puzzle’s Elo increases. Hence, the
Elo ratings of the difficult puzzles increase over time. But
only learners with high Elo ratings will see them. This
self-organizing system ensures that you are always chal-
lenged but not overwhelmed, while you constantly receive
feedback about how good your skills are in comparison
with others. You always know exactly where you stand
on your path to mastery.

CHAPTER 3. A CASE FOR PUZZLE-BASED
18 LEARNING

3.6 Individualized Learning

The educational system today is built around the idea
of classes and courses. In these environments, all stu-
dents consume the same learning material from the same
teacher applying the same teaching methods. This tra-
ditional idea of classes and courses has a strong foun-
dation in our culture and social thinking patterns. Yet,
science proves again and again the value of individual-
ized learning. Individualized learning tailors the content,
pace, style, and technology of teaching to the student’s
skills and interests. Of course, truly individualized learn-
ing has always required a lot of teachers. But paying a
high number of teachers is expensive (at least in the short
term) in a non-digital environment.

In the digital era, many fundamental limitations of our
society begin to crack. Compute servers and intelligent
machines can provide individualized learning with ease.
But with changing limitations, we must adapt our think-
ing as well. Machines will enable truly individualized
learning very soon; yet society needs time to adapt to
this trend.

Puzzle-based learning is a perfect example of automated,
individualized learning. The ideal puzzle stretches the
student’s abilities and is neither boring nor overwhelm-
ing. Finding the perfect learning material for each learner
is an important and challenging problem. The Finxter

3.7. SMALL IS BEAUTIFUL 19

learning system uses a simple but effective solution to
solve this problem: the Elo rating system. The student
solves puzzles at their individual skill level. This book
with it’s web backend Finxter pushes teaching toward
individualized learning.

3.7 Small is Beautiful

The 21st century has seen a rise in microcontent. Mi-
crocontent is a short and accessible piece of valuable in-
formation such as the weather forecast, a news headline,
or a cat video. Social media giants like Facebook and
Twitter offer a stream of never-ending microcontent. Mi-
crocontent is powerful because it satisfies the desire for
shallow entertainment. Microcontent has many benefits:
the consumer stays engaged and interested, and it is eas-
ily digestible in a short time. Each piece of microcontent
pushes your knowledge horizon a bit further. Today, mil-
lions of people are addicted to microcontent.

However, this addiction will also become a problem to
these millions. The computer science professor Cal New-
port shows in his book Deep Work that modern society
values deep work more than shallow work. Deep work is
a high-value activity that needs intense focus and skill.
Examples of deep work are programming, writing, or re-
searching. Contrarily, shallow work is every low-value
activity that can be done by everybody (e.g., posting

CHAPTER 3. A CASE FOR PUZZLE-BASED
20 LEARNING

cat videos to social media). The demand for deep work
grew with the rise of the information society; at the same
time, the supply stayed constant or decreased, among
other things because of the addictiveness of shallow so-
cial media. People that see and understand this trend
can benefit tremendously. In a free market, the prices
of scarce and demanded resources rise. Because of this,
surgeons, lawyers, and software developers earn $100,000
per year and more. Their work cannot easily be replaced
or outsourced to unskilled workers. If you are able to
do deep work, to focus your attention on a challenging
problem, society pays you generously.

What if we could marry the concepts of microcontent and
deep work? This is the promise of puzzle-based learning.
Finxter offers a stream of self-contained microcontent in
the form of hundreds of small code puzzles. But instead
of just being unrelated microcontent, each puzzle is a
tiny stimulus that teaches a coding concept or language
feature. Hence, each puzzle pushes your knowledge in
the same direction.

Puzzle-based learning breaks the bold goal, i.e., reach
the mastery level in Python’s NumPy library, into tiny
actionable steps: solve and understand one code puzzle
per day. While solving the smaller tasks, you progress
toward your larger goal. You take one step at a time
to eventually reach the mastery level. A clear path to
success.

