


Laravel: Code Smart (ES)
The Laravel Framework Version 5 for Beginners

Dayle Rees y Antonio Laguna
Este libro est4 a la venta en http://leanpub.com/codesmart-es

Esta version se publicé en 2016-11-08

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 Dayle Rees y Antonio Laguna


http://leanpub.com/codesmart-es
http://leanpub.com/
http://leanpub.com/manifesto

Indice general

Reconocimientos . . . . . . . . .. s i
Errata . . . . . . e ii
Feedback . . . . . . . iii
Traducciones . . . . . . . . L s iv
Presentacion . . . . . . . . . . e 1
Instalacion . . . . . . . e 2
Instalar las dependencias de software . . . . . .. .. ... oo L 2
Crea un proyecto de Laravel . . . . . .. ... ... . ... 3
Instala Homestead . . . . . . . . . . . . 3
Aprendiendo Vagrant . . . . .. ... L 5
Ciclodevida . . . . . . . . . 7
PeticiOn . . . . . . o 7
Servicios . . . . .. e e e 8
Enrutado . . . . . . . e, 8
Logica . . . . . o 8
Respuesta . . . . . . . . oL 8
Configuracion . . . . . . . . . . 10
Archivos de configuracion . . . . . ... 10
Variables de entorno . . . . . . . . ., 11
Caché de configuracion . . . . . .. ... L L 13
Enrutado basico . . . . . . . . 15
Definiendo rutas . . . . . . . . . . 15

Pardmetros delasrutas . . . . . . . ... 20



Reconocimientos

Antes que nada, me gustaria agradecer a mi novia Emma, no solo por animarme con todas mis frikis
aventuras, jsi no también por hacer esas increibles fotos a los pandas rojos para ambos libros! [Te
amo Emma!

Gracias a mis padres, que me han apoyado durante mas o menos treinta y dos anos. También gracias
por comprar un billon de copias de los primeros libros para la familia.

Taylor Otwell, el camino con Laravel ha sido increible. Gracias por darme la oportunidad de ser parte
del equipo y por tu continuada amistad. Gracias por hacer un framework que es un placer usar, hace
que nuestro codigo se lea como la poesia y por poner tanto tiempo y pasion en su desarrollo.

Gracias a todo el que haya comprado mis libros anteriores, Code Happy, y a toda la comunidad de
Laravel. Sin vuestro soporte, nuevos titulos no hubieran sido posibles.



Errata

Este puede ser mi cuarto libro y mi escritura puede haber mejorado desde la ultima vez, pero te
aseguro que habra muchos, muchos errores. No tengo editora, equipo de revision o una filologia en
Espafiol. Hago lo mejor que puedo para ayudar a otros para aprender sobre Laravel. Te pido que
tengas paciencia con mis errores. Puedes mejorar el libro enviando un correo con cualquier error
que hayas encontrado a sombragriselros@gmail.com’ junto con el titulo de la seccién.

Los errores seran corregidos conforme vayan siendo descubiertos. Las correcciones seran lanzadas
con ediciones futuras del libro.

"mailto:sombragriselros@gmail.com


mailto:sombragriselros@gmail.com
mailto:sombragriselros@gmail.com

Feedback

De la misma forma, puedes enviarme cualquier feedback que tengas sobre el contenido del libro
o lo que quieras, enviando un correo a sombragriselros@gmail.com” o un tweet a @belelros®>. Me

esforzaré en responder a todo correo que reciba.

®mailto:sombragriselros@gmail.com
*https://twitter.com/belelros


mailto:sombragriselros@gmail.com
https://twitter.com/belelros
mailto:sombragriselros@gmail.com
https://twitter.com/belelros

Traducciones

Si quieres traducir Code Smart a tu idioma, por favor enviame un correo a me@daylerees.com* con
tus intenciones. Ofreceré un 50/50 de los beneficios de la copia traducida, que tendran el mismo
precio que la copia en Inglés.

El libro est4 escrito en formato markdown.

“mailto:me@daylerees.com


mailto:me@daylerees.com
mailto:me@daylerees.com

Presentacion

jHola! Encantado de conocerte.

Mi nombre es Dayle Rees y soy un programador. Acabo de empezar mi cuarta década en este
planeta y te saludo desde la agradable tierra de Gales. Hace muchos afos, fui uno de los primeros
en usar un nuevo framework para el lenguaje de programacion PHP llamado Laravel. Desde que
lei la documentacion por primera vez, supe que tenia que comenzar a crear aplicaciones con él. Era
limpio, conciso y bonito. Vi mucho potencial en el framework, jy creo que no me equivoqué!

Desde entonces he sido un colaborador principal, he dado charlas, consultor y autor de varios libros
basados en el framework de Laravel. Los libros han recibido unas reacciones asombrosas y tienen
miles de fans en todo el mundo. jHa sido una experiencia increible! Si has leido alguno de mis libros
antes, jte lo agradezco! Si no, bueno, déjame que te explique como funciona esto.

