THE
CODING DOJO
HANDBOOK

a practical guide to —
creating a space

where good programmers
can become great programmers &

Emily Bache
Foreword by Robert C. Martin

The Coding Dojo Handbook

a practical guide to creating a space
where good programmers can
become great programmers

Emily Bache

This book is for sale at
http://leanpub.com/codingdojohandbook

This version was published on 2013-10-15

ISBN 978-91-981180-0-1

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
tfeedback, pivot until you have the right book and build
traction once you do.

©2012 - 2013 Emily Bache. Cover picture copyright
Topaz/Flonline.

http://leanpub.com/codingdojohandbook
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Contents

Foreword, i
Introduction iv
Acknowledgments L. vi
How to Read ThisBook viii
What is a Coding Dojo? 1

Section 1: Collaborative Games for Pro-

grammers 3
Randori 5
Randori Variants 12
Section 2: Organizing a Coding Dojo 14
DojoTheory 15

Finding Or Founding A Coding Dojo 19

CONTENTS

Section 3: Teaching & Learning In the Dojo 21

Dojo Principles 23
Section 4: Kata Catalogue 26
Kata: FizzBuzz 30
Kata: Tennis 33
Kata: Minesweeper 37

FurtherReading 40

Foreword

Do you remember this old joke? A young man is on the
subway, carrying a guitar case. He’s a member of a band that
is performing a concert at Carnegie Hall; and he’s running
late. He dashes off the train and up the stairs, and realizes
he’s lost. He knows that the performance hall is close, but he
doesn’t know the direction. So he stops an old man on the
street and asks: “Excuse me sir, but how do I get to Carnegie
Hall?” The old man looks at the lad with his guitar case and
says: “Practice son, Practice”

It is a fundamental truth that all professionals practice. Of
course professional musicians practice; and so do professional
athletes. Lawyers practice — they rehearse testimony and
closing statements. Doctors practice, on cadavers, dummies,
and even suturing oranges. All professionals practice.

What do we, programmers, do to practice? We write code of
course. Lots of code. We write code at work, and then many
of us go home and write more code. We do this because we
love writing code; it is a passion for us.

But not all forms of practice are equal. Some ways to practice
are better than others. Professional athletes practice games,
but they also practice drills. Musicians practice their perfor-
mances, but they also practice scales and etudes. These other
forms of practice are designed to emphasize, and therefore
improve, certain skills — especially those skills that are hard
to acquire and easy to lose.

Foreword ii

That’s what this book is all about — a special way to practice
that emphasizes certain skills that are hard for programmers
to acquire and easy for them to lose. Those skills include
working together as a team, the disciplines of Test Driven
Development and Refactoring, good design skills, and many
others.

In this book Emily Bache describes one of the most popular
activities to come out of the Software Craftsmanship move-
ment; an activity that is sweeping across our industry: The
Coding Dojo. Based on a martial arts theme, the Coding Dojo
is a meeting in which enthusiastic software developers, intent
on self improvement, engage in purposeful practice for the
purpose of refining their skills.

The Dojo gives a formal structure to such practice. That struc-
ture is complete with rituals, disciplines, rules, and procedures
that promote effective learning and minimize distraction. The
Dojo is a safe place to practice with, and learn from, others.
Best of all, the Dojo is fun!

In this book you’ll get a feel for just how much fun this can be;
because Emily avidly describes the fun she has had in setting
up, running, and participating in Dojos. Her enthusiasm is
contagious. You’ll read about her adventures, successes, fail-
ures, and just the overall great time she’s had while learning,
and helping others to learn, in the Dojo setting.

With her lively and readable style, Emily teaches us how to set
up a Dojo, and what the principles, rules, and procedures are.
She tell us how to deal with what she calls: “Dojo Disasters”;
and she describes the various forms of practice such as Kata
and Randori. And, perhaps most importantly, she provides a
catalog of the exercises that she has found most beneficial in
a Dojo.

Foreword iii

But there’s more to this book than a description of Dojos.
While describing the disciplines and principles of Dojos,
Emily also engages us with a very cogent and enlightening
description of some of the most important software disciplines
of the last decade. These include Test Driven Development,
Refactoring, Continuous Integration, Test Automation, and
many, many others.

In short, while this book is a wonderful workbook for practice;
it is also a tutorial in what to practice. The subtitle says it all:
This book is about making good programmers great.

Is that your goal? Do you want to be a great programmer?
Then you don’t want to miss this book. Because to become
great, there’s only one absolute rule: Practice child... practice.

Robert C. Martin
17th November 2012

Introduction

As a professional programmer, how do you learn new skills
like Test Driven Development? Pair Programming? Design
principles? Do you work on a team where not everyone
is enthusiastic about good design and writing automated
tests? How can you promote good practices amongst your
colleagues?

I've worked as a programmer for many years, and these kinds
of questions have come up again and again. This handbook
is a collection of concrete ideas for how you can get started
with a coding dojo where you (and your team) can focus on
improving your practical coding skills. In my experience, it’s
a fun and rewarding activity for any bunch of coders.

Learning new skills inevitably takes time and involves making
mistakes. In your daily work environment where the focus
is on delivering working production code, it can be hard to
justify experimenting with new techniques or to persuade
others to try them. When I attended my first “Coding Dojo”
with Laurent Bossavit and Emmanuel Gaillot in 2005, I could
see these kinds of meetings could be a fun way to effect
change.

When you step into the coding dojo, you leave your daily
coding environment, with all the associated complexities and
problems, and enter a safe environment where you can try
stuff out, make mistakes and learn with others. It’s a breathing
space where the focus is not on delivering solutions, but rather
on being aware of what you actually do when you produce

Introduction v

code, and how to improve that process. The benefits multiply
if you can arrange to bring your whole team with you into
the dojo. Through discussion and practicing on exercises, you
can make a lasting impact on the way you work together.

