


Laravel: Code Smart (IT)
Sviluppo di Applicazioni Web con il Framework Laravel 5.

Dayle Rees e Francesco Malatesta
Questo libro ¢ in vendita presso http://leanpub.com/codesmart-it

Questa versione ¢ stata pubblicata il 2016-10-20

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 Dayle Rees


http://leanpub.com/codesmart-it
http://leanpub.com/
http://leanpub.com/manifesto

Indice

Ringraziamenti. . . . . . . . . . . L i
Errata . . . . . . . . e ii
Feedback . . . . . . . . . iii
Traduzioni . . . . . . . ... iv
Introduzione . . . . . . . L 1
Installazione . . . . . . . ... 2
Installare le Dipendenze . . . . . . . . . . .. ... 2
Creare il Primo Progetto . . . . . . . . . . . . . . 3
Installare Homestead . . . . . . . . . . ... .. L 3
Approfondiamo Vagrant . . . . . . ... L 5
CiclodiVita . . . .. .. .. . e 6
Richiesta . . . . . . . . . e 6
Servizi . . . . L e 7
Routing . . . . . . . o e 7
Logica . . . . . . . . e 7
Risposta . . . . . . . . . .. 7
Configurazione . . . . . . . . . . ...
File di Configurazione . . . . . . . . . . .. .. ... 9
Variabili d’Ambiente . . . . . . .. ... 10
Cache e Configurazione . . . . . . . . . . ... . 12
RoutingdiBase . . . . . .. ... ... 14
DefinireunaRoute . . . . . . . . ... . 14

Parametri delle Route . . . . . . . . . . 19



Ringraziamenti

Innanzitutto, vorrei ringraziare la mia ragazza Emma, per supportarmi in tutte le mie avventure
piA® nerd... e non solo: ha anche scattato la foto che vedi sulla copertina del libro! Ti amo, Emma!

Grazie anche ai miei genitori, che mi hanno sempre sostenuto durante questi trentadue anni di vita.
Ah, e grazie anche per aver comprato un miliardo di copie dei primi libri per tutti i membri della
famiglia!

Taylor Otwell: il viaggio che sto facendo con Laravel A" qualcosa di incredibile. Grazie di cuore per
avermi dato 'opportunitA di far parte del team, ed anche per la tua amicizia! Grazie soprattutto per
aver creato un framework piacevole da usare, che rende il nostro codice poesia. Grazie per averci
investito cosA— tanto tempo e passione nel suo sviluppo.

Grazie anche a te, lettore che ha comprato questo (e magari uno dei precedenti) libri e a tutta la
community di Laravel. Senza il vostro supporto, tutto questo non sarebbe possibile.



Errata

Code Smart é il mio quarto libro. Dal primo, per fortuna, sono migliorato notevolmente. Tuttavia,
sono assolutamente certo che ci saranno degli errori. Non ho un publisher ed un team per la review.
Tantomeno una laurea in inglese. Per questo motivo ho fatto il possibile per rendere presentabile il
lavoro, ma ti prego di avere pazienza in caso trovassi un errore. Sentiti libero di mandarmi una mail
(in inglese) con tutti i dettagli a me@daylerees.com'! Saro felice di sistemarlo.

Tutti gli errori segnalati verranno sistemati quanto prima, e tutte le piccole sistemazioni verranno
quindi rilasciate nelle prossime release del libro.

'mailto:me@daylerees.com


mailto:me@daylerees.com
mailto:me@daylerees.com

Feedback

Non solo errori: per qualsiasi cosa scrivimi senza problemi, in inglese, a me@daylerees.com®. Puoi
anche contattarmi su twitter: sono @daylerees®.

mailto:me@daylerees.com
*https://twitter.com/daylerees


mailto:me@daylerees.com
https://twitter.com/daylerees
mailto:me@daylerees.com
https://twitter.com/daylerees

Traduzioni

Vuoi tradurre Code Smart nella tua lingua? Grande! Mandami una mail all’indirizzo me@daylerees.com*
con la tua proposta. La mia offerta consiste nel fare a meta (si, cinquanta e cinquanta) con i profitti
delle copie tradotte. Il prezzo sara lo stesso della copia inglese.

Attenzione: il libro € stato scritto in markdown, e tutto il testo € sotto version control su Github®.

“mailto:me@daylerees.com

*http://github.com


mailto:me@daylerees.com
http://github.com/
mailto:me@daylerees.com
http://github.com/

Introduzione

Ehila! Ciao! Piacere di conoscerti.

