>
o 5
0 5
| -
b,wm
@) -1
w oo
55
n%%
O o .=
X =2
eaC
— n C
QO 'C
Y T QA

Gonzalo Ayuso

Cédigo Sdlido
Reflexiones sobre el desarrollo de software y principios
SOLID

Gonzalo Ayuso
Este libro esta a la venta en http://leanpub.com/codigosolido

Esta version se publicé en 2018-03-16

)

Leanpub

Este es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el proceso de
publicacion. Lean Publishing es el acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener feedback del lector hasta conseguir tener el libro
adecuado.

[@lolse]

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License

http://leanpub.com/codigosolido
http://leanpub.com/
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

Miro a mi alrededor y solo veo caras nuevas.

Indice general

iFunciona! e
JA que dedica el tiempo el programador? oo oL
Laverdadestaenelcodigo.
Comentarios. e e
Estolodejoparadespués...
Productividad y eficiencia.
Nadie dijo que fuerafacil

itFunciona!

Cuando eres novato, si tu codigo funciona estas mas que satisfecho. Cosas como: el que sea legible,
la duplicidad de coédigo y en resumen la calidad, te parecen superfluas.

9 Si funciona esta bien, ;no?

Invertir en calidad de codigo parece sinénimo de “tardar mas”. Tienes que hacer c6digo que funcione.
Parece lo unico importante. Esas cosas de la calidad las dejas para mas adelante y solo te preocupas
de lo “importante”: que funcione. Es la tipica mentalidad del programador novato. Nos pagan para
que el codigo funcione y para que esté listo para ayer. No para mostrar nuestro c6digo en un museo
y que nos digan lo bonito que es.

Cuando te empiezas a curtir en batallas te das cuenta lo equivocado que estabas. Primer error: Lo
importante no es que el codigo funcione. Por supuesto que tiene que funcionar. Eso se da por sentado.
Pero lo realmente importante es que nuestro cdédigo sea mantenible.

¢A que dedica el tiempo el programador?

Parece una pregunta para el capitan obvio. El programador dedicara la mayor parte de su tiempo
a programar, jno? En cierta medida esa afirmacion es cierta. El programador dedica tiempo a
programar. De hecho, si no dedicara tiempo a programar no seria un programador. Seria otra cosa.
Pero la mayor parte del tiempo, al contrario de lo que muchos piensan, el programador no lo pasa
programando. La mayor parte del tiempo los programadores lo pasamos leyendo cédigo.

JA que nos referimos cuando decimos que dedicamos tiempo a leer codigo? Pues cuando decimos
esto no estamos diciendo abriendo una libreria de c6digo y leyendo las lineas como si fueran una
novela. Estamos diciendo leyendo cddigo para: Ver de donde viene ese bug, donde pongo yo esta
funcionalidad, etc. Esto se traduce en que el c6digo que escribimos va a ser leido. Leido por personas
como nosotros que necesitaran entender de qué va y no solo por el intérprete o por el compilador.

o Nuestro codigo va ser leido.

Si nuestro codigo va a ser leido, entonces tenemos que hacer que sea legible. Puede parecer otra
obviedad digna del capitan obvio, pero no lo es tanto. Cuando leemos codigo, este puede haber sido
escrito por nosotros o por algun compaiiero. Si el cddigo ha sido escrito por nosotros mismos, puede
haber sido escrito hace unas horas o incluso afios, por lo que la probabilidad de que no nos acordemos
de lo que hemos escrito o, peor aun, el porqué de lo que hemos escrito, es muy alta.

jFunciona! 2

La verdad esta en el cédigo.

Hace poco lei por ahi:

