Clicker training & agile

software development

The overlapping mindset of my passions

“Software and dog training
1s way too important to afford
not having fun while doing it.”

by Bjo6rn Tikkanen

Clicker training and agile
software development

The overlapping mindset of my
passions

Bjorn Tikkanen

This book is for sale at
http://leanpub.com/clickeragilebook

This version was published on 2013-04-07

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

©2012 - 2013 pragmatiX AB

http://leanpub.com/clickeragilebook
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!

Please help Bjorn Tikkanen by spreading the word about
this book on Twitter!

The suggested hashtag for this book is #clickeragilebook.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

https://twitter.com/search/#clickeragilebook

http://twitter.com
https://twitter.com/search/#clickeragilebook
https://twitter.com/search/#clickeragilebook

Contents

Background

Similarities

Inspect and adapt .

Short feedback loops

Focus on quality .

Learning to solve problems, not just hiding them

The power of self organizing

Progressing with baby steps

Don’t call us, we’llcallyou

Working software / behaviour

Coaching, not managing

Communication .
To the masses . . .
Mindset
Not tools

Focusontheendresult.

Marine corps and Ninjas

Finding the balance

10

12
15
17
18
19
20
21
22
23
24
24
26

CONTENTS

Positive reinforcement and use of the clicker . . 27

Summary L 28

Background

“Do not go where the path may lead, go instead where
there is no path and leave a trail.” - Ralph Waldo
Emerson

Two of my big passions in life are dog training and my
work as software developer. This is also what I spend the
majority of my time with. Being a contractor in the IT
industry gives me the opportunity to work with software,
processes and human interactions at various levels and at
different clients. For simplicity, lets call this agile software
development (which I will explain more in datail later).
Clicker dog training (or maybe it could be called agile
dog training) has a lot in common with agile software
development. In this text I will try to share my view of
them both, including similarities and differences.

Earlier in my career both as dog trainer and in the work
situation I felt that I did things that I didn’t want to do. And
I did not like the way I did them. How things were done
really didn’t resonate with me as a person and that rarely
brings good results. Changing training method and leaving
my previous employment were two things that made the
situation ways better. Now I often still feel frustration, but
mostly about not being able to do better. I would like to do
more good things, help others more, progress faster and be
happier in what I do. I would also like to see people around
me much happier. I call this positive frustration.

Background 2

Before you start to wonder if it’s about the dog sport
“agility”, I have to say No. Agility in dog sports language
is not the same as agility in software development terms.
They do have some basic core similarities but since I
don’t practice this sport I won’t talk anything about it. I
will instead assume that the methods used for obedience
training are also suitable for agility as a sport.

I have been working with software for over 15 years and
with dog training for about 10 years. Sometimes when
you face a situation it feels like you are totally new to
it, but sometimes you feel you know the answer to any
question by heart. In both areas the learning and self-
awareness curve is about the same. At first you learn the
basics and you think that this area is not that hard to
master. When learning more about the theory and what it
means in practice (with many of the grey zones), you start
to realize that the things you do know is just a small part
of the whole. Another thing is also that learning is really
important!

When we got our first dog in year 2002 we started to look
for a training method that would be suitable for us. And at
the same time suitable for our dog. We didn’t start using
clicker in the training from the beginning, but pretty soon
we discovered this way of training dogs. At this time, I
must admit, I did not fully embrace or understand the
clicker method, and used the clicker mainly for positive
reinforcement. Since then, I have come a long way and I
now use the clicker method (as described later in the book)

Background 3

in more and more situations.

When I started to train our second dog, it was pure clicker
training already from her puppy days. Today, when coming
to something new I want her to perform, I often start out
by using the clicker method. But I always evaluate the
situation and see if there is some other way to reach the
goal, in a better fashion. Sometimes there is, sometimes
not. You see, I also try to be quite pragmatic in just about
everything I do. It is no coincidence my company name is
pragmatiX.

My software development career has been more of a roller
coaster. I think I was quite late at getting acquaintanced
with agile methods but after that I was quite fast adopting
them. The problem with working as an contractor is that
you can’t always choose your own ways of doing things.
Sometimes you find yourself in a position and place (work-
place) where things are just not the way you want them
to be. At times you can change things for the better and
sometimes you just have to tag along for the ride. A ride
with the roller coaster that is. It might take you deep into
agile land or far away from it. 've seen both and I've seen
transitions in both directions.