Il mio nome ¢ Dayle, e sono uno sviluppatore. Ho da poco iniziato il mio quarto decennio su questo
pianeta, e ti porto i miei omaggi dalle terre del Galles. Alcuni anni fa, sono stato uno dei primi ad
usare quello che all’epoca era un framework da poco entrato in circolazione nel mondo PHP: Laravel.
Dopo qualche prova e tanto divertimento, ho immediatamente iniziato a costruirci applicazioni.
Laravel e pulito, conciso, meraviglioso. Ci ho visto un potenziale, e col senno di poi... avevo ragione!

Da allora, per Laravel sono stato un core contributor, uno speaker, un consulente ed un autore di
libri. Svariati libri e si, tutti dedicati a lui. Con ottime reazioni da parte del pubblico, per fortuna, e
migliaia di copie vendute! Un’esperienza meravigliosa, davvero. Se ti € gia capitato di leggere uno
dei miei libri, in precedenza... grazie! In caso contrario, lascia che ti spieghi come funziona il tutto.

Non sono un autore nel senso tradizionale del termine. Non riesco a complicare le cose, mi piace
tenerle semplici. Seguendo questa linea scrivo i miei libri, come se stessi al pub, con un amico, a
raccontargli una storia. Tutto qui!

Questo libro ¢ il terzo della mia serie dedicata a Laravel, e copre le versioni 5.x del framework. Libro
dopo libro, posso dire di aver imparato qualcosina sulla scrittura: spero per te che quella che stai per
iniziare sara una piacevole avventura. Nel caso in cui dovessero esserci dei problemi, sentiti libero
di mandarmi una mail! Rispondero quanto prima.

Detto questo, ci siamo. Eccitato? Laravel ¢ un framework davvero grande, che consente di fare un
sacco di cose. Non temere: faremo un passo alla volta, ed in men che non si dica avrai gia costruito
le tue prime applicazioni!

Iniziamo!



Installazione

Lo so, non vedi l'ora di cominciare ad usare Laravel. Ad ogni modo, visto che stiamo parlando di
un web framework, la prima cosa di cui avrai bisogno sara un web server ed un ambiente di lavoro
appropriato. In questo capitolo vedremo un po’ come prepararli.

Ehi, ma io non ho il tempo di preparare tutto questo!

Non temere: non intendevo quello che forse stai pensando. Conosci Vagrant? Beh, ¢ un meraviglioso
software che ti consente di creare macchine virtuali velocemente, e da linea di comando. Homestead
¢ una box di Vagrant creata appositamente per Laravel. In poche parole, ti consentira di creare al
volo una macchina su cui lavorare senza andare a “sporcare” ’ambiente locale.

Chiaramente, non ¢ 'unico modo: ma ¢ il mio preferito, onestamente. Ha tutto il necessario per
avviare il framework e lavorarci. Certo, si tratta sempre di qualcosa in pit da studiare, ma ne varra
la pena, fidati! Se dovesse interessarti, inoltre, il prossimo capitolo riguarda Valet, un eseguibile che ti
consentira di iniziare a lavorare con Laravel senza troppi fronzoli ed in pochissimo tempo, usando la
versione di PHP installata in locale. Al momento, tuttavia, funziona solo per Mac. Se non stai usando
un Mac o vuoi semplicemente seguire il mio consiglio, continua a leggere qui. In caso contrario, salta
questa parte e passa a Valet!

Installare le Dipendenze

Per iniziare a lavorare avrai bisogno di installare alcune “dipendenze”. Eccole:

PHP http://www.php.net/®
Git https://git-scm.com/’

Composer https://getcomposer.org/®
Virtualbox https://www.virtualbox.org/’

« Vagrant https://www.vagrantup.com/*’

®http://www.php.net/
"https://git-scm.com/
®https://getcomposer.org/
*https://www.virtualbox.org/
https://www.vagrantup.com/


http://www.php.net/
https://git-scm.com/
https://getcomposer.org/
https://www.virtualbox.org/
https://www.vagrantup.com/
http://www.php.net/
https://git-scm.com/
https://getcomposer.org/
https://www.virtualbox.org/
https://www.vagrantup.com/

Installazione 3

Non riportero qui le istruzioni passo passo su come installare tutti questi software: d’altronde, nel
nostro settore le cose cambiano di settimana in settimana. Usa invece i link che ti ho lasciato per
rintracciare le ultime versioni di questi software seguendo le istruzioni presenti direttamente sui
rispettivi siti.

Facciamo comunque un piccolo excursus.

Innanzitutto avremo bisogno di ‘PHP’. E il linguaggio usato da Laravel. Scarica ed installa I'ultima
versione disponibile.

Per il version control, useremo ‘Git’. Diciamo che & anche un ottimo modo di scaricare velocemente
Laravel. Dopo vedrai come.