0 Todo equipo de programadores tiene al menos dos miembros: T4 y tu tres meses después.

No podemos depender en “recordar” el por qué hicimos algo. Nuestra memoria es limitada y a nada
que pase el tiempo los detalles simplemente se nos olvidan. Hay quien piensa que el trabajo de un
programador es mantener en su cabeza cuanta mas informacién de manera que si tiene que tocar
algo, corregir un bug o implementar una funcionalidad, solo tiene que tirar de su experiencia y tocar
el codigo donde sea necesario porque “sabe” donde hay que hacerlo. Esto es un gran error. Puede ser
que esa persona sea un genio y su memoria lo retenga todo, pero ;Que pasa si esa persona cambia de
trabajo, se pone enfermo o simplemente se toma unos dias de vacaciones? Pero, aun suponiendo que
lo tiene todo en su cabeza (que es ya de por si mucho suponer), ;como transmitimos ese conocimiento
al resto del equipo? No nos engafiemos. Las cosas no son asi. Si tenemos que recordar muchas cosas
para que el sistema funcione, seguro que alguna se nos olvida y dado que seremos conscientes de
ello trataremos de evitar tocar el codigo siempre que podamos, pasandole el marrén a otros con
el fin de diluir nuestra responsabilidad. Esa mentalidad deriva en que cada programador solo se
responsabiliza de “su c6digo”, porque es el que controla y sabe (o cree saber) como funciona.

He estado en reuniones junto a varios programadores en las que el objetivo de la reunién parecia
que, mas que como solucionar un problema y decidir quién lo tenia que implementar, era tener claro
quien NO lo tenia que tocar. Cada uno (incluyéndome a mi, ojo) tratando que lo implementara otro
con el fin de no tener que tocar “su c6digo” y que los problemas fueran de otros. El codigo es del
equipo. Da igual quien lo haya implementado. Todos tienen que entenderlo. Para conseguir esto
tenemos dos opciones. Una es crear una maravillosa documentacion técnica que todo el equipo lee
y entiende. Todos los que nos dedicamos a esto sabemos que esto es una quimera. Esa maravillosa
documentacion técnica es como los unicornios. Suena muy bien, es muy bonita, pero no existe.
Y encima cuando existe, queda obsoleta enseguida. Nadie puede asegurar si lo que pone ahi se
corresponde con la ultima versién o esta incompleta. En resumen, que si se da el caso que existiera,
nadie se la lee. O si alguien se la lee, no se fia de ella (lo que es peor todavia). La otra opcion es hacer
que el codigo sea “legible” y que este (6sea el propio cddigo) sea la documentacion técnica.

Recordemos ademas el punto dos del manifiesto agil:

O Software funcionando sobre documentacion extensiva

El codigo fuente nos cuenta como esta implementado en programa. Las presentaciones, diagramas de
flujo y similares nos cuentan una historia. A veces nos cuentan como pretendiamos que fuera nuestro
software, pero el codigo fuente nos da la cruda realidad. Es por esto que pasamos tanto tiempo

iFunciona! 3

leyendo codigo, para entender lo que pone y poder afiadir/corregir funcionalidad y en definitiva,
realizar nuestro trabajo. Es por esto también por lo que tenemos que tratar que sea legible.

Te pongo un ejemplo para intentar explicar todo esto. Imagina el siguiente codigo:
createUser(true);

;Que hace esto? Podemos asumir que estamos creando un nuevo usuario, pero jque es eso del true?
Esta duda nos obliga a entrar dentro de la funcion createUser .

function createUser($type) {

Viendo la descripcion de la funcion vemos que el true es para una variable que se llama $type. La
verdad es que sigue sin aportarnos mucho. Nos obliga a inspeccionar con mas detalle el c6digo, hasta
que nos damos cuenta que true significa que el usuario que estamos creando es de tipo administrador.
Bien. El codigo “funcionaba”, pero hemos usado demasiado tiempo en entenderlo. Esto se traduce
en una baja productividad. Recuerda eso de que el tiempo es dinero.

Quizas la persona que programo la funcion en una primera instancia no tardé mucho en desarrollar-
la. Esta persona tenia muy claro que era eso del true, la variable $type y demas, pero a ese tiempo de
desarrollo hay que sumarle el tiempo que hemos tardado nosotros en entender esta funciéon después.
Lo peor de todo no es solo esto, sino que es que luego vendra otro compafero y tendra que hacer
lo mismo, una y otra vez, aumentando asi el tiempo de desarrollo. Lo malo es que medir estos
tiempos totales no es nada sencillo. Medir el tiempo que tardamos en desarrollar la funcionalidad
la primera vez si que es sencillo: La fecha en que lo ponemos en produccién menos la fecha en que
lo hemos empezado a desarrollar. Sin embargo, el incremento de tiempo que le tenemos que afiadir
para entenderlo o recordarlo cada vez que tengamos que trabajar con él es muy dificil de calcular,
pero esto no quiere decir que no exista. Existe y es real, pero que muy real.