Following the dojo I attended in 2005, I brought Laurent to
my (then) workplace to show us all how it was done, and
from there I began to facilitate coding dojos in various other
settings. I've done them with my immediate colleagues, user
groups, at conferences, and more recently as a paid consultant
brought in to do training with teams. Inspired by Corey
Haines, I've also led “Code Retreat” days, which is a kind of
scaled up coding dojo. All these events have been good fun -
coders enjoy coding! We’ve had excellent discussions, learnt
from each other, and written a significant amount of clean
code and tests. It seems to me that acquiring skills like TDD,
Refactoring and pair programming is a long process - it takes
years - and it is a lot more fun and rewarding if you can get
a like minded group of people to join you on that journey.

This handbook is a collection of practical advice drawn from
my experience, with concrete ideas for how you can get
started with your own coding dojo. There is a catalogue of
“Kata” coding exercises that you can try, and advice about
how to choose one for your particular situation. There are
many useful resources on the internet which you can use to
augment your dojo, and some are reviewed here.

Kent Beck once said “I’m not a great programmer, I'm just a
good programmer with great habits™. What are you doing to
improve your coding habits? This is the book with the advice
and encouragement you need: get together with some like-
minded people and hold a coding dojo! It’s fun!

page 97 of “Refactoring” by Martin Fowler

Acknowledgments

This book has its origins in the work of Dave Thomas, who
introduced the idea of the Code Kata, and Laurent Bossavit
who came up with the idea of the Coding Dojo, and co-
founded the first one in Paris. Over the years many others
have also contributed to develop the idea and the practice.
I’'m especially grateful to Laurent Bossavit, Emmanuel Gaillot
and Fredrik Wendt, pioneers who I have collaborated with
and learnt from in the dojo.

Over the years I have met many people in coding dojos, and
I am grateful to have learnt so much from them. There are
some I have met in the dojo who I count myself particu-
larly lucky to have learnt from and with. I'd like to men-
tion especially Marcus Ahnve, Johannes Brodwall, Enrique
Comba Riepenhausen, Andrew Dalke, Greg Dziemidowicz,
Dave Hoover, Jon Jagger, Arnulf Krokeide, Robert C. Martin,
Dave Nicolette, Thomas Nilsson, Danilo Sato, Christophe
Thibaut, Francisco Trindade. Thankyou to all of you.

Some of the material in this book is drawn from the cod-
ingdojo.org wiki’, which is owned by Emmanuel Gaillot. I
was one of the many early contributors there, and I am very
grateful to everyone who participated in forming that wiki
into a useful resource.

Many of the Katas in this book have been designed by other
people, and some of the other material as well. I'd like to

*http://codingdojo.org

http://codingdojo.org
http://codingdojo.org
http://codingdojo.org

Acknowledgments vii

thank everyone who gave me permission to include their
Katas in the catalogue, their Dojo Disasters, their wisdom
born of experience: Johannes Brodwall, Emmanuel Gaillot,
Terry Hughes, Jon Jagger, Robert C. Martin, Roy Osherove,
Matt Wynne.

I also want to thank Corey Haines for the work he has done
popularizing the Code Retreat, which although different in
form, has a philosophy in congruence with the Coding Dojo.

[must also thank my children’s violin teachers, especially
Marika Wirung and Sven Sjogren. They patiently demon-
strate good pedagogy week after week, using the Suzuki
method. I have learnt a huge amount about how to teach, by
observing them.

I would like to thank all the people who reviewed this book,
including Johannes Brodwall, Olivier Demeijer, Nicolas Der-
mine, Greg Dziemidowicz, Jonas Granqvist, Yves Hannoulle,
Jon Jagger, Arnulf Krokeide, Mark Longair, David Read,
Anders Schau Knatten, Martin Svalin, Joel Trottier-Hebert,
Fredrik Wendt, Joseph Yao. It’s a much better book because
of your comments.

How to Read This Book

This is supposed to be a practical, useful manual. Dip in and
out, or read it all the way through, as you wish. The first
section is all about the various coding games and activities
you can play with. If you’re experienced running Coding
Dojos already, you might want to skip most of the second
section, which is largely about how to set up and run a new
dojo. The third section explains some of the skills you're
trying to improve at, and gives you help choosing the right
kinds of exercises for your Deliberate Practice. The fourth
section, the Kata Catalogue, lists all the Katas I've found
useful in the dojo, and you can choose one to tackle at your
next meeting. You will be holding a Coding Dojo, right?
That’s part of the deal with buying this book!

Dojo Disasters

Most of the time we have a really good time in the dojo,
and people come away feeling positive about the experience,
and what they learnt. Occasionally though, things don’t work
out so well. In several places dotted about the text you’ll
find “Dojo Disasters” - little stories where I, and other dojo
pioneers, have learnt the hard way.

What is a Coding Dojo?

A Coding Dojo is a meeting where a bunch of coders get
together, code, learn, and have fun. It’s got to be a winning
formula! Programmers generally love the plain activity of
writing code, away from managers and deadlines and pro-
duction bugs. When they’ve got over their shyness, most are
delighted to show others how well they can actually write
code, as well as to pick up tips and advice from them. Throw
in a suitably puzzling Code Kata and a safe environment to
discuss topics like design, testing, refactoring, choice of code
editor, tools... and you’re away! You’ll hardly be able to stop
them talking and writing code and learning from one another!

There are few obligatory elements to a coding dojo, designed
to promote the aims of learning and having fun. Within
those constraints, you still have a lot of freedom to adapt the
form and activities according to what you discover suits your
group, or in other words, makes it more fun. Some people
just prefer to meet with some like minded coders and hack at
something together. That’s absolutely fine, and can be great
fun, but I think you’ll learn more if you add just a little more
structure.

Essential Dojo Elements

For a dojo I think you need to:

« Hold an intro and retrospective

What is a Coding Dojo? 2

« Write tests as well as code
+ Show your working
« Have moderation or facilitation

The intro and moderation are designed to make sure everyone
feels safe to experiment and learn. The retrospective makes
sure you reflect on what you’ve learnt. Writing some tests
as well as code sets you up with a feedback mechanism on
whether your code is working as you expect. Demonstrating
how you write the code, not just the code you end up
with, means you learn a mechanism to produce good code,
not just what good code looks like. Those elements - intro,
retrospective, moderation, showing working, and tests - are
what sets a coding dojo apart from any other kind of coding
meeting.