Useremo quindi ‘Composer’ per gestire le librerie da usare nei nostri progetti. E uno dei miei
software preferiti, ed un must-have per qualsiasi sviluppatore PHP nel 2016!

Abbiamo poi ‘Virtualbox’. Forse lo conosci gia. Si tratta di un software che consente la virtualizza-
zione di una macchina. Un po’ come quando emulavi la Playstation sul tuo PC. Stavolta lo farai con
un altro computer.

Infine, abbiamo ‘Vagrant’. Vagrant serve per il provisioning di ambienti virtuali. E un semplice tool
da linea di comando, che useremo dal nostro terminale. Sara Vagrant ad usare Virtualbox per creare
le macchine che adopereremo.

Ci siamo? Bene!

Creare il Primo Progetto

Prima di costruire il nostro ambiente di lavoro, assicuriamoci di aver creato un progetto. Scegli una
cartella: tipicamente io ho la cartella Project in cui inserisco i miei progetti. Entriamoci:

Esempio 01: Entriamo nella cartella dei Progetti

cd ~/Projects

Non ¢ stato difficile, vero? Adesso, usiamo Composer per creare un nuovo progetto. Come?
Semplicemente come segue (“example” ¢ il nome scelto per la cartella del progetto).

Esempio 02: Creazione di un Progetto Laravel.

composer create-project laravel/laravel example

Probabilmente vedrai un bel po’ di output sul terminal. Composer sta scaricando tutte le librerie
necessarie al funzionamento di Laravel. Vengono dette ‘package dependencies’. Una volta finita la
procedura... ¢ fatta! Hai installato Laravel. Adesso installiamo Homestead.

Installare Homestead

Entriamo nella cartella appena creata.



Installazione 4

Esempio 03: Entriamo nella directory del progetto.

cd ~/Projects/example

Adesso installeremo il package di Homestead, che ci consentira di creare un ambiente di lavoro
virutale. Non ti preoccupare, nulla di complesso anche qui:

Esempio 04: Aggiunta di Homestead.

composer require laravel/homestead --dev

Assisterai all’installazione di altri package composer. Esattamente quello di cui abbiamo bisogno.

A quel punto, eseguiamo il comando “make” per configurare il nostro progetto.

Esempio 05: Lancio dell’installazione.

php vendor/bin/homestead make

Fatto!

Bene, adesso usa il comando che vedi qui di seguito per avviare la macchina virtuale. Probabilmente
stai avviando questo comando per la prima volta, quindi sappi che ci mettera un po’ di tempo a
finire. Non temere. Deve essere scaricata, infatti, 'immagine della macchina virtuale che userai! Hai
tempo per un caffe.

Esempio 06: Boot della macchina virtuale.

vagrant up

Una volta creata e sistemata la macchina virtuale, rimane soltanto una sola cosa da fare. Dobbiamo
aggiungere, infatti, I’hostname della nostra applicazione nel file di hosts, in modo tale da accedere
all’applicazione agevolmente, senza doverti ricordare I’indirizzo IP.

Con il tuo editor, modifica il file /etc/hosts, come root, aggiungendo questa linea.

Esempio 07: Aggiungere un hostname nel file di hosts.

192.168.10.10 homestead.app

Per controllare che tutto funzioni, visita http://homestead.app nel tuo browser. Dovresti poter
vedere il testo “Laravel 5”.

Missione completa!



Installazione 5

Approfondiamo Vagrant

I tuo ambiente di lavoro, adesso, esiste su una macchina virtuale. Questa macchina usa ovviamente
le risorse della tua macchina fisica. Ad esempio, puoi decidere di rendere disponibile un certo
quantitativo di RAM, o di potenza del processore.

Di volta in volta, quindi, sara una buona idea fermare la macchina virtuale per evitare di sprecare
risorse. Inoltre, c’é da tenere a mente che ogni volta che riavviamo la nostra macchina fisica,
I’ambiente di sviluppo non viene avviato automaticamente.

Per questa ragione, vediamo un po’ di comandi di base di Vagrant. Innanzitutto up, che hai visto
poco fa.

Esempio 08: Avviare la macchina virtuale.

vagrant up

C’¢ poi halt che serve a fermare la macchina nel momento in cui non ne abbiamo piu bisogno.

Esempio 09: Fermare la macchina virtuale.

vagrant halt

Se dovessi decidere di cambiare qualcosa nella configurazione della macchina, aggiornando il
Vagrantfile, usa il comando provision per applicare le modifiche.

Esempio 10: Aggiornare le impostazioni della macchina virtuale.

vagrant provision

In alcune circostanze, potresti aver bisogno di eseguire alcuni comandi dalla macchina virtuale, e
non da fuori. Usa il comando SSH per accedere (sudo).