Nos podriamos ahorrar todo esto si tuviéramos dos funciones:

createStandardUser();
createAdminUser();

Vale, escribimos mas co6digo en el momento inicial, pero ;qué méas da? Los futuros programadores
que lean nuestro c6digo (o nuestro yo futuro) no tendran que preguntarse qué es lo que hace nuestro
cddigo e investigar por su cuenta. Lo tienen delante. Solo tienen que leer. Esto no implica que
el codigo no pueda tener fallos, pero al menos le estamos haciendo la vida mas facil a nuestros
compafieros (y a nosotros mismos), lo que se traduce en una mejor productividad y rapidez. Dicen
que:

jFunciona! 4

Tenemos que programar como si nuestro cédigo fuera a ser leido por un asesino en serie
que sabe donde vivimos.

Quizas no hay que llegar a esos extremos (o quizas si :).

Comentarios.

Una tentacion del lado oscuro de la fuerza que nos puede surgir es la de usar comentarios.
createUser(true); // create admin user

Yo soy enemigo de los comentarios en el cédigo, asi en plan general. En bruto. Sé que es un tema
espinoso, controvertido y que da para largas discusiones. Hay quien piensa que son necesarios y que
un buen programador es aquel que pone buenos comentarios en su cédigo. Hace poco discutiendo
sobre esto con un camarada en un foro, me dijo:

ﬁ El codigo necesita comentarios. Si no los necesitase es que es demasiado obvio.

En realidad, creo que dio en el clavo.

0 Los buenos programadores hacen que el cédigo parezca obvio. Tan legible y descriptivo
que los comentarios sobran.

Lo malo es que hacer esto es complicado. Bueno. Mas que complicado, requiere experiencia, estudio,
y mejorar dia a dia. Pero bueno. En eso estamos, ;no? Yo, como digo, intento evitar los comentarios.
Hay veces que los uso, pero soy consciente que el mero hecho de usarlos es un claro indicativo que
estoy haciendo algo mal. O dicho de otro modo, quizas tendria que haber desarrollado en cédigo de
otra manera. Vamos que cuando me veo obligado a usarlos, en realidad me estoy avergonzando un
poco de lo que acabo de realizar.

Esto lo dejo para después ...

Yo primero hago que funcione y luego, con calma lo dejo bonito.

Es otro error. Mas que un error es una ilusion. Otro unicornio. Ese “luego” nunca llegara. Nunca
vamos a tener ese tiempo para dejar bien algo que ya funcionaba. Asumamoslo. Asi que lo mejor
para nosotros sera intentar hacerlo bien desde el principio. Qué facil es decir esto, ;no? Facil de decir

iFunciona! 5

y muy complicado de llevarlo a cabo. Requiere afios de experiencia y aprendizaje, pero esto no nos
tiene que asustar. Cuanto antes comencemos a mejorar nuestras habilidades y conocimientos, antes
empezaremos a ser productivos de verdad.

Hay veces que la falta de experiencia nos puede acomplejar. Esta claro que un programador con
experiencia es mas productivo que uno sin experiencia.

Q Si hubieras empezado hace un afio, hoy llevarias un afio ganado

Nunca es tarde para empezar algo. Si empiezas hoy, dentro de un afio ya llevaras 365 dias. Sin
embargo, si hoy no lo haces, dentro de un afo estaras en el mismo punto que estas ahora. Ademas,
este mundo de las tecnologias de la informacion es tan cambiante que estas cosas pueden incluso
jugar a nuestro favor. Pensemos por ejemplo en JavaScript. A dia de hoy este lenguaje es el rey
de la programacion de FrontEnd. Incluso se programa BackEnd usando JavaScript con nodeJS.
Frameworks como AngularJs estan tomando mucha fuerza. ;Sabes cuantos afos de experiencia
tienen los gurus de AngularJS? Dudo que lleven mas de 3 afios, mas que nada porque el framework
no tiene mucho mas tiempo de vida. Puedes decir: Vale, pero seguro que llevan muchos afios con
JavaScript. Lo dudo. Hace 7 afios casi nadie programaba JavaScript (hablo de JavaScript en serio
como se esta programando hoy). Si que nos podemos encontrar a gente que lleve mas de diez afios
programando en Java, PHP o Python, pero nunca es mal momento para empezar. Pero nadie nos
asegura que el lenguaje X va a seguir vivo 10 afios. ;Que le pasara al JavaScript con la llegada de
ES6? Si tienes una bola de cristal que te diga el futuro, entonces usala. Si no, no te vuelvas loco con
estas cosas. Mejora cada dia con las herramientas del presente y asi te adaptaras mejor a los cambios
del futuro.