The rest of this book explains how a Coding Dojo works in
detail.

Section 1:
Collaborative Games
for Programmers

There are many ways to organize a group of programmers
so that they can code and learn together, and in this section
I'd like to introduce some of them. There are whole-group-
programming-together activities, working-in-pairs activities,
and look-at-me-coding! presentations. I like to talk about
“collaborative games” for programmers, because that’s what
we're doing. There are rules, there are activities, there are
people talking and helping each other and learning.

What is a Collaborative
Game?

A Collaborative Game is one where there is no in-
dividual winner, but rather all the participants must
contribute to a solution, and you together beat the game
itself. 'm a pretty big fan of board games, my cupboard
at home is overflowing with strategy games like Settlers
of Catan, Seven Wonders, Ticket to Ride, Dominion,
Diplomacy...

None of those titles are a Collaborative Game - in all of
them you’re competing with the other players, although
there is often a degree of collaboration too. Recently I've
been discovering I actually quite enjoy playing purely
collaborative games, too. For example, Forbidden Island,
where it’s a race against time and tide. The players must
work together to gather all the treasures and fly off in a
helicopter before the island sinks under the sea. Apart
from anything else, when I play it with my children,
no individual has to lose, and that makes for fewer
tantrums!

I think the coding part of a Dojo should be like a collab-
orative game, you’re not out to appoint a winner, you’re
there to collaborate and contribute, and solve something
together.

Randori

Coding in a group is fun, and this activity takes it to the
extreme. Everyone can see the code, projected onto the wall,
and everyone gets to write some code, taking it in turns to
type. When you get a bunch of half a dozen coders working
on the same problem like this, you’ll quickly find there are
at least a dozen opinions on what code to write! There are
some rules designed to keep the Randori on track, and give
everyone the best chance to contribute, teach and learn. It
can be high volume, intense coding.

A Randori requires almost no preparation, since no-one need
have done the kata before. You have to come to design
decisions through discussion, and by explaining everything so
clearly that whoever has the keyboard can understand what’s
going on, and decide what direction to take. When you get
your turn at the keyboard, suddenly you’re in the spotlight,
it’s hard to think straight, and you have a limited time. You
have to choose carefully what code you write - this is your
chance to decide exactly what code goes into the codebase,
don’t waste it!

Before you start, have someone setup their machine, con-
nected to a projector, with an empty failing test. There are a
few different variations on exactly where to put the computer,
see the next section “Randori Variants”. You’ll also need to
agree who should be the starting pair, and a Pair Switching
Strategy.

If the person with the keyboard has an idea for the first test to

Randori 6

write, you could just let the pair get started coding. At some
point though, you’ll probably want to step back and do some
analysis of the problem on a whiteboard. (See the chapter on
“States and Moves of TDD”, the “Overview” state).

The whole group needs to understand the code that’s being
written, since everyone will have a turn at the keyboard. Some
things are better explained with a sketch on a whiteboard,
than by dictating a list of keystrokes to the driver.

In turn, the pair at the keyboard must explain what is going
on, so everyone can follow. The audience should give advice
and suggest refactorings primarily when all the tests pass.
At other times the pair at the keyboard may ask not to be
interrupted. See the Randori Rules:

Randori Rules

1. if you have the keyboard, you get to decide what to type

2. if you have the keyboard and you don’t know what to
type, ask for help

3. if you are asked for help, kindly respond to the best of
your ability

4. if you are not asked, but you see an opportunity for
improvement or learning, choose an appropriate mo-
ment to mention it. This may involve waiting until the
next time all the tests pass (for design improvement
suggestions) or until the retrospective.

You could appoint a meeting facilitator, who has a special
responsibility to see that these rules are followed, but that
might not be needed for an experienced group who are

Randori 7

familiar with them. (See also the chapter Facilitating a Dojo
Meeting)

Dojo Disaster: Code Ridicule
This dojo disaster story is by Matt Wynne

It was 2008, and I was at an international software
conference. I'd only started going to conferences that
year, and was feeling as intimidated as I was inspired
by the depth of experience in the people I was meeting.
It seemed like everyone there had written a book, their
own mocking framework, or both.

I found myself in a session on refactoring legacy code.
The session used a format that was new to me, and to
most of the people in the room: a coding dojo.

Our objective, I think, was to take some very ugly,
coupled code, add tests to it, and then refactor it into
a better design. We had a room full of experts in TDD,
refactoring, and code design. What could possibly go
wrong?

One thing I learned in that session is the importance of
the “no heckling on red” rule. I watched as Experienced
Agile Consultant after Experienced Agile Consultant
cracked under the pressure of criticism from the baying
crowd. With so many egos in the room, everyone had
an opinion about the right way to approach the problem,
and nobody was shy of sharing his opinion. It was chaos!

We got almost nowhere. As each pair switched, the code

Randori 8

lurched back and forth between different ideas for the

direction it should take. When my turn came around, I

tried to shut out the noise from the room, control my

quivering fingers, and focus on what my pair was saying.
We worked in small steps, inching towards a goal that
was being ridiculed by the crowd as we worked.

The experience taught me how much coding dojo is
about collaboration. The rules about when to critique
code and when to stay quiet help to keep a coding dojo
fun and satisfying, but they teach you bigger lessons
about working with each other day to day.

When to choose a Randori form,
and what to work on

The Randori approach is most suitable for groups of about 4-
10 people. Above that the discussions can get out of hand, and
each individual doesn’t get much time at the keyboard.

If you choose a Kata that is too difficult, it can be frustrating
for the group to get nowhere near finishing it using the
Randori form. Particularly at first, try to pick a really simple
kata so you can get a sense of achievement from completing
it, and having time to make the code really clean.

Randori 9
Pair Switching Strategies

Timebox

« Each pair has a small (5 or 7 minutes) timebox.

« At the end of the timebox, the driver goes back to the
audience, the copilot becomes driver and one of the
audience step up to be copilot.

« Use a kitchen timer or mobile phone that beeps when
time is up.

Note: anecdotally, you need a longer timebox when working
in a statically typed language than a dynamically typed one:
you have more text to type! Try 7 minutes for Java or C++, 5
minutes for Python or Ruby.