Example 11: Accesso SSH alla macchina virtuale.

vagrant ssh

Infine, una volta finito il nostro progetto, potremo distruggere la macchina ormai inutile. Destroy!

Example 12: Elimina la VM.

vagrant destroy

Et voila! Nel prossimo capitolo vedremo come avviare un’applicazione Laravel... ma in modo
alternativo!



Ciclo di Vita

Se non hai mai usato un framework PHP in precedenza, probabilmente sei abituato ad avere un
certo numero di file PHP nella tua directory e stop. Chi usera la tua applicazione dovra richiedere
ogni script, individualmente.

Laravel usa una combinazione di due elementi: un front controller ed un router. Che significa?
Innanzitutto, c’¢ un singolo file PHP nella cartella principale che si prende carico di tutte le richieste
che arrivano all’applicazione. Tutto passera da questo front controller. In Laravel, questo file si
chiama index.php e puo essere trovato nella cartella public. Che, tra I’altro, € 'unica cartella che
va esposta pubblicamente.

Ma sei pazzo? Non posso mica fare applicazioni con una sola pagina!

Non temere: non & come sembra. Laravel fa uso di svariate tecniche per servire vari tipi di contenuto
in base alla richiesta effettuata. Ecco il flusso preciso:

Richiesta > Servizi > Routing > Logica > Risposta

Forse non ancora conosci il significato preciso dei vari termini, ma una cosa ¢ certa: una richiesta
ad un webserver non ¢é altro che un qualcosa che parte da un input per arrivare ad un output. Stop.

Vediamo nel dettaglio, ora, i singoli elementi di questo flusso.

Richiesta

Ogni richiesta effettuata da un browser alla tua applicazione ha un sacco di informazioni al suo
interno. Ad esempio, I'URL, il metodo HTTP usato, i dati della richiesta, header e cosi via.

Tocca a Laravel (ed alla tua applicazione) capire cosa fare in base alla richiesta che arriva. Usando
Laravel, le informazioni riguardanti la richiesta attuale sono contenute in un’istanza della classe
I1luminate\Http\Request, che estende Symfony\Component\HttpFoundation\Request, che viene
creata ad ogni richista.

Hai letto bene, Symfony: ha un’ottima implementazione del protocollo HTTP nel suo package
HttpFoundation. Laravel fa uso di questo package per non reinventare la ruota.

Ad ogni modo, in questa richiesta avremo un sacco di informazioni a disposizione. Cosa succede
ora?



Ciclo di Vita 7
Servizi

Lo step successivo ¢ il processo di bootstrapping del framework. In poche parole, Laravel ha svariati
servizi e feature che ad ogni richiesta vengono usati per rendere la vita dello sviluppatore piu
semplice. Prima di fare uso di questi servizi, pero, dobbiamo inizializzarli.

In questa fase, il framework carichera tutti i servizi e le varie configurazioni, assicurandosi che
tutto sia pronto per il nostro codice. Vedremo piu avanti, nel dettaglio, come questi servizi vengono
caricati.

Il framework é pronto ad accogliere il nostro codice: che succede ora?

Routing

Come scoperto poco fa, c’eé solo uno script davvero accessibile quando usiamo Laravel. Come
possiamo differenziare le varie pagine ed implementare vari comportamenti, in base a questa o
quella condizione?

Ecco che entra in scena il router!

Il solo scopo del router é quello di verificare che una certa richiesta corrisponda ad un certo codice
da eseguire. Per capirci, sara il router a capire che, ad esempio, quando faremo una richiesta GET
dell'URI user /profile dovremo mostrare la pagina del profilo del nostro utente.

Laravel ha un modo molto semplice di definire le route (o rotte) di un’applicazione: ne parleremo
molto presto. Per ora, facciamo un altro piccolo salto in avanti.

Logica

Nel nostro flusso, questo € il momento in cui entra in gioco la logica. Precisamente, possiamo dire
che entra in gioco la tua logica. Lavoreremo con un database? Mostreremo un messaggio di errore?
In questa parte viene deciso il comportamento della nostra applicazione.

In Laravel ci sono vari modi di definire le logiche della propria applicazione. Anche in questo caso
ne parleremo a breve, dopo questa panoramica.

Non rimane che 'ultima tessera del domino...

Risposta

Alla fine di tutto, c’¢ la risposta. L’output, finalmente. Puo essere un template HTML, o magari dei
dati in formato JSON. O, semplicemente, una stringa. O magari nulla! A volte una schermata di
errore, 0 una pagina 404.



Ciclo di Vita 8

Ad ogni modo, la risposta ¢ quello che il tuo utente vedra dopo la sua richiesta. Fine!