3.8. ACTIVE BEATS PASSIVE LEARNING 21

3.8 Active Beats Passive Learning

Robust scientific evidence shows that active learning dou-
bles students’ learning performance. In a study on this
topic, test scores of active learners improved by more
than one grade compared to their passive learning fellow
students.? Not using active learning techniques wastes
your time and hinders you in reaching your full potential
in any area of life. Switching to active learning is a sim-
ple tweak that will instantly improve your performance
when learning any subject.

How does active learning work? Active learning requires
the student to interact with the material, rather than
simply consuming it. It is student- rather than teacher-
centric. Great active learning techniques are asking and
answering questions, self-testing, teaching, and summa-
rizing. A popular study shows that one of the best learn-
ing techniques is practice testing.®> In this learning tech-
nique, you test your knowledge even if you have not
learned everything yet. Rather than learning by doing,
it’s learning by testing.

However, the study argues that students must feel safe
during these tests. Therefore, the tests must be low-

2 https://en.wikipedia.org/wiki/Active_learning#

Research_evidence
3 http://journals.sagepub.com/doi/abs/10.1177/
1529100612453266

CHAPTER 3. A CASE FOR PUZZLE-BASED
22 LEARNING

stake, i.e., students have little to lose. After the test,
students get feedback about the correctness of the tests.
The study shows that practice testing boosts long-term
retention of the material by almost a factor of 10. As it
turns out, solving a daily code puzzle is not just another
learning technique—it is one of the best.

Although active learning is twice as effective, most books
focus on passive learning. The author delivers informa-
tion; the student passively consumes the information.
Some programming books include active learning ele-
ments by adding tests or by asking the reader to try out
the code examples. Yet, I always found this impractica-
ble while reading on the train, on the bus, or in bed. But
if these active elements drop out, learning becomes 100%
passive again.

Fixing this mismatch between research and common prac-
tice drove me to write my Coffee Break Python book se-
ries about puzzle-based learning of Python and Python’s
libraries. In contrast to other books, this book makes
active learning a first-class citizen. Solving code puzzles
is an inherent active learning technique. You must de-
velop the solution yourself, in every single puzzle. The
teacher is as much in the background as possible—they
only explain the correct solution if you couldn’t work it
out yourself. But before telling you the correct solution,
your knowledge gap is already ripped wide open. Thus,
you are mentally ready to digest new material.

3.9. MAKE CODE A FIRST-CLASS CITIZEN 23

Let me emphasize this argument again: puzzle-based
learning is a variant of the active learning technique named
practice testing. Practice testing is scientifically proven
to teach you more in less time.

3.9 Make Code a First-class
Citizen

Each grandmaster of chess has spent tens of thousands
of hours looking into myriad chess positions. Over time,
they develop a powerful skill: the intuition of the expert.
When presented with a new position, they are able to
name a small number of strong candidate moves within
seconds. They operate on a higher level than normal
people. For normal people, the position of a single chess
piece is one chunk of information. Hence they can only
memorize the position of about six chess pieces. But
chess grand masters view a whole position or a sequence
of moves as a single chunk of information. The extensive
training and experience has burned strong patterns into
their biological neural networks. Their brain is able to
hold much more information—a result of the good learn-
ing environment they have put themselves in.

What are some principles of good learning? Let us dive
into another example of a great learning environment—
this time for machines. Google’s artificial intelligence Al-

CHAPTER 3. A CASE FOR PUZZLE-BASED
24 LEARNING

phaZero has proven to be the best chess playing entity in
the world. AlphaZero uses artificial neural networks. An
artificial neural network is the digital twin of the human
brain with artificial neurons and synapses. It learns by
example much like a grandmaster of chess. It presents it-
self a position, predicts a move, and adapts its prediction
to the extent the prediction was incorrect.

Chess and machine learning exemplify principles of good
learning that are valid in any field you want to master.
First, transform the object to learn into a stimulus that
you present to yourself over and over again. In chess,
study as many chess positions as you can. In math, make
reading mathematical papers with theorems and proofs a
habit. In coding, expose yourself to lots of code. Second,
seek feedback. Immediate feedback is better than de-
layed feedback. However, delayed feedback is still much
better than no feedback at all. Third, take your time to
learn and understand thoroughly. Although it is possible
to learn on-the-go, you will cut corners. The person who
prepares beforehand always has an edge. In the world of
coding, some people recommend learning by coding prac-
tical projects and doing nothing more. Chess grandmas-
ters, sports stars, and intelligent machines do not follow
this advice. They learn by practicing isolated stimuli
again and again until they have mastered them. Then
they move on to more complex stimuli.