This switching strategy makes it more likely that everyone
has a go at driving. The main disadvantage is that you get cut
off in the middle of what you’re doing, and it can be harder
for the next person to pick up where you left off.

Dojo Disaster: Refused Be-
quest

Kind of like in the Liskov Substitution Principle, if you
inherit something you have no use for, it’s a sign some-
thing is wrong. In the particular dojo I'm thinking of,
we had a diverse group where some people had been
coding with TDD for many years, and others were young
and inexperienced - still at university. We were doing a

Randori

Randori in Pairs, switching pairs every 10 minutes. With
only three or four pairs, we got round the table several

times. About half way through the kata I went back to a
particular machine, and realized I hadn’t seen this code
before. No, really, it was completely new! The code I had
written half an hour previously to pass the current failing
test was gone. Vamoosh.

It turns out that one of the less experienced programmers
didn’t understand my code, so he deleted it. In fact he
didn’t understand any of the code, and had deleted it all
and started again from scratch!

Has that ever happened to you, only with production
code? It certainly has to me. We had a great retrospective
that time, discussing code readability and reuse.

10

Ping Pong

1.

The driver writes the first test and then hands the

keyboard to the copilot

2. The new driver makes the test pass

3. They refactor together, passing the keyboard as neces-

sary.

The original driver (who wrote the test) sits down in
the audience, and a new person steps up, initially as

co-pilot.

As step 1, with the new driver (the person who made

the last test pass)

Randori 11

This ensures that you don’t get broken off in the middle of
a sentence like you do with Timebox, and that each person
writes both a test and some production code. It has the
disadvantage that the pair can spend so long perfecting their
code and tests, that not everyone gets a turn at coding. This
is particularly likely if there are people present who are
unfamiliar with TDD. When they get the keyboard they might
not know what to write, and spend a long time before they
understand the help they’re offered.

NTests

The pair at the keyboard write and implement N tests, where
N is usually 1, 2 or 3. Then a different pair steps up to the
keyboard. Alternatively only half of the pair is switched after
N tests.

I suspect this one only works with pretty experienced TDDers,
since you have to be skilled at writing really small tests,
and building the solution up gradually. For some coders, this
format could tempt them to write too large granularity tests
so they can retain the keyboard for longer.

Randori Variants

Driver/Navigator

I’ve seen it happen many times that an otherwise competent
programmer sits down at the keyboard in a Randori and
suddenly has no idea what to type. The stress of being in
the spotlight causes some kind of biochemical reaction that
makes your hands seize up, your mind go blank and your
armpits sweat profusely! In this case it can help to separate
concerns so the driver is no longer expected to think, only
type. Rather like in rally-car racing where the driver drives,
and the navigator sits in the passenger seat and tells him or
her in detail where to go.

In the Randori, have the non-keyboard wielding half of the
pair become the Navigator. This means they do all the think-
ing, and simply instruct the Driver what code to write. The
Navigator can be really specific, even down to the level of
“ok, now type ‘filter open bracket lambda space x colon...”.
Of course most of the time the Driver is actually feeling fairly
relaxed, since they only have one thing to worry about: telling
the computer what to do. The Navigator can probably just
say “filter the list with a lambda expression..”. Dictating a
sequence of keystrokes is something of a last resort, for when
the Driver is having a real rabbit-in-headlights moment!

Once the Driver has been guided by the Navigator for a while,
hopefully they’ll feel they understand what’s going on. When
it’s time to switch pairs, it could be good to put them into the
Navigator role next, and pick a new Driver from the audience.

Randori Variants 13

Co-Pilot stands up

If you're finding the group is not easily able to follow what
the pair with the keyboard is up to, you might find it helpful
to have the co-pilot, (or navigator), stand up while the driver
sits down. This will force them to talk louder. The co-pilot
could also stand closer to the projector and point to things on
the big screen as they talk. (The driver needs to sit facing the
screen in this case, so they can see what’s being pointed at).

Facing away from the group

This can be useful if the pair at the front is constantly
interrupted, and the discussions often get out of hand. Put a
separate table at the front so the coding pair can sit facing
away from the group, towards the projector. Without eye
contact with the group they will hopefully find it easier to
concentrate. It can also be less scary since it’s easier to ignore
the “audience”. It can make it easier for the pair to get going
and actually write some code without being pulled in ten
different directions by all the backseat drivers.

The main danger with this is of course that the group can
get sidetracked and stop paying attention to the code being
written.

Section 2: Organizing a
Coding Dojo

In the first section we talked about collaborative games you
can play while coding in the dojo. What a lot there are
to choose from! This section has more practical advice for
someone setting up and running a new Coding Dojo. I'll
explain how you could structure your meetings, practical
details to consider, and talk about the facilitator role. I'd also
like to take the chance to explain some theory.

Dojo Theory

The basic premise is that in order to become expert at some-
thing, you need to practice. Raw talent, if such a thing exists
at all, only gets you so far. Various theories of learning suggest
that “Deliberate Practice” over a long period of time is at the
heart of attaining expertise.

Deliberate Practice

“When most people practice, they focus on the things
they already know how to do. Deliberate practice is
different. It entails considerable, specific, and sustained
efforts to do something you can’t do well—or even at
all. Research across domains shows that it is only by
working at what you can’t do that you turn into the
expert you want to become.”

- K. Anders Ericsson, Michael J. Prietula, and Edward T.
Cokely, writing in the Harvard Business Review

So Deliberate Practice is not the same as reading code or even
books about code, valuable as those activities are. As Ron
Jeftries points out in his article “Practice: That’s What We
Do™, “But what changes people is what they do, not what they
read. How many diet books have I read? Am I thinner?...“

*http://xprogramming.com/xpmag/jatPractice.htm

http://xprogramming.com/xpmag/jatPractice.htm
http://xprogramming.com/xpmag/jatPractice.htm
http://xprogramming.com/xpmag/jatPractice.htm

Dojo Theory 16

Deliberate Practice is not the same as experience gained while
doing your job. It is when you actually seek out experiences
that will stretch your skills just the right amount, and give
you feedback that enables you to learn. I think that it takes
a great deal of self-discipline to sit down by yourself and try
to do a code Kata, and it can be difficult to get good quality
feedback without someone else present or at least available to
review your code afterwards.