Como veras, no soy un autor tradicional. No me gusta complicar las cosas. No me gusta usar palabras
pomposas para aparentar ser inteligente y escribo mis libros como si estuviéramos compartiendo una
aventura de descubrimientos. Como he dicho antes, y lo diré de nuevo; me gusta escribir los libros
como si fuéramos dos amigos sentados en un bar, compartiendo una bebida y conversacion. jAl
menos hasta que ti pagues una ronda!

Este es el tercer titulo en la serie de Laravel y cubre la version 5.x del framework. He aprendido
algunas cosas sobre escribir libros técnicos con cada uno de los libros lanzados, y por tanto, espero
que encuentres agradable la experiencia de lectura de este libro. Si hay cualquier cosa que no te
gusta del libro o un capitulo o concepto que no quede claro, jenviame un correo! Para que este libro
sea tan perfecto como sea posible, voy a necesitar tu feedback. jEscribamos esta obra maestra juntos!

Probablemente estés deseando empezar, ;no? Es un framework grande pero te prometo que si vamos
paso a paso, estaras creando grandes aplicaciones antes de que te des cuenta. ;Estas preparado?
Adelante, pasa la pagina.



Instalacion

Estoy seguro de que estas deseando comenzar con Laravel. Dado que es un framework para web, es
importante crear un entorno con un servidor web. En un entorno de produccion nos llevaria mucho
rato el configurarlo y necesitariamos una plataforma basada en Unix asi que vamos a crear uno
casero.

iNo hay tiempo para hacer cosas caseras!

Ja! Puede que tengas razon pero no es lo que queria decir exactamente. Queria decir que vamos
a usar un entorno virtualizado usando una software llamado Vagrant. Nos permitira comenzar a
desarrollar en Laravel en un santiamén.

Instalar las dependencias de software

Antes de que podamos empezar, tenemos que instalar unas pocas dependencias. He aqui la lista
completa.

PHP http://www.php.net/®
Git https://git-scm.com/*

« Composer https://getcomposer.org/’

Virtualbox https://www.virtualbox.org/®

Vagrant https://www.vagrantup.com/’

No voy a dar instrucciones especificas de instalacion ya que cambian de semana en semana. En vez
de eso, ve a las URLs arriba especificadas y encontraras secciones en cada sitio sobre como descargar
e instalar para tu sistema operativo.

Echemos un vistazo a lo que nos ofrece cada pieza de software.

Vamos a necesitar PHP. Es el lenguaje usado por el framework de Laravel. No hay manera de
quitarnos esto de encima. Descarga la ultima version que esté disponible.

*http://www.php.net/
®https://git-scm.com/

7https:// getcomposer.org/
®https://www.virtualbox.org/
*https://www.vagrantup.com/


http://www.php.net/
https://git-scm.com/
https://getcomposer.org/
https://www.virtualbox.org/
https://www.vagrantup.com/
http://www.php.net/
https://git-scm.com/
https://getcomposer.org/
https://www.virtualbox.org/
https://www.vagrantup.com/

Instalacién 3

Usaremos Git para el control de versiones. También es una buena forma de descargarnos una copia
base de Laravel. Merece la pena tenerlo dado que forma parte del dia a dia de un programador
experimentado.

Usaremos Composer para gestionar todas las librerias que usemos con PHP. No dejes de instalarlo.
iEs uno de mis programas favoritos!

Luego, tenemos VirtualBox. Es un programa que te permitira virtualizar sistemas operativos. En
esencia, te permite ejecutar ordenadores de mentira en tu equipo principal. Dado que el desarrollo
web va mejor en entornos Unix, usaremos un entorno virtual de unix para poder desarrollar en
cualquier plataforma.

Por ultimo, tenemos Vagrant. Vagrant es usado para aprovisionar entornos virtuales y para
configurarlos como queramos. Es un programa de linea de comandos asi que lo usaremos en un
terminal. Vagrant hara uso de Virtualbox para crear entornos de proyectos.

Una vez que tengamos las cinco piezas instaladas, podemos pasar a la siguiente seccion.

Crea un proyecto de Laravel

Antes de poder crear nuestro entorno, necesitamos tener un proyecto de Laravel preparado.

Primero tenemos que decidir una ubicacién para nuestros proyectos. Voy a ser creativo y voy a
crear un directorio Proyectos en mi carpeta de usuario. Aqui es donde pondré todos los proyectos
de Laravel.

Vamos a nuestra carpeta de proyectos, ;no?