Puzzle-based learning is code-centric. You will find your-

3.10. WHAT YOU SEE IS ALL THERE IS 25

self staring at the code for a long time until the insight
strikes. This creates new synapses in your brain that
help you understand, write, and read code fast. Placing
code at the center of the whole learning process creates
an environment in which you will develop the powerful
intuition of the expert. Maximize the learning time you
spend looking at code rather than at other stimuli.

3.10 What You See is All There is

My professor of theoretical computer science used to tell
us that if we only stare long enough at a proof, the mean-
ing will transfer into our brains by osmosis. This fosters
deep thinking, a state of mind where learning is more pro-
ductive. In my experience, his staring method works—
but only if the proof contains everything you need to
know to solve it. It must be self-contained.

A good code puzzle beyond the most basic level is self-
contained. You can solve it purely by staring at it until
your mind follows your eyes—your mind develops a solu-
tion based on rational thinking. There is no need to look
things up. If you are a great programmer, you will find
the solution quickly. If not, it will take more time but you
can still find the solution—it is just more challenging.

My gold standard was to design each puzzle such that it is
mostly self-contained. However, to deliver on the book’s

CHAPTER 3. A CASE FOR PUZZLE-BASED
26 LEARNING

promise of training your understanding of the Python
basics, puzzles must introduce syntactical language ele-
ments as well. But even if the syntax in a puzzle chal-
lenges you, you should still develop your own solutions
based on your imperfect knowledge. This probabilis-
tic thinking opens the knowledge gap and prepares your
brain to receive and digest the explained solution. After
all, your goal is long-term retention of the material.

4

The Elo Rating for Python—and
NumPy

Pick any sport you always loved to do. How good are
you compared to others? The Elo rating answers this
question with surprising accuracy. It assigns a number
to each player that represents their skill in the sport. The
higher the Elo number, the better the player.

Let us give a small example of how the Elo rating works
in chess. Alice is a strong player with an Elo rating of
2000 while Bob is an intermediate player with Elo 1500.
Say Alice and Bob play a chess game against each other.
Who will win the game? As Alice is the stronger player,
she should win the game. The Elo rating system rewards
players for good and punishes for bad results: the better
the result, the higher the reward. For Bob, a win, or
even a draw, would be a very good outcome of the game.

27

CHAPTER 4. THE ELO RATING FOR
28 PYTHON—AND NUMPY

For Alice, the only satisfying result is a win. Winning
against a weaker player is less rewarding than winning
against a stronger player. Thus, the Elo rating system
rewards Alice with only 43 Elo points for a win. A loss
costs her -37 Elo points, and even a draw costs her -17
points. Playing against a weaker player is risky for her
because she has much to lose but little to win.

The idea of Finxter is to view your learning as a se-
ries of games between two players: you and the Python
puzzle. Both players have an Elo rating. Your rating
measures your current skills and the puzzle’s rating re-
flects its difficulty. On our website finxter.com, a puzzle
plays against hundreds of Finxter users. Over time, the
puzzle’s Elo rating converges to its true difficulty level—
while your Elo rating converges to your true skill level.
A compelling idea, isn’t it?

Table 4.1 shows the ranks for each Elo rating level. The
table is an opportunity for you to estimate your Python

skill level. In the following, I describe how you can use
this book to test your Python skills.

4.1 How to Use This Book

This book provides a series of 48 code puzzles plus expla-
nations to test and train your NumPy skills. The puz-
zles start from an intermediate level and become gradu-

4.1. HOW TO USE THIS BOOK

Elo rating Rank
2500 World Class

2400-2500 Grandmaster
2300-2400 International Master
2200-2300 Master
2100-2200 National Master
2000-2100 Master Candidate
1900-2000 Authority
1800-1900 Professional
1700-1800 Expert
1600-1700 | Experienced Intermediate
1500-1600 Intermediate
1400-1500 Experienced Learner
1300-1400 Learner
1200-1300 Scholar
1100-1200 Autodidact
1000-1100 Beginner

0-1000 Basic Knowledge

Table 4.1: Elo ratings and skill levels.