Going to a Coding Dojo helps enormously because it’s fun to
socialise and meet other geeks, which means you actually do
it, rather than always just intending to sit down of an evening
and do a Code Kata instead of watching TV. At the meeting,
when you’re doing a code kata together, you challenge one
another and you have to learn to accept criticism and defend
your ideas. You get feedback on not just the code you produce,
but your coding technique.

Mastering a skill like Test Driven Development takes a great
deal of effort, and it’s naive to think you can get all the
practice you need while working on production code. Doing
all your practice in the dojo is probably ambitious too. I
think you’ll need to put in some time on your own. If you've
enjoyed working on a Kata in the dojo, you might decide
you do want to switch off the TV for an evening and code
it up again instead. You've become motivated by the thought
that you can do even better than you did at the dojo, and are
looking forward to the next meeting where you can show off
what you’ve learnt.

The dojo should be a good place to meet skilled programmers,
and maybe find ones you might like to work with in the
future. Some companies sponsor public dojos as a place to
recruit programmers for their teams, or to advertise the skills

Dojo Theory 17

of their consultants. I see this as a happy side effect though.
The real point of going to a dojo is to improve your skills, (and
have fun doing so!).

Learning TDD and Downhill
Skiing

One of the benefits of emigrating from the UK to Sweden
as I have done, is the significant improvement in access
to winter sports. I discovered I really enjoy cross-country
skiing. It’s much like hiking - trekking all day in beau-
tiful terrain, hardly seeing anyone else. This winter, we
were in the Norwegian mountains enjoying some cross-
country skiing, and for the first time, I decided it might
be fun to learn downbhill skiing. Mostly so I could keep
up with my children, who are keen skiers already! It’s
quite a different kind of sport - the skis themselves are
very different, and of course the slopes are much steeper.
While the children were at their ski school one day, I
hired a set of skis and boots, and had a go.

The gentle beginner slopes were no problem, I could
snowplough just the same as on my cross country skis. I
knew this strategy wasn’t going to get me far though.
If I wanted to go on the steeper slopes and keep up
with my daughters, I'd need to master more advanced,
parallel turns. A snowplough involves having the skis
in a V shape in front of you, and you widen the V on
one side to turn in the other direction. For parallel turns,
you have to get the skis next to each other, and swing
your whole body from side to side as you swish down the
slope. It’s great fun once you can do it, but while you’re
learning it’s pretty scary. For a fleeting moment while

Dojo Theory

you’re turning, both skis are pointing directly downbhill,
and you accelerate rapidly!

Still on the gentle beginner slope, I started trying to
get my skis next to each other and alter my system
of balance and orientation of my body with respect to
the slope. It was chaos! Legs and poles and skis in all
directions! A slope which I could previously do quite
competently with a snowplough, was suddenly really
challenging. On several occasions I was grateful for the
safety catch that prevented my skis from sliding down
the mountain without me.

After some more trial and error I began to get the feel
for the new style of skiing, and with almost every run I
was able to keep in control at faster speeds. Eventually
I was able to tackle a much steeper slope than I would
have contemplated on my cross-country skis.

So when you’re sitting there doing a code kata using
TDD and it feels really awkward, unfamiliar and slow,
remember me flailing about on the beginner ski-slope.
I know you can probably code a solution to the kata
pretty quickly without any tests at all, just like I could
ski down that slope with a snowplough. The trouble is,
an approach without tests is unlikely to scale to bigger
problems. Take some time, suffer some falls, keep writing
those tests. With enough practice you’ll eventually be
coding like a TDD pro, swishing down the mountain
with the wind in your hair!

18

Finding Or Founding A
Coding Dojo

When I first experienced the coding dojo, it was such fun I
looked around for ways to do it again! At the time there was
only one dojo - in Paris - and since I didn’t live anywhere near
there, it was unfortunately not practical for me to attend. So
my approach was to bring Laurent to Sweden to teach me how
to do it. I figured that watching someone else doing something
is a good way to learn to do it yourself. That probably applies
as much to leading a dojo as any coding skills! It worked for
me, anyway.

Look around for an existing dojo near where you are. Do
some googling, check out meetup.com®, talk to your friends.
If someone has already founded a dojo, but is too busy to run
a meeting right now, maybe your offer of help will be all it
needs to get it off the ground again! In some cases though, you
might find there has never been a coding dojo near where you
live.

You might be able to get to a conference where one of the
sessions will be a coding dojo. Have a look at conferences like
one of the XP series’ (in Europe), or a conference run by the
Agile Alliance® (in the US). There might be an “XP Day” or
a “Software Craftsmanship” conference, or a “Code Retreat”
happening nearer where you are.

“http://meetup.com
*http://xp2013.0rg
*http://www.agilealliance.org/

http://meetup.com
http://xp2013.org
http://www.agilealliance.org/
http://meetup.com
http://xp2013.org
http://www.agilealliance.org/

Finding Or Founding A Coding Dojo 20

If none of that works for you, founding your own dojo could
be an excellent move anyway. Even if you've never been to
one before, you know how to code, and how to have fun,
right? You’ve also got this book to help you! As a first action,
I'd recommend finding someone to co-found it with you. It’s
more fun that way, and just like with pair programming, you
keep each other moving.

In one of the coming chapters I'll go through some of the prac-
tical questions you’ll have to sort out when you’re organizing
your dojo. Before launching into that though, I'd like to tell
you an encouraging story about a particular Coding Dojo. It’s
about how a group of enterprising Frenchmen got the whole
thing started.

Section 3: Teaching &
Learning In the Dojo

What could you learn in your dojo? That’s one way of
looking at it, but equally importantly - what could you teach?
Everyone has different strengths, knowledge, and experience
with various languages and tools. In the dojo you ought to
meet people you can learn from in some areas, and teach in
others. If you know something, being forced to explain it to a
beginner can help you understand it even better, so you both
teach and learn at the same time!