Productividad y eficiencia.

Estamos hablando de productividad y eficiencia. Esto es algo clave. Es lo que diferencia a un
programador novato de uno senior. Muchas veces asociamos los conceptos programador novato
a gente joven y programador senior a gente mayor. Hay que tener mucho cuidado con esto ya
que no es siempre asi. Las canas llegan solas. No hay que preocuparse por ello. Simplemente nos
sentamos en el sofa y un buen dia aparecen en nuestra cabeza. Con la experiencia no pasa lo mismo.
Es obvio que para adquirir experiencia necesitamos que pasen los afios, pero esta no nos va a llegar
por si sola (los afios y las canas si). Tenemos que invertir tiempo en asimilar conceptos, aprender
cosas nuevas y ser capaces de dar soluciones a los problemas que nos van surgiendo con el paso
de los afos. En definitiva, aportar mas valor lo que hacemos. El proceso de adquirir experiencia no
es un proceso pasivo. Es muy, pero que muy activo. Si nos dormimos en los laureles simplemente
conseguiremos que pasen los afios sin adquirir experiencia. Con esto no conseguiremos mas que
seguir siendo novatos. Con canas en la cabeza eso si, pero novatos.

iFunciona! 6

Nadie dijo que fuera facil
Si estas empezando en este mundo, te voy a hacer un pequefio spoiler:

0 Esta es una profesion muy dura.

Parece muy cool, pero te vas a pasar muchas horas delante de una pantalla sin ver la luz del sol.
Es por esto que muchos acaban quemados abandonan la programacién en cuanto pueden. Requiere
mucho aprendizaje. No vale con aprender algo un dia y vivir de eso durante afios. Puedes aprender
algo y vivir de eso unos afos, pero como no estés aprendiendo cosas nuevas, te puedes plantar en un
futuro cercano totalmente fuera del mercado. Hace falta una gran pro-actividad para adaptarse a los
cambios y adquirir esa “experiencia” de la que hemos hablado antes. Esa experiencia que no es gratis
y que la necesitamos si o si, si queremos seguir en esto del mundo del c6digo. Si no seremos eternos
novatos (con o sin canas en la cabeza) y tendremos que competir con todos los novatos que se van
incorporando (y con sueldos de novatos por supuesto), por lo que nos quemaremos mas rapido ain.
Recordemos que las universidades y demas centros de formacion son unas maquinas que ponen en
el mercado programadores novatos afio tras afo.

Ademas, la capacidad de aprendizaje puede verse mermada con los anos. No es lo mismo aprender
con 20 anos que con 40 o con 60. No es que no se pueda, es que la vida nos va metiendo en nuestra zona
de confort y salir de ella nos puede dar pereza. También estaran nuestras obligaciones, compromisos,
tamilia, etc. En definitiva, que con el paso de los afios la cantidad de buenas excusas para no aprender
y formarte aumentaran. Si queremos marcar la diferencia y aportar mas valor hay que leer mucho
y estudiar tecnologias que puede que queden obsoletas en poco tiempo. Todo esto puede llegar a
quemarnos rapidamente. Avisado quedas. Pero por otro lado programar puede llegar a ser divertido.
Es un ejercicio mental muy satisfactorio que engancha y nos depara un reto tras otro. Yo ya llevo
casi dos décadas con esto y sigo con ganas. No sé qué pasara en el futuro, pero a dia de hoy me sigo
divirtiendo.

	Tabla de contenidos
	¡Funciona!
	¿A que dedica el tiempo el programador?
	La verdad está en el código.
	Comentarios.
	Esto lo dejo para después …
	Productividad y eficiencia.
	Nadie dijo que fuera fácil