29

CHAPTER 4. THE ELO RATING FOR
30 PYTHON—AND NUMPY

ally harder to reach advanced level. This book is perfect
for users who have already reached intermediate Python
coding level. Yet, even expert users can improve their
speed of code understanding. No matter your current
skill level, you will benefit from puzzle-based learning. It
will deepen and accelerate your understanding of basic
coding patterns. But even more importantly, you will
take the first step towards your thorough data science
education.

4.2 The Ideal Code Puzzle

The ideal code puzzle possesses each of the following six
properties. The puzzle

1. has a surprising result;
2. provides new information;

is relevant and practical;

- W

delivers one main idea;

. can be solved by thinking alone; and

(@

6. is challenging but not overwhelming.

This was the gold standard for all the puzzles created in
this book. I did my best to adhere to this standard.

4.3. HOW TO EXPLOIT THE POWER OF HABITS?

4.3 How to Exploit the Power of
Habits?

You are what you repeatedly do. Your habits determine
your success in life and in any specific area such as cod-
ing. Creating a powerful learning habit can take you
a long way on your journey to becoming a code mas-
ter. Charles Duhigg, a leading expert in the psychology
of habits, shows that each habit follows a simple process
called the habit loop. This process consists of three steps:
trigger, routine, and reward.! First, the trigger starts the
process. A trigger can be anything such as drinking your
morning coffee. Second, the routine is an action you take
when presented with the trigger. An example routine is
to solve a code puzzle. Each routine is in anticipation
of a reward. Third, the reward is anything that makes
you feel good. When you overcome a knowledge gap,
your brain releases endorphins—a powerful reward. Over
time, your habit becomes stronger—you seek the reward.

Habits with strong manifestations in these three steps are
life-changing. Invest 10% of your paycheck every month
and you will be rich one day. Get used to the habit of
solving one Python (or NumPy) puzzle a day as you drink
your morning coffee—and enjoy the endorphin dose in
your brain. Implementing this Finxzter loop in your day

! Charles Duhigg, The Power of Habit: Why We Do What We
Do in Life and Business.

CHAPTER 4. THE ELO RATING FOR
32 PYTHON—AND NUMPY

sets up an automatic progress toward you becoming a
better and better coder. As soon as you have established
the Finxter loop as a strong habit, it will cost you neither
a lot of time, nor energy. This is self-engineering at its
finest level.

4.4 How to Test and Train Your
Skills?

I recommend solving at least one or two code puzzles
every day—e.g., as you drink your morning coffee. Then
you spend the rest of your learning time on real projects
that matter to you. The puzzles guarantee that your
skills improve over time and the real project brings you
results.

If you want to test your NumPy skills, use the following
simple method.

1. Track your individual Elo rating as you read the
book and solve the code puzzles. Simply write your
current Elo rating into the book. Start with an ini-
tial rating of 1500 if you are a Python intermediate
who is just starting out with NumPy. Otherwise,
adapt this initial rating towards your estimated
skill level in Python. Of course, if you already have
an online rating on finxter. com, starting with this

4.4. HOW TO TEST AND TRAIN YOUR SKILLS?33

rating would be the most precise option. Figure 4.4
shows five different examples of how your Elo will
change while working through the book. Two fac-
tors impact the final rating: how you select your
initial rating and how well you perform (the latter
being more important).

2. If your solution is correct, add the Elo points ac-
cording to the table given with each single puzzle.
Otherwise, subtract the given Elo points from your
current Elo number.

Solve the puzzles in a sequential manner because they
build upon each other. Advanced readers can also solve
puzzles in the sequence they wish—the Elo rating will
still work. The Elo rating will become more accurate as
you solve more and more puzzles. Although only an esti-
mate, your Elo rating is an objective measure to compare
your skills with the skills of others. Several Finxter users
have reported that the rating is surprisingly accurate.