So, who should read this book and how? Well, anyone
interested in either clicker training or software develop-
ment can read parts of the book and find respective parts
interesting. And if you are interested in both, then I'm
happy to have found a “friend”. The parts on agile software
development and clicker training are not going to state any

Background 4

revolutionary things that you can’t find in other books.
They are more meant as a way of orientation, to ensure
some basic knowledge, before what the book is really about
starts — the comparison between the two. So, if you're in for
a quick read, feel free to skip to this part right away. Yes,
then it will be a really quick read but on the other hand
you might miss some of the context and personal view that
[try to establish in earlier chapters.

When reading the rest of this book keep in mind that some
things you read is my own opinion and not facts. Most of
the things I write about in the chapters on software and
clicker training, I have taken from what [have learned from
others and from research during the years. Even though I
do not point out every time I use someone else’s thoughts
or my own opinion, I hope you can sort this out by yourself.

At some point I started to think cross the borders of these
two domains and to get some of the thoughts down “on
paper” I tweeted them. I think I started during one of
my many evening walks with my dog, where a totally
different state of mind than the usual often appears. I used
the hashtag #clickeragilebook, mostly to keep track of the
ideas, without really imagining that I would actually do
anything about it. Some of the tweets will also appear
in the text where they “belong”, so the connection is still
there. Most of the tweets are also collected in an own
chapter. Part of the rationale for writing this “booklet”
(short book) is therefore to collect my thoughts and also
to challenge myself in thinking a little bit harder about

Background 5

all of these things. But also to maybe spread some of the
visions I have about the workplace situation and the hobby
of quite a few dog training teams (meaning the trainer and
the dog as a pair). My vision is that we should find both
work and hobbies challenging but also fun and meaningful.
What I can see almost every day at work or during dog
training is people that struggle with both themselves and
their environment, making the situation far from fun and
rewarding. What you will find in this book is by far no
prescription on how to solve this, but maybe some thoughts
that can help on the way.

In both work and dog training I try to think holistic, in
that Happy dog trainers in Harmony with their dogs are
also Happier in their working situation and the rest of their
lives. And the opposite of course. So, by giving both parties
tools to work with, I hope that change in the one end can
lead to change in the other. Give people the power to solve
problems and they will show amazing results. Lovingly
train your dog and you will earn trust and loyalty, together
with hopefully a successful partnership in the training. Be
present with and care for your team and they will give
everything and more back in return. It is by no means a
zero sum game. Played correctly, we are all winners.

“Caring for eachother is not a zero sum game. Played
correctly, we are all winners” (Tweet)

When [write “we” in the chapter about clicker, I often mean
me and my dog. Sometimes I refer to her as “her” and even
sometimes “the dog”. But most often “the dog” is any dog

Background

and not precisely her.

Similarities

The reason to write this book was not to teach you about
agile software development. And it was not to teach any-
one about clicker training. It was about my feeling that
these two have a lot in common and that they with respect
to this both fit me well. This chapter will focus on looking
at different parts of them and finding where they share
principles, values and methods. For me this is what this
booklet is mainly about.

“Clicker method and agile are alike in two ways. They
are often both counterintuitive and “common sense” at
the same time #clickeragilebook”(Tweet)

Inspect and adapt

Doing things in small steps or small batches creates a need
to often look at what is happening. Then take action to be
able to do better or totally different in the future. In agile
we call this inspect and adapt and the very same thinking
is also found in clicker method training.

In software we look at both what we have created (working
software) and also at the state of our process (how work
works). It is often easy to check the software part, but
maybe even more important is the way we look at and
improve our process. In many cases it really does not matter

Similarities 8

what you start with, just that you get better at getting better
all the time. Then you will soon be good (enough).

In clicker training we have our exercises that is the equiva-
lent to the software. These are the ones that bring us value,
at for example competitions or in our normal daily life. But
we also need to improve our ability to train and have fun,
to be able to learn new things easier. Otherwise it is easy
to get to a certain level and don’t have the power to lift
from there. So, we inspect and adapt both with respect to
the exercises we want to perform and the way our training
sessions go.

Short feedback loops

Working in short steps with short plan create a need
for feedback loops often. We want all this to happen in
both areas. Most agile methods or way of working have
a rhythm where one of the main objectives is to look
at the current situation and feed the feedback loop with
valuable information. As mentioned earlier, the feedback
loop should be active all the time, but at the very least at
the heartbeats of the rhythm.

One of the important parts in software development is
when we at regular (or irregular) intervals show the current
working software to the customer. This is a good point for
checking if what has been done is what was wished for
by the customer. If not, let’s go back and do it in a better

Similarities 9

fashion.