Facciamo un piccolo riassunto prima di procedere.

« Il browser manda una richiesta;

« Laravel avvia i propri servizi;

« Viene interrogata la richiesta, ed effettuato il routing di questa;
« Lalogica della specifica route viene eseguita;

La risposta derivante da questa logica viene inviata all’utente;

Sembra una cosa semplice, tuttavia non darla mai per scontata: sapere come funzionano le cose ti
puo rendere un web developer migliore.

Ok, gira pagina!



0 N O O B~ W N -

(AN
N »~ O ©

Configurazione

La configurazione é un aspetto molto importante di qualsiasi applicazione. Infatti, non avremo mai
applicazioni con le stesse identiche impostazioni in tutti i possibili ambienti. Soprattutto nel caso in
cui dovessimo decidere di condividere con altri la nostra applicazione, avremo il bisogno di poter
dare un’ampia possibilita di scelta.

In questo capitolo vedremo insieme come Laravel ci consente di specificare le “opzioni” per la nostra
applicazione.

File di Configurazione

Inizieremo dal dare un’occhiata alla cartella config presente nella root del nostro progetto. Eccone
il contenuto.

Esempio 01: File di configurazione.

app . php
auth.php
broadcasting.php
cache.php
compile.php
database.php
filesystems.php
mail.php
queue.php
services.php
session.php
view.php

Troverai svariati file PHP. Molti di loro hanno il nome del componente corrispondente nel
framework. Sono i file di configurazione di default che vengono usati da un’installazione “fresca” di
Laravel.

Adesso, prendi uno di questi file, uno qualsiasi, e guardane il contenuto. Esatto: non sono altro che
semplicissimi array associativi. Ogni chiave rappresenta il nome dell’opzione, mentre il valore &
appunto... il valore! Per accedere a questi valori, quindi, possiamo usare la Facade Config oppure
I’helper config() come segue:



O = W N =

Configurazione 10

Esempio 02: Accedere ai valori di configurazione.

// Usando una Facade.

$debug = Config::get('app.debug', false);

// Usando un Helper.
$debug = config('app.debug', false);

Come puoi vedere, la sintassi ¢ praticamente la stessa, identica! Il primo parametro ¢ la chiave di
cui abbiamo bisogno. Il formato di questo primo parametro €, come puoi immaginare, nome_fi-
le.chiave. In questo caso stiamo richiedendo il valore di debug nel file app. Il secondo parametro,
invece, consiste in un valore di default da ritornare come “cuscinetto” nel caso in cui la chiave
specificata non esista.

Nel caso in cui tu voglia usare la Facade, non scordarti di specificare use Config; all’inizio della
tua classe.

Pit in avanti, vedremo un terzo metodo da usare, pit pulito, per recuperare i valori delle
opzioni senza usare Facade o helper.

Chiaramente, puoi anche creare nuovi file di configurazione, semplicemente inserendoli nella
cartella config. Laravel infatti provvedera a caricarli automaticamente e ti permettera di usarli allo
stesso modo in cui usi quelli gia esistenti.

Un consiglio: aggiungi alle tue applicazioni quante pil opzioni puoi (senza esagerare, ovviamente).
Renderai tutto piu flessibile e pitt semplice da mantenere.

Variabili dAmbiente

Girovagando tra i file di configurazione ti sarai sicuramente imbattuto in una piccola funzione
chiamata env(). Tale funzione ¢ il cuore di un nuovo modo di creare diverse configurazioni in
altrettanti diversi ambienti di lavoro. Un esempio: in fase di sviluppo non userai di certo le stesse
credenziali che usi in produzione!

Nelle versioni precedenti di Laravel venivano usate delle cartelle per ogni ambiente. Poi le cose sono
cambiate, ed in meglio, visto che il progetto ha iniziato a fare uso della libreria DotEnv, che permette
di caricare i valori di configurazione dalle variabili d’ambiente. Certo, caricare tutte le variabili
d’ambiente da una shell puo essere noioso:



Configurazione 11

Esempio 03: Impostare una variabile d’ambiente via shell.

export DB_HOST="127.0.0.1"

Fidati, tra I’altro, se ti dico che su Windows ¢ ancora piu brutto. Tuttavia, c’¢ una soluzione a tutto
questo: usare dei file in cui memorizzare tutte le variabili da usare. I file .env, da mettere nella
cartella principale del progetto.

Esempio 04: Il nostro file .env.