Use the following training plan to develop a strong learn-
ing habit with puzzle-based learning.

1. Select a daily trigger after which you solve code
puzzles for 10 minutes. For example, decide on your
Coffee Break NumPy, or even solve code puzzles as
you brush your teeth or sit on the train to work,
university, or school.

CHAPTER 4. THE ELO RATING FOR
34 PYTHON—AND NUMPY

Grand master

2500 ___o==-- =y
2000 1=
@]
= 1500
o
3
S 10001
500 A
—»— Beginner, 50% correct —— Beginner, 0% correct
01— Intermediate, 50% correct —=- Advanced, 100% correct
—e— Advanced, 50% correct
0 10 20 30 40 50

Number of Solved Puzzles

Figure 4.1: This plot exemplifies how your Elo rating may
change while you work through the 50 code puzzles. No
matter how you select your initial Elo, it will converge on
your true skill level as you solve more puzzles. Note that
you will lose Elo points faster when you have a higher
Elo number. Your final Elo will be anywhere between
900 and 2500 after working through this book.

4.4.

HOW TO TEST AND TRAIN YOUR SKILLS?35

Scan over the puzzle in a first quick pass and ask
yourself: what is the unique idea of this puzzle?

Dive deeply into the code. Try to understand the
purpose of each symbol, even if it seems trivial at
first. Avoid being shallow and lazy. Instead, solve
each puzzle thoroughly and take your time. It’s
counterintuitive: To learn faster in less time, you
must stay calm and take your time and allow your-
self to dig deep. There is no shortcut.

Make sure you carry a pen with you and write your
solution into the book. This ensures that you stay
objective—we all have the tendency to fake our-
selves. Active learning is a central idea of this book.

Look up the solution and read the explanation with
care. Do you understand every aspect of the code?
Write open questions down and look them up later,
or send them to me (info@finxter.com). I will do
everything I can to come up with a good explana-
tion.

Only if your solution was 100% correct—including

whitespaces, data types, and formatting of the output—

do you get Elo points for this puzzle. Otherwise you
should count it as a wrong solution and swallow the
negative Elo points. The reason for this strict rule

CHAPTER 4. THE ELO RATING FOR
36 PYTHON—AND NUMPY

is that this is the best way to train yourself to solve
the puzzles thoroughly.

As you follow this simple training plan, your skill to un-
derstand source code quickly will improve. Over the long
haul, this will have a huge impact on your career, income,
and work satisfaction. You do not have to invest much
time because the training plan requires only 10-20 min-
utes per day. But you must be persistent in your training
effort. If you get off track, get right back on track the
next day. When you run out of code puzzles, feel free to
checkout Finxter.com, which has more than 300 hand-
crafted code puzzles. I regularly publish new code puzzles
on the website as well.

4.5 What Can This Book Do For
You?

Before we dive into puzzle solving, let me anticipate and
address possible misconceptions about this book.

The puzzles are too easy/too hard. This book is for you
if you already have some experience in coding. Your skill
level in the Python programming language ranges from
intermediate to expert. Even so, if you are already an ad-
vanced coder, this book is for you as well—if you read it
in a different way. Measure the time you need to solve the

4.5. WHAT CAN THIS BOOK DO FOR YOU? 37

puzzles and limit your solution time to only 10-20 sec-
onds. This introduces an additional challenge for solving
the puzzles: time pressure. Solving puzzles under time
pressure sharpens your rapid code understanding skills
even more. Eventually, you will feel that your coding in-
tuition has improved. If the puzzles are too hard, great.
Your knowledge gap must be open before you can effec-
tively absorb information. Just take your time to thor-
oughly understand every bit of new information.

Learning to code 1s best done via coding on projects. This
is only part of the truth. Yes, you can improve your skills
to a certain level by diving into practical projects. But
as in every other discipline, your skills will quickly hit
your personal ceiling. Your ceiling is the maximum skill
level you are able to reach, given your current limita-
tions. These limitations come from a lack of thorough un-
derstanding of basic knowledge. You cannot understand
higher-level knowledge properly without understanding
the basic building blocks. Have you ever used machine
learning techniques in your work? Without theoretical
foundations, you are doomed. Theory pushes your ceil-
ing upwards and gets rid of the limitations that hold you
back.