Ejemplo 01: Navega al directorio de proyectos.

cd ~/Proyectos

No ha sido dificil, ;no? Ahora podemos usar Composer para crear un nuevo proyecto de Laravel.
Vamos a escribir el siguiente comando y veamos lo que pasa. Puedes cambiar la palabra ‘ejemplo’
con el nombre de tu proyecto si es que prefieres algo diferente.

Ejemplo 02: Crea un proyecto de Laravel

composer create-project laravel/laravel ejemplo

Veras un monton de cosas en la pantalla. Composer se esta descargando todas las librerias que
Laravel necesita. Las llamaremos dependencias del paquete. Una vez terminado, habras instalado
Laravel. Ahora vamos a instalar Homestead.

Instala Homestead

Primero, naveguemos al directorio en el que hemos creado nuestro proyecto de Laravel.



Instalacién 4

Ejemplo 03: Navega al directorio del proyecto.

cd ~/Proyectos/ejemplo

Ahora, vamos a instalar el paquete Homestead para poder crear un entorno virtual. No te preocupes:
es sencillo. Tan solo, escribe el siguiente comando:

Ejemplo 04: Afiade homestead a las dependencias de composer.

composer require laravel/homestead --dev

Veras mas cosas aparecer en pantalla. No te preocupes. jEs lo que queremos!

Ahora ejecutaremos el comando make, para configurar nuestro proyecto para homestead. He aqui el
comando completo.

Ejemplo 05: Instalar homestead.

php vendor/bin/homestead make

Bueno, jal menos este fue rapido!

Ahora nos queda el mas largo. Vamos a usar el siguiente comando para levantar una maquina virtual.
Si es la primera vez que ejecutas el comando, tardara un rato en descargarse todo lo necesario. Son
unos 600mb o asi. (Hazte un café o un te!

Ejemplo 06: Arrancando la maquina virtual.

vagrant up

Una vez que la maquina virtual esté operativa, hay una ultima cosa que tienes que hacer. Vamos
a afiadir el dominio de la aplicaciéon de homestead a nuestro archivo de hosts para que podamos
acceder a nuestra aplicaciéon web en el navegador.

Usa tu editor de texto favorito con el archivo /etc/hosts. Vas a necesitar privilegios de admin/root
para acceder al archivo. Necesitas afadir la siguiente linea.

Ejemplo 07: Aiade una entrada local al registro DNS.

192.168.10.10 homestead.app

Para comprobar que todo funcione, visita http://homestead.app en tu navegador. Deberias ver el
texto ‘Laravel 5. jEsta es nuestra aplicacion de Laravel!



Instalacién 5

Aprendiendo Vagrant

Tu entorno de desarrollo web existe en una maquina virtual y esa maquina drena recursos de tu
maquina. Usara la RAM disponible y tiempo de procesador.

De tiempo en tiempo puede resultar util detener y restaurar el entorno para guardar recursos del
sistema. Merece la pena destacar que cuando reiniciemos nuestro equipo, el entorno virtual no se
iniciara automaticamente.

Por este motivo, vamos a ver algunos comandos basicos para mantener nuestros entornos Vagrant.
Usaremos estos comenados en el directorio en que se encuentre el archivo Vagrantfile.

El primer comando es usado para iniciar la maquina virtual. Ya lo has usado. Aqui lo tienes.

Ejemplo 08: Arranca la maquina virtual.

vagrant up

El segundo comando es el opuesto. Se usa para detener la maquina virtual. Ya no usara recursos del
sistema. Este es el comando:

Ejemplo 09: Para la maquina virtual.

vagrant halt

Si decides cambiar la configuraciéon de tu maquina Vagrant, actualizando el archivo Vagrantfile,
necesitas usar provision para aplicar los cambios a la maquina virtual.

Ejemplo 10: Actualiza los ajustes de la maquina virtual.

vagrant provision

En algunas circunstancias, puede que quieras ejecutar comandos en la maquina virtual. Se puede
acceder facilmente a la maquina usando el comando SSH de Vagrant. Esto te permitira acceso sudo
a la maquina. Por ejemplo.

Ejemplo 11: Accede por SSH a la maquina virtual.

vagrant ssh

Finalmente, si ya hemos terminado con nuestro proyecto y no queremos que la maquina virtual
ocupe espacio en nuestro disco duro, podemos eliminarla. Usa el comando destroy.



Instalacién 6

Ejemplo 12: Destruye la maquina virtual.

vagrant destroy

Ya lo tenemos todo para comenzar a trabajar con Laravel. Parece que ha llegado la hora de pasar
a algo nuevo. En el proximo episodio, vamos a echar un vistazo al ciclo de vida de una aplicacién
PHP moderna. Haz tu mejor pose de super-héroe, jy pasa de pagina!



Ciclo de vida

Si no has usado un framework de PHP antes, es probable que estés acostumbrado a tener un montén
de archivos PHP diferentes en tu directorio web. La persona que use tu aplicacién web, requerira
cada script de manera individual.