APP_ENV=1local

APP_DEBUG=true

APP_KEY=base64 : aOhRMNEdGAWWGEUVCn3vIu8VFQiJc113CMciFkJ+pcw=
APP_URL=http://localhost

0 = O O b W N =~

NN NN NN N B S s s s s
O O b WO N O © 03O0 O b WO N O O

DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=homestead
DB_USERNAME=homestead
DB_PASSWORD=secret

CACHE_DRIVER=file
SESSION_DRIVER=file
QUEUE_DRIVER=sync

REDIS_HOST=127.0.0.1
REDIS_PASSWORD=null
REDIS_PORT=6379

MAIL_DRIVER=smtp
MAIL_HOST=mailtrap.io
MAIL_PORT=2525
MAIL_USERNAME=null
MAIL_PASSWORD=null
MAIL_ENCRYPTION=null

Questo file .env € davvero molto semplice. Le chiavi sono sulla sinistra, i valori sulla destra. Quelli
che vedi qui sono una serie di valori di default, usati dal framework non appena viene installato.
Sono le basi del lavoro con il database, sistema di invio di email, e server di cache. Se vogliamo fare
in modo che alcune opzioni del nostro software cambino in base all’ambiente di lavoro, questo ¢ il
posto migliore dove specificarle.



Configurazione 12

La funzione env() puo essere quindi usata nei nostri file di configurazione per recuperare i valori
presenti nel file .env. Certo, stiamo aggiungendo un altro layer al processo di configurazione, ma
avremo la possibilita di usare un file . env diverso per ogni installazione senza modificare la codebase!
Flessibilita al massimo.

Esempio 05: La funzione env().

$host = env('DB_HOST', '127.0.0.1")

Quello che stiamo facendo, qui, € richiedere I’host del database, specificando pero un valore di default
nel caso in cui tale opzione non sia disponibile nel file .env o tra le variabili d’ambiente.

Importante: occorre tenere presente che i valori specificati nelle variabili d’ambiente avranno sempre
la priorita su quelli specificati nel file .env.

Normalmente, sara buona regola non mettere mai i file . env sotto version control. Ogni installazione
infatti avra un file .env con contenuti diversi! Una buona idea pero puo essere quella di creare un
file .env.dist con dei valori di default, o di esempio, per creare un boilerplate da cui partire per
la costruzione del proprio .env. Laravel, ad esempio, non ha un file .env di default, ma un file
.env.example che copia durante l'installazione.

Mmbh, ok, mi piace, ma perche non usare env() ovunque al posto di config()?

Ottima domanda! Certo, potresti tranquillamente usare env() ovunque, ma cosi non godresti di
nessun vantaggio derivante dal sistema di caching del layer di configurazione di Laravel. Tra I’altro,
rifletti: ci sono delle impostazioni che devono rimanere tali ma non cambiano di ambiente in
ambiente, mentre alcune si!

Capisco. Si, mi sembra una spiegazione logica.

Bene. Ricorda comunque: una buona pratica ¢ quella di chiamare env() solo nei file presenti nella
directory config.

Q Se un package che hai installato ha dei file di configurazione propri, ricorda di usare php
artisan vendor:publish per copiarli nella cartella config del tuo progetto. Non devi farlo
sempre: ti verra specifiato nelle istruzioni del package.

Cache e Configurazione

Come detto poco fa, Laravel puo mettere in cache i valori dei file di configurazione, in modo tale da
caricarli piu velocemente nelle richieste successive. Puoi ben immaginare che questa feature trova
la sua applicazione ideale in ambiente di produzione.

Per mettere in cache i file di configurazione non devi fare altro che andare nella cartella principale
della tua applicazione ed eseguire il comando artisan



Configurazione 13
php artisan config:cache

I file di configurazione verranno ora messi in cache, venendo bypassati guadagnando in velocita di
esecuzione. Nel caso in cui tu voglia pulire questa cache non devi fare altro che eseguire

php artisan config:clear

e via! Probabilmente non avrai bisogno di questa feature in fase di sviluppo locale, ma in produzione
potrebbe far comodo, vero?

Per quanto riguarda la configurazione direi che ci siamo, ¢ tutto. Passiamo adesso al routing!



N O O B W N =

Routing di Base

Bene, iniziamo a muovere i primi passi con Laravel. La prima cosa da fare & capire come viene
effettuata e gestita una richiesta all’applicazione.

Esempio 01: Un URL

http://homestead.app/my/page

In questo esempio stiamo usando il protocollo HTTP (usato da molti browser) per accedere alla
nostra applicazione Laravel, su homestead.app. La porzione my/page € quella che useremo per
veicolare la giusta richiesta alla logica corrispondente.

Prima di procedere, ricordiamoci che le route si trovano in app/Http/routes.php. Trovato il file?
Bene. Creiamo la nostra prima route.

Definire una Route

Esempio 02: La nostra prima route.