Abraham Lincoln said: “Give me six hours to chop down
a tree and I will spend the first four sharpening the axe.”
Do not fool yourself into the belief that just doing it is
the most effective road to reach any goal. You must con-

CHAPTER 4. THE ELO RATING FOR
38 PYTHON—AND NUMPY

stantly sharpen the axe to be successful in any discipline.
Learning to code is best done via practical coding and in-
vesting time into your personal growth. Millions of com-
puter scientists enjoyed an academic education. They
know that solving hundreds or thousands of toy examples
in their studies built a strong and thorough foundation.

How am I supposed to solve this puzzle if I do not know
the meaning of this specific NumPy function? Guess it!
Python is an intuitive language, and NumPy has very
intuitive naming of its functions. Think about potential
meanings. Solve the puzzle for each of them—a good
exercise for your brain. The more you work on the puzzle,
even with imperfect knowledge, the better you prepare
your brain to absorb the puzzle’s explanation.

Why should I buy the book when puzzles are available for
free at Finxzter. com? My goal is to remove barriers to
learning Python. Thus, all puzzles are available for free
online. This book is based on the puzzles available at
Finxter, but it extends them with more detailed and
structured information. Nevertheless, if you don’t like
reading books, feel free to check out the website.

Anyway, why do some people thrive in their fields and
become valued experts while others stagnate? They read
books in their field. They increase their value to the mar-
ketplace by feeding themselves with valuable information.
Over time, they have a huge advantage over their peers.

4.5. WHAT CAN THIS BOOK DO FOR YOU? 39

They get the opportunities to develop themselves even
further. They enjoy their jobs and have much higher
work satisfaction and life quality. Belonging to the top
ten percent in your field yields hundreds of thousands of
dollars during your career. However, there is a price you
have to pay to unlock the gates to this world: you have
to invest in books and your own personal development.
The more time and money you spend on books, the more
valuable you become to the marketplace!

The Elo-based rating is not accurate. Several finxters find
the rating helpful, fair, and accurate in comparison to
others. It provides a good indication of where one stands
in the field of Python coders. If you feel the rating is not
accurate, ask yourself whether you are objective. If you
think you are, please let me know so that I have a chance
to improve this book and the Finxter back-end.

5

A Quick Data Science Tutorial: The
NumPy Library

This tutorial gives you a simple introduction, with many
practical examples, to Python’s NumPy library. You
don’t need any prerequisites to follow the tutorial. The
idea of the tutorial is to give you everything you need to
know to successfully solve the puzzles in the later parts
of the book.

By working through the tutorial, you will gain a basic un-
derstanding of the most important NumPy functionality.
Moreover, it will give you references to further reading
as well as “next steps.” Reading this tutorial takes 20-30
minutes and will be a fertile investment in your educa-
tion and your coding efficiency. It’s our belief that the
purpose of any good learning material is to ultimately
save your time.

40

5.1. WHAT IS NUMPY? 41

So without further introduction, let’s dive into the NumPy
library in Python.

5.1 What is NumPy?

NumPy is a Python library that allows you to perform
numerical calculations. Think about linear algebra in
school or university—NumPy is the Python library for it.
It’s about matrices and vectors—and performing mathe-
matical operations on them.

At the heart of NumPy is a basic data type, called the
NumPy array. A NumPy array may have a number of
dimensions, thus allowing it to represent quantities such
as vectors (1D), matrices (2D), or higher dimensional ar-
rays such as tensors. A NumPy array allows only one
data type for all its elements. In this sense, NumPy ar-
rays are different from Python lists that allow arbitrary
data types. Therefore we say that NumPy requires homo-
geneous data values, so a NumPy array contains either
integer or float values, but not both at the same time.
These data type restrictions allow NumPy to specialize
in providing efficient linear algebra operations.