Laravel usa una combinaciéon de controlador frontal y de router. Esto significa que solo hay un
archivo PHP en tu raiz y todas las peticiones a tu aplicacion seran realizadas a través de dicho
script. Este archivo es llamado index.php y lo encontraras en la carpeta public, que es el unico
directorio que deberia ser accesible en la web.

iNo puedo hacer una aplicacién con una pagina!

No te preocupes. Tenemos una solucién para esto. Como veras, Laravel usa algunas técnicas
diferentes para servir diferentes contenidos basados en el estado de la peticion del navegador. De
hecho, he aqui un sencillo diagrama para mostrar el ciclo de vida de una peticién a una aplicacion
con el Framework de Laravel.

Peticién > Servicios > Enrutado > Légica > Respuesta

En cierto sentido, una peticion a un servidor web es un bucle de entrada/salida. Siendo sinceros, hay
unos pocos pasos mas involucrados, pero no es el momento de hablar de ellos. Vamos a ir sobre cada
una de las secciones del proceso, ;te parece?

o

Peticion

Cada peticion realizada por un navegador web a tu aplicacion tiene un amplio rango de informacién
asociada a ella. Por ejemplo, la URL, el método HTTP, los datos de la peticion, las cabeceras de la
peticion e informacion sobre la fuente de la peticion.

Ahora le toca a Laravel y a tu aplicacion interrogar la informacion dentro de la peticion para decidir
qué accion llevar a cabo. Usando Laravel, la informacion para la peticion actual se guarda en una
instancia de la clase I1luminate\Http\Request, extiende de la clase del framework de Symfony
Symfony\Component\HttpFoundation\Request.

Symfony tiene una fantastica implementacion del protocolo HTTP en su paquete HTTP Foundation.
Laravel hace uso de este paquete para evitar re-inventar la rueda.

Ahora tenemos una peticion y tenemos toda la informacién que necesitamos para nuestra aplicacion
para decidir una accion apropiada. Asi que, ;qué toca ahora? Echemos un vistazo.



Ciclo de vida 8

Servicios

El siguiente paso del proceso es inicializar el framework. Laravel viene con un montén de servicios y
caracteristicas que hace que nuestras vidas como programadores web sean considerablemente mas
faciles. Antes de que podamos hacer uso de esos servicios, necesitan ser inicializados.

El framework cargara todos los servicios definidos y configuraciéon y se asegura de que tengan todo
lo que necesitan para apoyar a nuestro codigo. Echaremos un vistazo a como se cargan los servicios
en el capitulo de Proveedores de Servicios.

El framework esta ahora listo para nuestro coédigo, pero ;qué pieza de coédigo deberia ejecutar?
iDescubramoslo!

Enrutado

Como ya hemos descubierto anteriormente, hay un tnico script que esta disponible al usar Laravel.
;Como mostramos paginas diferentes o realizamos acciones diferentes? He aqui donde el router hace
su aparicion.

El tnico propésito del router es hacer coincidir una peticién con la pieza de cédigo apropiada para
ejecutar. Por ejemplo, el router sabra que deberia ejecutar el codigo para mostrar el perfil de un
usuario cuando la peticion incluya un verbo HTTP de GET y una URI de /usuario/perfil.

Laravel tiene una bonita forma de definir estas rutas y las veremos enseguida . Por ahora, echemos
un vistazo a lo que ocurre después.

Logica
Ahora, tenemos nuestro segmento de logica. Esta seccion queda mejor descrita como tu cddigo. Es

donde estaras hablando con la base de datos, validando formularios o mostrando paginas.

En Laravel, tenemos diferentes formas de definir tu 16gica pero lo veremos en un capitulo posterior.
Por ahora, vamos a ver la ultima seccion, ;te parece? Sé que los usuarios de nuestra aplicacion
tendran muchas ganas de esta.

Respuesta

La respuesta es creada al final de nuestra logica. Puede ser una plantilla HTML. Puede ser datos
JSON; puede ser una cadena. O puede no ser nada. En algunas tristes circunstancias, podria ser una
pantalla de error, como una pagina 404. Es bueno tener opciones, ;no te parece?

La respuesta es lo que los usuarios de tu aplicacion veran. Es la parte que estan esperando.

Resumamos.



Ciclo de vida 9

El navegador manda una peticién. Laravel inicializa sus servicios, interroga la peticion y lleva a
cabo operaciones de enrutado. Nuestro codigo es ejecutado y entrega una respuesta al usuario. Es
una operacion sencilla, ;no?

Suena a proceso realmente simple, pero te prometo que mantener estos flujos en tu mente, te haran
un mejor desarrollador web.