<?php
// app/Http/routes.php
Route: :get('my/page', function () {

return 'Hello world!';

});

Salva il contenuto del file routes.php e vai pure sul tuo browser, ovviamente rimpiazzando
homestead.app con I'indirizzo della tua applicazione.

Se tutto & stato configurato correttamente dovresti poter vedere le parole ‘Hello world!, in un
fantasmagorico Times New Roman! Meraviglia, vero?

Adesso vediamo come funziona la dichiarazione di una route.

Innanzitutto, una route viene dichiarata usando la classe Route. Di questa classe, chiamiamo il
metodo get, che viene usato per “catturare” le richieste, appunto, GET. Saprai infatti che tutte le
richieste HTTP hanno un verb specifico che indica I'intento di quell’azione. Abbiamo GET, POST,
PUT e cosi via...

Ecco tutti i metodi che Laravel mette a disposizione per catturare le richieste:



[N

© © 0 N O O b W N =~

N O O & W N -

Routing di Base 15

Esempio 03: Metodi di Route.

<?7php
// app/Http/routes.php

Route: :get();
Route: :post();
Route: :put();
Route: :patch();
Route: :delete();
Route: :any();

Tutti questi metodi accettano gli stessi identici parametri, per cui sentiti libero di usare il metodo
che meglio credi di situazione in situazione. A breve parleremo anche di quello che viene definito
RESTful routing, mentre per ora tutto quello di cui hai bisogno ¢ il metodo GET per richiedere dei
“contenuti”, e POST per mandare dei dati nel corpo della richiesta.

Se te lo stai chiedendo si, € una semplificazione, serve solo per rendere un po’ le idee.

Il metodo Route: :any() € molto comodo se devi collegare un determinato comportamento ad una
route qualsiasi sia il verb usato. Ad ogni modo, ti consiglio sempre di usare il verb giusto, specifico
per quello che devi fare.

Ok, detto questo torniamo al nostro esempio.

Esempio 04: La nostra prima route, di nuovo.

<2php
// app/Http/routes.php
Route: :get('my/page', function () {

return 'Hello world!';

});

Il metodo get () richiede due parametri. Il primo & ’URI a cui collegare una specifica logica. In questo
caso, tale URI € my/page. Il secondo parametro invece & proprio la logica che vogliamo eseguire
ad ogni chiamata a my/page. Qui stiamo usando una Closure, conosciuta anche come “funzione
anonima”. Non spaventarti: non sono altro che semplici funzioni senza nome che possono essere
assegnate ad una variabile.

Per intenderci, avremmo potuto scrivere lo stesso snippet cosi:



© 00 3 O Ol & W N =

0 I O O b W N =~

[ G
g WO N~ O O

Routing di Base

Esempio 05: Separazione della Closure.

16

<?php
// app/Http/routes.php

$logic = function () {
return 'Hello world!'’;

};

Route: :get('my/page', $logic);

Stavolta abbiamo memorizzato la nostra Closure in una variabile $logic, per poi passarla come

parametro di Route: :get (). Il risultato finale non cambia, prova tu stesso!

Puoi ovviamente definire tutte le route che vuoi:

Esempio 06: Route multiple.

<?php

// app/Http/routes.php

Route: :get('first/page', function () {

return 'First!’';

1)

Route: :get('second/page', function () {

return 'Second!’;

1)

Route: :get('third/page', function () {

return 'Potato!’;

});

Prova a raggiungere le seguenti URL, per verificare come la nostra applicazione, adesso, si comporta.



N O O b W N =

Routing di Base 17

Esempio 07: URL di route multiple.

http://homestead.app/first/page
http://homestead.app/second/page
http://homestead.app/third/page

Funziona tutto? Perfetto!

Cosa? Vuoi capire come collegare una route all’indirizzo

Esempio 08: Un URL vuoto?

http://homestead.app

vero? Nessun problema: la soluzione ¢ la seguente:

Esempio 09: Route senza path.

<?php
// app/Http/routes.php

Route: :get('/', function () {
return 'In soviet Russia, function defines you.'

});

7

Ehi ehi, aspetta! Ma non abbiamo uno slash in http: //homestead. app!

Vero, ma se provi anche a farlo manualmente, se inserisci un forward slash come nell’esempio
seguente:

Esempio 10: Con o senza slash...

http://homestead.app
http://homestead.app/

il risultato finale non cambia, € sempre la route “di base” che risponde all’appello!

Gli URL possono avere quanti segmenti vuoi (un segmento ¢ quella parte tra uno slash e I'altro, per
capirci). Puoi usare tale segmentazione per costruire la gerarchia del tuo sito:



0 N O O B~ W N -

0 N O O & W N =~

N U SN
00 3 O O b WON=~ O O

Routing di Base 18

Esempio 11: Un Sito Immaginario.