Among those operations are maximum, minimum, aver-
age, standard deviation, variance, dot product, matrix
product, and many more. NumPy implements these op-
erations efficiently and in an easy-to-use manner. By

CHAPTER 5. A QUICK DATA SCIENCE
42 TUTORIAL: THE NUMPY LIBRARY

learning NumPy, you equip yourself with a powerful tool
for data analysis on numerical multi-dimensional data.
But you may ask (and rightly so):

5.2 What can NumPy do for me?

Fear of missing out in machine learning and data science?
Learning NumPy now is a great first step into the field
of machine learning and data science. In machine learn-
ing, crucial algorithms and data structures rely on matrix
computations, which are efficiently handled by NumPy.
As said earlier, matrices in NumPy are nothing but ar-
rays with homogenous data, for example, float values.

NumPy is among the most popular libraries in Python.
Most machine learning experts agree that Python is the
top programming language for machine learning. Within
Python, NumPy is one of the most important libraries for
data science and machine learning. For instance, search-
ing for the keyword ‘NumPy machine learning’ reveals
more than 3 million pages. Compare this to Python’s
scikit-learn library that directly addresses machine learn-
ing and results in approximately 3 million pages as well.
So NumPy is as popular for machine learning as scikit-
learn in Python! As you can see, NumPy produces as
many results—even though it is not directly addressing
machine learning (unlike scikit-learn).

5.2. WHAT CAN NUMPY DO FOR ME? 43

No matter which library is more popular, NumPy is the
600-pound Gorilla in the machine learning and data sci-
ence space. If you are serious about your career as a data
scientist, you have to conquer NumPy now!

But NumPy is not only important for machine learn-
ing and data science. NumPy’s diverse functionality and
its computational efficiency leads to its use in various
fields such as mathematics, electrical engineering, high-
performance computing, and simulations.

Also, if you need to visualize data, you are very reliant on
the NumPy library. Here is an example from the official
documentation of Python’s plotting library matplotlib.
You can see a small script that plots a linear, quadratic,
and cubic function. It uses only two libraries: matplotlib
and, obviously, NumPy!

import numpy as np
import matplotlib.pyplot as plt

evenly distributed data between 0 and 1
x = np.arange(0., 1., 0.1)

xkcd-styled plot
plt.xkcd()

linear, quadratic, and cubic plots
plt.plot(x, x, 'v-', x, x**2, 'x-', x, x**3, 'o-')

CHAPTER 5. A QUICK DATA SCIENCE

44 TUTORIAL: THE NUMPY LIBRARY
plt.savefig("functions.pdf")
plt.show()
v
p
0.8- v
7
o 7
6 ///’)
/V
0.4- v/v /.
0.2- /V/ /.
v -
0.0+ o=—e=—e—"*

Wherever you go in Python, NumPy is already there!

5.3 What are the Limitations of
NumPy?

The focus of NumPy is working with numerical data.
It’s both powerful and low-level, thereby providing basic
functionality for high-level algorithms. If you enter the
machine learning and data science space, you want to

5.4. WHAT ARE THE LINEAR ALGEBRA BASICS
YOU NEED TO KNOW? 45

master NumPy first. But eventually, you will use other
libraries that operate on a higher level such as Tensor-
Flow, Pandas, and scikit-learn. Those libraries contain
out-of-the-box machine learning functions such as train-
ing and inference algorithms. Have a look at them after
reading this tutorial.

Nevertheless, NumPy’s handy functionality will definitely
help you to use any off-the-shelf machine learning algo-
rithms effectively. For example, it will typically allow
you to pre-process your datasets and to post-process the
predictions made by your trained machine-learning al-
gorithms. If you do not understand the last sentence,
don’t worry. Simply stated, you will gradually find out
that NumPy is often used alongside popular machine-
learning and data-science libraries such as scikit-learn,
TensorFlow, and Keras.

5.4 What are the Linear Algebra
Basics You Need to Know?

NumPy is all about manipulating arrays. By learning
NumPy, you will also learn and refresh your basic linear
algebra skills from school. We will also repeat many con-
cepts of linear algebra in this book. It’s always better
to learn the concepts first and the tools later. NumPy
is only a specific tool that implements these concepts of

CHAPTER 5. A QUICK DATA SCIENCE
46 TUTORIAL: THE NUMPY LIBRARY

linear algebra.