Subamos el volumen y mantengamos la fiesta en al préximo capitulo. Vamos a ver el patrén de
arquitectura de software MVC (Modelo Vista Controlador). Es usado por un montén de aplicaciones
de Laravel, jasi que supongo que merece la pena aprender sobre ello!.



0 = O O b W N =~

[EEGEN
N O O

Configuracion

La configuracion es una parte importante de cualquier aplicacién. No siempre querremos que nuestra
aplicacion tenga los mismos ajustes en cada entorno. Si decidimos entregar la aplicacion a otros
usuarios, puede que quieran configurarla por ellos mismos. ;Qué pasa si usan un servidor de base
de datos diferente al nuestro?

Echemos un vistazo a como Laravel nos permite especificar nuestros propios valores de configura-
cion.

Archivos de configuracion

Comenzaremos echando un vistazo al directorio config en la raiz de nuestro proyecto:

Ejemplo 01: Archivos de configuracién

app.php
auth.php
broadcasting.php
cache.php
compile.php
database.php
filesystems.php
mail.php
queue.php
services.php
session.php
view.php

Veras un porrén de archivos PHP. Muchos de ellos tienen nombres de componentes del framework.
Son los archivos de configuracién por defecto que vienen en una instalaciéon nueva de Laravel. Escoge
un archivo. Cualquiera. Escoge tu favorito y abrelo en tu editor.

;Qué hay dentro? jMatrices de PHP! Como puedes ver, Laravel usa matrices PHP para su confi-
guracion. Las claves representan el nombre de la configuracion y los valores son, por supuesto, los
valores en si. Con Laravel, podemos acceder a esos ajustes usando la fachada config(). He aqui un
ejemplo:



O = W N =

Configuracion 11

Ejemplo 02: Accediendo a los valores de configuracion

// Usando una fachada
$debug = Config::get('app.debug', false);

// Usando una funcién de ayuda
$debug = config('app.debug', false);

La firma de ambas técnicas es idéntica. El primer parametro es el nombre de la clave que queremos
obtener. La clave esta compuesta por el nombre del archivo de configuracion que nos gustaria revisar,
seguida por un punto, y luego la clave de la matriz del ajusto, usando una notacién de punto. Aqui
estamos solicitando el valor que tiene por clave debug en el archivo app. php.

No te olvides de afiadir use Config; en lo alto de la clase si tiene espacio de nombre. No te has
olvidado ya del capitulo sobre espacios de nombre, ;no?

El segundo parametro de ambas funciones es el valor por defecto. En caso de que el valor falte,
obtendremos el valor por defecto.

En un capitulo posterior, aprenderemos como inyectar el componente de configuracion en
nuestras clases para evitar tener que depender de funciones globales ni fachadas.

Si quieres crear tus propios archivos de configuracion, ponlos en el directorio de config. Laravel los
cargara de manera automatica y te permitira usarlos de la misma forma que sus propios archivos de
configuracion. A la hora de escribir aplicaciones para otros, asegirate de afiadir tanta configuracion
como te sea posible. Es genial cuando puedes hacer que una aplicacion funcione a tu manera.

Variables de entorno

Si has estado bicheando en los archivos de configuracién, puede que hayas descubierto una pequena
funcién llamada env(). La funcién env() es una nueva forma de tener diferentes configuraciones
disponibles en diferentes entornos. Por ejemplo, no querras que tu aplicaciéon de desarrollo use la
misma base de datos que la aplicacion final.

Desde su version 5, Laravel no usa subcarpetas basadas en el entorno para la configuracion. En vez
de esto, hace uso de la libreria DotEnv para permitir valores de configuracion que dependan de
variables de entorno. Establecer variables de entorno puede ser un poco farragoso. Por ejemplo, no
querremos estar haciendo esto todo el rato:



0 I O O b W N =

NN NN NDNDNRS B B 1 |l s sl
O Ol = WO N PO © 010 O b WO N~ O ©

Configuracion 12

Ejemplo 03: Establece una variable de entorno

export DB_HOST="127.0.0.1"

Confia en mi; es incluso peor en Windows. Las variables de entornos son el método de configuracion
preferido por administradores de sistemas ya que es sencillo de transferir a nuevos servidores
web. No obstante, si estamos trabajando con valores de configuracién a diario, probablemente no
queramos exportarlos cada vez.

En vez de ello, tenemos un archivo .env en la raiz de nuestro proyecto. Echémosle un vistazo:

Ejemplo 04: Nuestro archivo .env.