Skills like pair programming, reading other people’s code,
writing clean code, automated testing and articulating your
ideas are the basis of everything that goes on in the dojo.
At some meetings you might want to home in on particular
skills or techniques. You might decide to do a kata you
know well and have solved lots of times, in order to practice
something else. For example, an unfamiliar programming
language, editor, IDE, testing framework, or library.

Before I explain about these skills we want to learn in more
detail, I'd like to go through the Dojo Principles. I love the
way they are so succinct and Zen-like, and remind you that
you come to the dojo in order to both teach and learn.

22

Later in this section I'll be talking a lot about which Code
Katas to use while you’re learning Test Driven Development,
(TDD). This is one of the key skills you're trying to improve
at in the dojo. In fact, one of the Dojo Principles says “code
without tests simply doesn’t exist.”! I'll also talk about Katas
that help you to learn about other styles of TDD, and Func-
tional Programming. The remaining part of the section is a
couple of essays I've written about what TDD actually is, and
how to write good tests.

Dojo Principles

These principles were written by Christophe Thibaut, and first
published in Laurent Bossavit’s blog’ in 2005, as a guide for
new members of the first dojo, in Paris, France. (I have edited
them in minor ways to improve readability.)

The First Rule

One important rule about the Dojo is : At the Dojo one can’t
discuss a form without code, and one can’t show code without
tests. It is a design training place, where it is acknowledged
that “the code is the design” and that code without tests
simply doesn’t exist.

Finding a Master

The master can’t be a master of every form. I feel quite at ease
with recursive functions and list processing e.g. but I think I
don’t know how to create even a simple web app. Fortunately,
while it’s the first time they really deal with “tail-recursion”
some practitioners here have done professional web apps for
years!

Come Without Your Relics

Of course, you know how to do it. You know how and why
this code is better than that one. You've done it already. The

"http://bossavit.com/dojo/archives/2005_02.html

http://bossavit.com/dojo/archives/2005_02.html
http://bossavit.com/dojo/archives/2005_02.html

Dojo Principles 24

point is to do it right now, explain it to us, and share what you
learned.

Learning Again

In order to learn again something, we just have to forget it. But
it’s not easy to forget something when you’re alone. It’s easier
when we give our full attention to someone who is trying to
learn it for the first time. We can learn from other people’s
mistakes as well as from our own if we listen carefully.

Slow Down

Learning something should force you to slow down. You can
go faster because you learned some tricks, but you cannot go
faster and learn at the same time. It’s OK, we’re not in a hurry.
We could do that for years. Some of us certainly will. What
kind of deadline will we miss if we spend four more weeks
on this code kata rather than on four different katas? More
precisely, when we reach the next plateau, is it because we
went through the previous one, or is it just because we were
flying over it?

Throwing Yourself In

At some point someone will begin to master a particular Code
Kata, and want to approach another one. Those threatened by
boredom should throw themselves first into a Prepared Kata
presentation.

Dojo Principles 25

Subjecting To A Master

If it seems difficult to you, look for other practitioners who
can judge your code and could easily show something new
about it to you. Ask again until the matter contains absolutely
no more difficulty to you.

Mastering A Subject

If it seems easy to you, explain it to others who find it difficult.
Explain it again as long as they find it difficult.

Section 4: Kata
Catalogue

There are many, many code katas, and this catalogue is in no
way exhaustive. These are some of my favourites, and ones
which I’ve found to work well in the context of a coding dojo.

What is a Code Kata?

A Code Kata is a small, fun problem that shouldn’t take
you more than an hour or two to solve in your favourite
programming language. The rule is that you must repeat the
exercise, and every time try to improve the way you solve the
problem. Not just the code you end up with, but the process
by which you get to it.

I don’t think learning a code kata has anything to do with
learning a sequence of keystrokes or perfectly imitating some
kind of “master” programmer. That’s where the analogy
with Karate breaks down! When you “know” a kata, that
means that solving the actual problem no longer presents
any difficulty to you, and you can concentrate on improving
all the other aspects of how you solve it. You’ll be able to
try out a variety of approaches: object oriented, functional

27

languages, big tests, small tests, another order of tests, with
and without faking it, refactoring at this point or that point,
different datastructures, algorithms, names... Every time you
do the kata, you can try out something new, or make a small
improvement to an approach you’ve used before.

Dojo Disaster: The
Architect’s Kata

Emmanuel Gaillot recounted for me an incident when
somebody new turned up to the Paris dojo. He described
himself as a “software architect”, and he suggested that
not all katas need involve coding. He instead proposed
a “design” kata. The group discussed the idea, and the
fact that they’d set up the dojo as a place where you
learn by coding infront of others. On the other hand,
someone suggested that in order to really understand a
rule, maybe you should break it and see what you can
learn.

So they decided to take up the architect’s suggestion,
and spent an evening drawing boxes and arrows. It
didn’t turn out so well. As Emmanuel put it: “It was
excruciating!”. Everyone agreed it was not fun at all. So
they kept the rule about coding - in fact, all the Katas in
this catalogue involve writing code.

So I agree with Emmanuel, (see the Sidebar “The Architect’s
Kata”), a code kata must also involve writing actual code. And
tests!

28

How to choose a good Kata for
your dojo

The most important thing is to choose a Kata you will enjoy
doing! Flip through the catalogue and pick out any topics that
look interesting. Have a look at the section “Contexts to use
this Kata” for an idea of what you might learn from it. If
there is a skill you're working on, there is some advice in
the previous section “Teaching & Learning In the Dojo”, with
suggestions of which Katas are particularly useful.

About this Catalogue

Each Kata has an explanation of the problem to be solved, and
links to where you can download starting code (if applicable).
In addition, I've added some suggestions to help you get the
most out of the kata, and to choose one appropriate for your
context.

Additional discussion points for the
Retrospective

After you've done the kata, these questions might prompt in-
teresting discussion. (You might be having a great discussion
anyway, of course!) When I'm facilitating a dojo, I often find
the retrospective is the hardest part. I can see that the group
has learnt lots through doing the Kata, but I don’t always
know how to get people talking about it. That’s why I've
written these extra notes, to remind me of some questions
that might spark good discussion.