At the center of linear algebra stands the solution of lin-
ear equations. Here is one of those equations:

y=2x+4

If you plot this equation, you get the following output:
30-

25
20-
> 15-

As you can see, the equation y = 2x+4 leads to a straight
line on the space. This line defines a relationship between
the values on the x-axis and the y-axis. Particularly, it

5.4. WHAT ARE THE LINEAR ALGEBRA BASICS
YOU NEED TO KNOW? 47

allows the value of y to be determined for any given value
of .

Let me repeat this: You can determine the value of y for
any given value of the input z.

As it turns out, this is the very goal of any machine
learning technique. From a bunch of data values belong-
ing to certain variables (e.g, and y), you want to find
a function that describes the relationship between these
variables. In machine learning this is called the learning
phase. Subsequently you can use the learned function
to “predict” the output value for any new input value.
It works, even if you have never seen this input before.
This second phase is called the inference phase.

Linear algebra helps you solve equations to do exactly
that.

Here is an example with some fake data. Say, you have
learned the relationship between the work ethics in num-
ber of hours worked per day and hourly wage in US dol-
lars. Your learned relationship, also called a “model,” is
the equation y = 2z + 4. The input x is the number
of hours worked per day and the output y is the hourly
wage.

With this model, you can predict how much your boss
earns based on the number of hours he or she invests in
work. It works just like a machine: you put in x and
get out y. This is what machine learning is all about:

CHAPTER 5. A QUICK DATA SCIENCE
48 TUTORIAL: THE NUMPY LIBRARY

learning a model representing the relationship between
different variables using data from past observations and,
later, using this model for making precise predictions.

30-
» 25-
5 _ observations \(//\f
-8 20 >{//\
C //\
3
()
g
<
S predictions
w
O- 1 1 1 1 1
o) 2 4 6 8
Working time (h)

Here is the script that does this plot for us. For simplicity,
we do not include the code that labels the data points as
observations and predictions.

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0., 10., 1)

5.4.

WHAT ARE THE LINEAR ALGEBRA BASICS

YOU NEED TO KNOW? 49
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]

y=2*x+4

[4. 6. 8. 10. 12. 14. 16. 18. 20. 22.]
print(x)

print (y)

xkcd-styled plot

plt.

plt
plt
plt
plt

plt

xkecd ()

.plot(x, y, 'x-')
.xlabel("Working time (h)")
.ylabel ("Earnings per hour ($)")
.y1im((0,30))

.tight_layout ()
plt.
plt.

savefig("simple_linear_equation_example.pdf")
show ()

As you can see, before doing anything else in the script,
we have to import the NumPy library. Use the statement
import NumPy as np to do so. Each time you want to
call a NumPy function, you have to use the short-name

(np7

(e.g., np.average(x)). In theory, you can specify

any other short-name, but it is better not to do this.
The name ‘np’ has crystallized as a convention for the

CHAPTER 5. A QUICK DATA SCIENCE
50 TUTORIAL: THE NUMPY LIBRARY

NumPy library, so every experienced coder will expect
adherence to this convention.

After the initial import, we create a series of floating
point values between 0 and 9. These values serve as the
x values that we want to map to their respective function
values y = f(x). The variable x holds a NumPy array of
those floating point values.

The variable y holds a NumPy array of the same size.
It’s our output—one for each observed x value. Do you
see the basic arithmetic of how to get the y values?

The equation y = 2x 4+ 4 seems to do the same thing as
discussed in the previous equation. But as it turns out,
the meaning is very different: x is not a numerical value,
it is a NumPy array!

When calculating y = 2x + 4, we are basically multiply-
ing the NumPy array by 2 and adding the constant 4
to it. These are basic mathematical operations on multi-
dimensional NumPy arrays, not just single numerical val-
ues.

Investigating these kinds of operations lies at the core of
linear algebra. The NumPy array in the example is called
a one-dimensional matrix or a vector of scalar values.
The matrix x consists of 10 floating point values between
0 and 9 (inclusive): [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]. How
do we know that the values in the NumPy array are of
type float? We indicate this by writing a dot “.” after