APP_ENV=local

APP_DEBUG=true

APP_KEY=base64 : aOhRMNEdGAWWEEUVCNn3vIu8VFQiJc113CMciFkJ+pcw=
APP_URL=http://localhost

DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=homestead
DB_USERNAME=homestead
DB_PASSWORD=secret

CACHE_DRIVER=file
SESSION_DRIVER=file
QUEUE_DRIVER=sync

REDIS_HOST=127.0.0.1
REDIS_PASSWORD=null
REDIS_PORT=6379

MAIL_DRIVER=smtp
MAIL_HOST=mailtrap.io
MAIL_PORT=2525
MAIL_USERNAME=null
MAIL_PASSWORD=null
MAIL_ENCRYPTION=null

El archivo .env es muy simple. Claves en la izquierda (normalmente en mayusculas) y valores en la
derecha. Aqui vemos un montén de valores por defecto que son usados por el Framework. Puedes



Configuracion 13

ver las bases de datos, correos y ajustes del servidor de cache. Si queremos que nuestros valores de
configuracién estén basados en nuestro entorno, lo mejor es afiadirlos a este fichero.

La funcién env() puede ser usada en nuestra configuracion PHP para obtener valores de nuestro
archivo .env. Esto convierte a nuestra capa de configuracién en un proceso de dos pasos pero nos
permite usar diferentes . env en multiples entornos. La funciéon env( ) acepta los mismos parametros
que la funcién config(). He aqui un ejemplo:

Ejemplo 05: La funcidon env()

$host = env('DB_HOST', '127.0.0.1")

Aqui estamos solicitando un ajuste de la base de datos, pero ofreciendo un valor por defecto para
cuando no esté presente en nuestro archivo .env o variables de entorno. Merece la pena destacar
que las variables de entorno tienen prioridad sobre cualquier valor en el archivo .env.

;Entonces porqué no usar env() simplemente en vez de usar config()?

iGran pregunta y demuestra que estas escuchando con atencion! Si quisieras, podrias usar env()
para todo, no obstante, de esta forma no puedes hacer uso de la funcionalidad de cache que tiene
la capa de configuracion de Laravel. Como veras, Laravel puede almacenar los ficheros en la cache
para hacer que el framework sea mas rapido. No obstante, no puede cachear valores de variables de
entorno, por lo que si decides usar env() fuera de los archivos de configuracion, puede que acabes
teniendo problemas de cache. No queremos eso, ;verdad?

Supongo que no.

iGenial! La regla de oro a usar es que env() solo deberia ser vista en el directorio config. No es
dificil, jno?

Q Si un paquete de terceros viene con sus propios archivos de configuracion, simplemente
usa php artisan vendor:publish para copiarlos a tu directorio de configuracion.

Caché de configuracion

Como mencionamos antes, Laravel puede cachear nuestros valores de configuracion para permitir
que carguen mucho mas rapido. Es una caracteristica que es mejor usarla en un entorno de
produccion.

Para hacer uso de la cache en la configuracion tenemos que ir a la raiz del proyecto (esto es en
/vagrant/ en tu maquina Homestead) y ejecutar un comando de Artisan.



Configuracion 14
php artisan config:cache

Nuestra configuracion ahora sera almacenada en la cache y los archivos de configuracién dejaran
de ser usados. Si afladiéramos nueva configuraciéon y queremos limpiar la cache, solo tenemos que
ejecutar el comando config:clear.

php artisan config:clear

Probablemente no necesites esto para tu desarrollo en local y no mientras aprendes a usar el
framework, pero es bueno saber que esta ahi si lo necesitamos, ;no?

En el proximo capitulo comenzaremos a escribir algo de codigo. ;Estas emocionado? Pasa la pagina
para aprender sobre el enrutado.



<N O O b W N =

Enrutado basico

Echemos un ojo a la peticién que se hace al framework de Laravel.

Ejemplo 01: A URL

http://homestead.app/mi/pagina

En este ejemplo, estamos usando el protocolo HTTP (usado por la mayoria de los navegadores web)
para acceder a tu aplicacion Laravel alojada en homestead.app. La porcién mi/pagina de la URL es
lo que usaremos para enrutar las peticiones web a la logica apropiada.

Iré mas alla y te mostraré el camino. Las rutas son definidas en el archivo app/Http/routes.php, asi
que vamos alla y creemos una ruta que escuche la peticiéon que hemos mencionado arriba.

Definiendo rutas

Ejemplo 02: Nuestra primera ruta.

<?php
// app/Http/routes.php

Route: :get('mi/pagina', function () {

1

return 'iHola mundo!';

1)

Ahora, introduce http://homestead.app/mi/pagina en tu navegador web, cambiando homes-
tead.app with por la direccién de tu aplicaciéon Laravel.

Si todo ha sido configurado correctamente, jveras ahora las palabras iHola mundo! con Times New
Roman! Porqué no lo echamos un ojo mas atentamente a la declaracion de la ruta para ver como
funciona.

Las rutas estan siempre declaradas usando la clase Route. Eso es lo que tenemos al principio, antes

de : :. La parte get es el método que usamos para ‘capturar’ las peticiones que son realizadas usando
el verbo ‘GET’ de HTTP hacia una URL concreta.