/

/books
/fiction
/science
/romance

/magazines
/celebrity
/technology

Un sito piuttosto minimale, ma un buon esempio di struttura che spesso troverai sul web. Proviamo
a ricrearla, usando delle route Laravel.

Per velocita e chiarezza, come puoi vedere, ho rimosso il contenuto delle singole Closure.

Esempio 12: Route del Sito Immaginario.

<?php
// app/Http/routes.php

// home page
Route::get('/', function () {});

// routes for the books section

Route: :get('/books', function () {});

Route: :get('/books/fiction', function () {});
Route: :get('/books/science', function () {});
Route: :get('/books/romance', function () {});

// routes for the magazines section

Route: :get('/magazines', function () {});

Route: :get('/magazines/celebrity', function () {});
Route: :get('/magazines/technology', function () {});

Fatto! Abbiamo replicato esattamente la gerarchia vsta prima. Certo, avrai notato un certo numero
di ripetizioni nelle varie stringhe: vediamo di risolvere la cosa, aderendo al principio DRY (Don’t
Repeat Yourself).



0 I O O b W N =

(AN
N »~ O ©

Routing di Base 19

Parametri delle Route

Le route possono anche prevedere dei parametri attraverso l'inserimento di “segnaposti” nelle
definizioni. [ parametri ti permetteranno di creare delle route piu interattive e piti complesse, visto
che potrai passare dei valori variabili dall’esterno all’interno della tua app.

Cosa? Ti ho confuso? Tranquillo, vediamo subito un esempio.

Esempio 13: Parametri per le Route.

<?php
// app/Http/routes.php

// route per la sezione books
Route: :get('/books', function () {

return 'Books index.';

});

Route: :get('/books/{genre}', function ($genre) {
return "Books in the {$genre} category.";

});

In questo esempio, abbiamo eliminato il bisogno di tutte le route che rappresentavano uno specifico
genere di libro, passando invece ad usare un placeholder {genre}, subito dopo la “radice” /books/.
Laravel riconoscera automaticamente questo segnaposto e passera alla Closure un parametro $genre
da poter usare nella tua logica.

Ad esempio, provando a navigare su

Esempio 14: Parametro nell’'URL.

http://homestead.app/books/crime

riceverai in output...

Esempio 15: Output.

Books in the crime category.

Volendo, puoi anche rendere un parametro opzionale usando il punto interrogativo ? alla fine del
nome del parametro.

Cosl:



, O O 0 N O O b W N =

[EEY

W N O O & W N =

Routing di Base 20

Esempio 16: Parametro opzionale.

<?php
// app/Http/routes.php

// route per la sezione books
Route: :get('/books/{genre?}', function ($genre = null) {
if ($genre == null) {
return 'Books index.';

}

return "Books in the {$genre} category.";

});

Da questo momento, nel caso in cui I’'utente non dovesse definire un valore per il parametro {genre},
automaticamente si ritrovera nella pagina principale dei libri. In caso contrario, invece, si ritrovera
nella pagina della singola categoria.

In un altro caso invece potremmo avere la necessita di un valore di default per un parametro
opzionale. Anche qui nessun problema, basta lavorare sulla definizione del parametro che arriva
alla Closure.

Esempio 17: Valore di default per il parametro.

<7php

// app/Http/routes.php

// routes for the books section
Route: :get('/books/{genre?}', function ($genre = 'Crime') {
return "Books in the {$genre} category.";

1)

Adesso, visitando 'URL

Esempio 18: URL senza parametro.

http://homestead.app/books

riceveremo questo output:



Routing di Base 21

Esempio 19: Output.

Books in the Crime category.

Visto? Tutto sommato € qualcosa di davvero semplice. Se € la prima volta che ti approcci a Laravel,
sentiti sicuro prima di proseguire. Fai tante prove e prendi dimestichezza con il meccanismo.

Dopodiche, prosegui: per ogni richiesta c’e una risposta, ed ¢ esattamente quello che stiamo andando
a conoscere. Le risposte.



	Indice
	Ringraziamenti
	Errata
	Feedback
	Traduzioni
	Introduzione
	Installazione
	Installare le Dipendenze
	Creare il Primo Progetto
	Installare Homestead
	Approfondiamo Vagrant

	Ciclo di Vita
	Richiesta
	Servizi
	Routing
	Logica
	Risposta

	Configurazione
	File di Configurazione
	Variabili d'Ambiente
	Cache e Configurazione

	Routing di Base
	Definire una Route
	Parametri delle Route