29

Ideas for after the Dojo

If you’ve done this kata in a dojo, you might be inspired to try
it again by yourself at home. Here are some ideas for how to
extend the kata or vary it in some way, so you get the most out
of it. If several dojo participants continue to work on a kata
after the dojo, you can go online to share code snippets, ideas
and links, and to continue to discuss what was said in the
meeting. Alternatively you could share what you’ve learnt at
the next dojo meeting.

Contexts to use this Kata

If you’re in a particular situation, any individual kata might be
more or less suitable. This section should help you to choose
a good Kata, and help you prepare for your dojo meeting.

Kata: FizzBuzz

Imagine the scene. You are eleven years old, and in the five
minutes before the end of the lesson, your Maths teacher
decides he should make his class more “fun” by introducing
a “game”. He explains that he is going to point at each pupil
in turn and ask them to say the next number in sequence,
starting from one. The “fun” part is that if the number is
divisible by three, you instead say “Fizz” and if it is divisible
by five you say “Buzz”. So now your maths teacher is pointing
at all of your classmates in turn, and they happily shout “one!”,
“two!”, “Fizz!”, “four!”, “Buzz!”... until he very deliberately
points at you, fixing you with a steely gaze... time stands
still, your mouth dries up, your palms become sweatier and
sweatier until you finally manage to croak “Fizz!”. Doom is
avoided, and the pointing finger moves on.

So of course in order to avoid embarrassment in front of your
whole class, you have to get the full list printed out so you
know what to say. Your class has about 33 pupils and he might
go round three times before the bell rings for breaktime. Next
maths lesson is on Thursday. Get coding!

Write a program that prints the numbers from 1 to 100. But
for multiples of three print “Fizz” instead of the number and
for the multiples of five print “Buzz”. For numbers which are
multiples of both three and five print “FizzBuzz”.

Sample output:

Kata: FizzBuzz 31

Fizz

Buzz

Fizz

Fizz
Buzz
11
Fizz
13
14
FizzBuzz
16
17
Fizz
19
Buzz

... etcup to 100

Additional discussion points for the
Retrospective

+ Is the code you have written clean? Are there any
smells?

+ Did you refactor throughout or do it all at the end?

« What if a new requirement came along that multiples
of seven were “Whizz”? Could you add that without
editing the existing code? (Cue discussion of the Open-
Closed Principle)

Kata: FizzBuzz 32

Ideas for after the Dojo

« When you’ve got it all working for “Fizz” and “Buzz”,
add “Whizz” for multiples of seven

« Then add “Fizz” also for all numbers containing a 3 (eg
23, 53)

Contexts to use this Kata

[find this an excellent kata for introducing beginners to TDD.
It’s pretty straightforward to choose the order of test cases,
work in small steps, and complete the whole exercise still
leaving time for a decent retrospective.

Kata: Tennis

Tennis has a rather quirky scoring system, and to newcomers
it can be a little difficult to keep track of. The Tennis Society
has contracted you to build a scoreboard to display the current
score during tennis games. The umpire will have a handset
with two buttons labelled “player 1 scores” and “player 2
scores”, which he or she will press when the respective players
score a point. When this happens, a big scoreboard display
should update to show the current score. (When you first
switch on the scoreboard, both players are assumed to have
no points). When one of the players has won, the scoreboard
should display which one.

Your task is to write a “TennisGame” class containing the
logic which outputs the correct score as a string for display
on the scoreboard. You can assume that the umpire pressing
the button “player 1 scores” will result in a method “won-
Point(“player1”)” being called on your class, and similarly
wonPoint(“player2”) for the other button. Afterwards, you
will get a call “getScore()” from the scoreboard asking what it
should display. This method should return a string with the
current score. (Note: do modify the method names to match
the idiom for your programming language)

You can read more about Tennis scores here® which is sum-

marized below:

1. A game is won by the first player to have won at least
four points in total and at least two points more than

®http://en.wikipedia.org/wiki/Tennis#Scoring

http://en.wikipedia.org/wiki/Tennis#Scoring
http://en.wikipedia.org/wiki/Tennis#Scoring

Kata: Tennis 34

the opponent. The score is then “Win for player1” or
“Win for player2”

2. The running score of each game is described in a
manner peculiar to tennis: scores from zero to three
points are described as “Love”, “Fifteen”, “Thirty”, and
“Forty” respectively.

3. If at least three points have been scored by each player,
and the scores are equal, the score is “Deuce”.

4. If at least three points have been scored by each side
and a player has one more point than his opponent, the
score of the game is “Advantage player1” or “Advantage
player2”.

The Tennis Society has agreed that Sets and Matches are out
of scope, so you only need to report the score for the current
game. However, they have requested another feature with
lower priority. They want to be able to change the name of
the players from “player1” to “Bjorn Borg” and “player2” to
“John McEnroe”. This feature has been categorized “Nice to
have”, or, more accurately, “in your dreams”!

Tennis Refactoring Kata

Imagine you work for a consultancy company, and one of
your colleagues has been doing some work for the Tennis
Society. The contract is for 10 hours billable work, and your
colleague has spent 8.5 hours working on it. Unfortunately
he has now fallen ill, although he says he has completed the
work, and the tests all pass. Your boss has asked you to take
over and spend an hour or so on it so she can bill the client for
the full 10 hours. She instructs you to tidy up the code a little

Kata: Tennis 35

and perhaps make some notes so you can give your colleague
some feedback on his chosen design.

There are three scenarios for this refactoring kata - imagine
three different consultancy companies each with their own
solution to the problem. I suggest you start with the first
version of the code. When you’ve got that looking beautiful,
start over with the second and third versions.

What is nice about this Kata is that the tests are almost
exhaustive, and fast to run, so any mistakes you make while
refactoring should be very obvious. You should not need to
change the tests, only run them often as you refactor. The
code is available on github’, for several popular programming
languages.

I also recommend that if you're doing this as a refactoring
kata, that you use a tool to record your session, (see the
chapter (#ToolsForTheDojo)), so you can review how large
steps you took. The aim is for as small as possible, with as
few refactoring mistakes as possible.