Como veras, todas las peticiones realizadas por un navegador web contienen un verbo. La mayoria
de las veces, el verbo serd GET, que es usado para solicitar una pagina web. Se envia una peticiéon GET
cada vez que escribes una nueva direccién web en tu navegador.



© 00 N O U b W N =

<N O O B W N =

Enrutado basico 16

Aunque no es la unica peticiéon. También esta POST, que es usada para hacer una peticion y ofrecer
algunos datos. Normalmente se usa para enviar un formulario en la que se necesita enviar los datos
sin mostrarlo en la URL.

Hay otros verbos HTTP disponibles. He aqui algunos de los métodos que la clase de enrutado tiene
disponible para ti:

Ejemplo 03: Métodos de enrutado

<7php
// app/Http/routes.php

Route: :get();
Route: :post();
Route: :put();
Route: :delete();
Route: :any();

Todos esos métodos aceptan los mismo parametros, por lo que puedes usar cualquier método HTTP
que sea apropiado para la situacion. Esto es conocido como enrutado REST. Hablaremos sobre esto
con mas detalle luego. Por ahora, todo lo que tienes que saber es que se usa GET para hacer peticiones,
y POST cuando tienes que mandar datos adicionales con la peticion.

El método Route: :any() es usado para hacerlo coincidir con cualquier verbo HTTP. No obstante,
te recomendaria que usaras el verbo correcto para la situacion en la que estas para que la aplicacién
sea mas transparente.

Volvamos al ejemplo. He aqui para refrescar tu memoria:

Ejemplo 04: Nuestra primera ruta, de nuevo

<?php

// app/Http/routes.php

Route: :get('mi/pagina', function () {

1

return 'iHola mundo!';

});

La siguiente porcion del codigo es el primer parametro del método get() (o cualquier otro verbo).
Este parametro define la URI con la que quieres hacer coincidir la URL. En este caso estamos
haciendo coincidir mi/pagina.



© 00 39 O O b W N -~

0 = O O b W N =~

[ S G
g B 0w N =~ O O

Enrutado basico 17

El parametro final es usado para ofrecer logica para gestionar la peticion. Aqui estamos usando
una Closure, que también es conocida como una funcién anénima. Las closures son simplemente
funciones sin nombre que pueden ser asignadas a variables, como lo hariamos con cualquier valor.

Por ejemplo, el fragmento de arriba podria también ser escrito asi:

Ejemplo 05: Closures separadas

<?php
// app/Http/routes.php

$logica = function () {

1

return 'iHola mundo!';

b

Route: :get('mi/pagina', $logica);

Aqui estamos guardando la Closure en la variable $1ogic y luego pasandosela al método Rou-
te::get().

En esta ocasion, Laravel ejecutara la Closure solo cuando la peticion actual esté usando el verbo GET
de HTTP y la URI coincida conmi/pagina. Bajo esas condiciones, la sentencia return sera procesada
y se le pasara la cadena “{Hola mundo!” al navegador.

Puedes definir tantas rutas como quieras. Por ejemplo:

Ejemplo 06: Multiples rutas

<?php
// app/Http/routes.php

Route: :get('primera/pagina', function () {

1

return ' iPrimera!’;

});

Route: :get('segunda/pagina’, function () {
return ' iSegundal!’;

1)

Route: :get('tercera/pagina’, function () {
return ' iPatata!’';

});

Intenta navegar a las siguientes URLs para ver como se comporta nuestra aplicacion.



O b= W N =

Enrutado basico 18

Ejemplo 07: Multiples URLs

http://homestead.app/primera/pagina
http://homestead.app/segunda/pagina
http://homestead.app/tercera/pagina

Seguramente quieras asociar la raiz de tu aplicaciéon web. Por ejemplo...

Ejemplo 08: Sin ruta

http://homestead.app

Normalmente, esta sera usada para la pagina de inicio de tu aplicaciéon. Creemos una ruta que
coincida con esto.

Ejemplo 09: Route with no path.

<7php
// app/Http/routes.php

Route: :get('/', function () {

return ‘En la Rusia Soviética, la funcion te define a ti.’; });
Ey,jespera un segundo! ;iNo tenemos que poner una barra al final de la URI?!

iBuen ojo! Aunque no tienes que preocuparte por ello.

Como ves, una ruta que contiene Unicamente una barra invertida, coincidira con la URL del sitio
web, tenga o no tenga una barra al final. La ruta de arriba respondera a cualquiera de estas URLs.

Ejemplo 10: Con o sin barra

http://homestead.app
http://homestead.app/

Las URLs pueden tener tantos segmentos (partes entre las barras) como quieras. Puedes usarlo para
construir una jerarquia en el sitio.

Considera la siguiente estructura:



0 N O O B~ W N -

0 N O O & W N =~

N U SN
00 3 O O b WON=~ O O

Enrutado basico 19

Ejemplo 11: Web imaginaria

/

/libros
/ficcion
/ciencia
/romance

/revistas
/celebridades
/tecnologia

Vale, es un sitio bastante sencillo pero es un gran ejemplo de estructura que a menudo encontraras
en la web. Vamos a recrearlo con rutas de Laravel.

Por claridad, he eliminado el contenido de cada Closure.

Ejemplo 12: Rutas de nuestro sitio imaginario

<?php

// app/Http/routes.php

// home page
Route::get('/', function () {});

// routes for the books section

Route: :get('/libros', function () {});

Route: :get('/libros/ficcion', function () {});
Route: :get('/libros/ciencia', function () {});
Route: :get('/libros/romance', function () {});

// routes for the magazines section

Route: :get('/revistas', function () {});

Route: :get('/revistas/celebridades', function () {});
Route: :get('/revistas/tecnologia', function () {});

Con esta coleccion de rutas, hemos creado facilmente una jerarquia del sitio. Puede que que te hayas
dado cuenta de que hay cierta repeticion. Vamos a buscar una forma de minimizar esta repeticion y
asi, dejar de repetirnos.



o I O O P W N =

RN
N »~ O ©

Enrutado basico 20

Parametros de las rutas

Los parametros de las rutas pueden ser utilizados para introducir valores de relleno en tus
definiciones de ruta. Esto creara un patrén sobre el cual podamos recoger segmentos de la URI y
pasarlos al gestor de la logica de la aplicacion.

Esto puede sonar un poco confuso, pero cuando lo veas en accién todo tendra sentido. Alla vamos.

Ejemplo 13: Parametros de ruta

<7php
// app/Http/routes.php

// routes for the books section
Route: :get('/libros', function () {
return 'Iindice de libros.';

1)

Route: :get('/libros/{genero}', function ($genero) {
return "Libros en la categoria {$genero}.";

});

En este ejemplo, hemos eliminado la necesidad de tener todas las rutas por género, incluyendo una
variable en la ruta. La variable {genero} sacara todo lo que esté detras de la URI /1libros/. Esto
pasara su valor al parametro $genero de la Closure, que nos permitira usar la informacion en nuestra
parte de logica.

Por ejemplo, si quisieras visitar la siguiente URL:

Ejemplo 14: Parametro en la URL

http://homestead.app/libros/crimen

Serias recibido con esta respuesta de texto:

Ejemplo 15: Output.

Libros en la categoria crimen.

Podriamos eliminar también el requisito de ese parametro usando uno opcional. Un parametro
puede ser convertido en opcional afiadiendo un signo de interrogacion (?) al final de su nombre.
Por ejemplo:



, O O 0 N O O b W N =

[EEY

0 N O O & W N =~

Enrutado basico 21

Ejemplo 16: Parametros opcionales

<?php
// app/Http/routes.php

// Rutas para la seccién libros
Route: :get('/libros/{genero?}', function ($genero = null) {
if ($genero == null) {
return 'Indice de libros."';

}

return "Libros en la categoria {$genero}.";

});

Si no se facilita un género en la URL, el valor de $genero sera igual a null y se mostrara el mensaje
‘Indice de libros..

Si no queremos que el valor del parametro de una ruta sea null por defecto, podemos especificar
una alternativa usando una asignacion. Por ejemplo:

Ejemplo 17: Valores de parametros por defecto

<?php
// app/Http/routes.php

// Rutas para la seccién libros
Route: :get('/libros/{genero?}', function ($genero = 'Crimen') {
return "Libros en la categoria {$genero}.";

});

Ahora, si visitamos la siguiente URL:

Ejemplo 18: URL a la que le faltan parametros

http://homestead.app/libros

Recibiremos esta respuesta:



Enrutado basico 22

Ejemplo 19: Salida.

Libros en la categoria Crimen.

Espero que estés empezando a ver como se usan las rutas para dirigir tus peticiones en tu sitio y que
son un ‘pegamento’ usado para mantener tu aplicacién unida.

Hay mucho mas sobre rutas. Antes de que volvamos sobre ellas, vamos a cubrir mas sobre lo basico.
En el proximo capitulo, echaremos un ojo a los tipos de respuesta que Laravel tiene que ofrecer.



	Tabla de contenidos
	Reconocimientos
	Errata
	Feedback
	Traducciones
	Presentación
	Instalación
	Instalar las dependencias de software
	Crea un proyecto de Laravel
	Instala Homestead
	Aprendiendo Vagrant

	Ciclo de vida
	Petición
	Servicios
	Enrutado
	Lógica
	Respuesta

	Configuración
	Archivos de configuración
	Variables de entorno
	Caché de configuración

	Enrutado básico
	Definiendo rutas
	Parámetros de las rutas