Additional discussion points for the
Retrospective

« Is the code you have ended up with clean? Are there
any smells?

« Are your tests exhaustive?

« Does your code express the scoring rules of Tennis in a
readable manner?

*https://github.com/emilybache/Tennis-Refactoring-Kata

https://github.com/emilybache/Tennis-Refactoring-Kata
https://github.com/emilybache/Tennis-Refactoring-Kata

Kata: Tennis 36

Refactoring version

« How did it feel to work with such fast, comprehensive
tests?

+ Did you make mistakes while refactoring that were
caught by the tests?

« If you used a tool to record your test runs, review it.
Could you have taken smaller steps?

+ Did you ever make a refactoring mistake and then back
out your changes? How did it feel to throw away code?

« If you never backed out any refactoring mistakes, is that
because you’re very skilled at refactoring?

Ideas for after the Dojo

« If you did this as a normal kata, try it as a refactoring
kata (code on github'?)

« If you’ve done one of the three refactoring katas, try the
other two. Were they easier or harder?

+ Try doing all your refactoring without running the tests
until you’re “finished”. How many tests did you break
via refactoring mistakes?

Contexts to use this Kata

This is a good kata for practicing refactoring. There aren’t
many situations where you have the luxury of exhaustive
tests. The three refactoring variants have slightly different
challenges. The first two are by junior coders with poor grasp
of the language. The third is designed to be as concise as
possible, to the point of unreadability.

Ohttps://github.com/emilybache/Tennis-Refactoring-Kata

https://github.com/emilybache/Tennis-Refactoring-Kata
https://github.com/emilybache/Tennis-Refactoring-Kata

Kata: Minesweeper "

Have you ever played Minesweeper? It’s a cute little game
which comes within a certain Operating System whose name
we can’t really remember. Well, the goal of the game is to
find all the mines within an MxN field. To help you, the
game shows a number in a square which tells you how many
mines there are adjacent to that square. For instance, take the
following 4x4 field with 2 mines (which are represented by an
* character):

The same field including the hint numbers described above

would look like this:

*1 00
2210
1*10
1110

You should write a program that takes input as follows:
The input will consist of an arbitrary number of fields. The

"This Kata was originally published by the University of Brazil as part of an interna-
tional contest. http://acm.uva.es/p/v101/10189.html.

Kata: Minesweeper 38

first line of each field contains two integers n and m (0 < n,m
<= 100) which stands for the number of lines and columns
of the field respectively. The next n lines contains exactly
m characters and represent the field. Each safe square is
represented by an “” character (without the quotes) and each
mine square is represented by an “*” character (also without
the quotes). The first field line where n = m = 0 represents the

end of input and should not be processed.

Your program should produce output as follows: For each
field, you must print the following message in a line alone:

Field #x:

Where x stands for the number of the field (starting from 1).

The next n lines should contain the field with the “” characters

replaced by the number of adjacent mines to that square.
There must be an empty line between field outputs.

This is the acceptance test input:

00

and output:

Kata: Minesweeper 39

Field #1:
*1 00
2210
1 *10
1110

Field #2:
* %1 00
33200
1*1 00

Additional discussion points for the
Retrospective

« What order did you implement test cases in? Was this
the best order?

« Does your solution cover all the important edge cases?
Really, I do mean edge cases!

« What datastructure did you choose to store the mine-
field in? Would another datastructure be more conve-
nient? What are the tradeoffs? Would a different choice
affect which test cases you should write?

Ideas for after the Dojo

Implement KataMinesweeper again using a different datas-
tructure to store the minefield in. Alternatively, try the Kata
Game of Life with the same datastructure as you used in
Minesweeper.

Further Reading

If you’ve enjoyed this book, and are finding it useful in your
Coding Dojo, you might also like to read some of these books.
Many of them contain worked code examples that you could
go through in the dojo, and perhaps turn into Code Katas.
Some of them you’ll find I already have done! In any case,
they’re books that you have to do more than just read to get
the most out of. They’re full of code, and you're a coder, right?

Refactoring and Design

“Refactoring: Improving the design of existing code”,

Martin Fowler

« “Refactoring to Patterns”, Joshua Kerievsky

« “Working Effectively with Legacy Code”, Michael Feath-
ers

« “Agile Software Development: Principles, Patterns and

Practices”, Robert C. Martin

TDD, Clean Code

+ “Test-Driven Development by Example”, Kent Beck

« “The art of Unit Testing with examples in .NET”, Roy
Osherove

« “Clean Code”, Robert C. Martin

+ “Code Complete”, Steve McConnell

« “xUnit Test Patterns”, Gerard Meszaros

Further Reading 41

London School of TDD

« “Growing Object Oriented Software, Guided by Tests”,
Steve Freeman and Nat Price
« “The RSpec book”, David Chelimsky et al

Functional Programming

« “Functional Programming for the Object-Oriented Pro-
grammer”, Brian Marick

Interesting Books for Coders
(except with less actual code)

« “Extreme Programming Explained”, Kent Beck

« “The Pragmatic Programmer”, Andrew Hunt and David
Thomas

« “Apprenticeship Patterns: Guidance for the Aspiring
Software Craftsman”, Dave Hoover, Adewale Oshineye

A sequel to this book

To expand on some of the topics in this book, I'm writing a
sequel, which you might be interested in. It uses Code Katas
to illustrate coding techniques:

« “Mocks, Fakes and Stubs”*?

®https://leanpub.com/mocks-fakes-stubs

https://leanpub.com/mocks-fakes-stubs
https://leanpub.com/mocks-fakes-stubs

	Table of Contents
	Foreword
	Introduction
	Acknowledgments
	How to Read This Book
	What is a Coding Dojo?
	Section 1: Collaborative Games for Programmers
	Randori
	Randori Variants

	Section 2: Organizing a Coding Dojo
	Dojo Theory
	Finding Or Founding A Coding Dojo

	Section 3: Teaching & Learning In the Dojo
	Dojo Principles

	Section 4: Kata Catalogue
	Kata: FizzBuzz
	Kata: Tennis
	Kata: Minesweeper

	Further Reading