The equivalent in clicker training is when we try out a
whole exercise in an environment that is not the usual
training one. For example, this will include more distur-
bances in form of other people, dogs or the environment
around us. This will give us a better understanding of
(information) how well we know the exercise. If it is really
simple to do something in training setup but not with more
things happening around, we know that we need to focus
more on this. Just doing more of the same thing probably
won'’t solve the problem, even though “overtraining” partly
helps.

“If it hurts, do it more often” (Martin Fowler)

All the short plans do not have to be plans for success. Some
can be plans for learning something new about your team
(software or trainer/dog). If we do this in safe and short
steps, we don’t build negative stress during the testing or
when it fails. It is ok not to succeed all the time and we
“celebrate” when we learn something new. Some parts of
software development call this “pivot”. This means trying
something completely new and unknown to learn things
that might have a magnitude of positive effects.

Clicker training (and evolutionary change?) is more
about finding the bright spots than identifying the weak
ones (Tweet)

Both are about planning and then testing what you planned.
Make the plans short and the time between planning and

Similarities 10

validated learning short. After learning, make a new plan
and start the new cycle. When we keep our plans / experi-
ments small, the risk is often quite small as well. When we
try larger things we have to acknowledge that the risk is
higher. We probably won’t do this if we don’t have a large
problem we need to solve urgently or if we can afford to
take a loss or reduction in functionality.

Focus on quality

It is easy to cheat oneself and think just about delivering
new behaviours (in clicker) or new functionality (in soft-
ware) as fast as possible with no regard to the quality. But
both in agile and clicker we really care about the short term
as well as the long term quality in what we do.

Almost every piece of software will be connected and/or
used by some other part. Then having created this one
part fast and sloppy will lead to other parts, or the whole
system to work at a lower capacity or even with worse
functionality. Therefore we “build quality in” and secure
everything we are building as soon as possible. Having a
sound foundation will most likely create more smiles and
less curses among the people that work on buildning the
system. The same probably holds for the people that are
going to use the system.

In clicker training we work hard to lay a good foundation
in learning all of the basic skills with good quality. If we

Similarities 11

cheat here we will have a harder time to work with these
in chains later. Then the risk is high that we will have to go
back and re-train the parts over and over again to be able to
use them. If we compete with a dog and advance from one
class to the next one, many of the exersices will be kind of
the same but with more and tougher parts. To have lower
quality in these exercises then is a ticket to Failureville. Or
at least a bigger challenge.

Learning to solve problems, not
just hiding them

Often when we see a problem we try to solve it. But almost
as often the problem we see is just an symptom of the
real (root) problem. Solving the “symptom” will most likely
be just compensating for the real problem, that will still
exist and the symptom can reoccur at any time. Instead we
should try to find the root problem and solve that, even if
it takes more time than solving the “problem” (symptom)
we see.

When things don’t go as expected with our dog training
it is easy to look at just what we see. But thinking a
step further might help us quite a lot. For example if
something disturbed our dog during an exercise we can
go on when the disturbance is gone. Or we can try to get
better at working under strange circumstances and be able
to perform even when things are not as usual. Or when

Similarities 12

the dog does not fully engage in the exercise, we can either
try to “force energy into it” or we can think about what
led up to the dog loosing part of its energy. Solving the
root problem will probably make the symptom occur more
seldom while treating the symptom might even make it
appear more often. Yes, we often amplify the problems
when we really are trying to remove them by working
directly with the symptoms.

When we have a problem in software we also often just
see the symptom. It might be that we create bad software
with many bugs. The easy conclusion is that we just are
bad programmers that write bad code. But looking under
the surface we might find things like bad requirements
(what the customer wants and how it should be done), bad
tools, non working process for early testing or some other
process shortcoming that leads to our failure in getting
high quality software to our customer. Instead of focusing
only on the place where the problem manifests itself, we
can greatly benefit from solving the cause of the problem
instead. To really find the root cause is a challenge in both
dog training and software development, but it is something
that probably will pay off.

The power of self organizing

“Every time I tell someone what to do I have failed. Keep
the failures small and unexpensive” (Tweet)

Similarities 13

Having problems solved on your behalf can sometimes be
very nice. But when served with solutions all the time,
the team won’t think for themselves when facing a new
situation. They will rely on some other part to help them
out. Showing how or greatly helping the dog with exactly
what to do all them time, will have as effect that it won’t try
for itself. It will instead wait for orders on what to do. Even
though it is tempting for a manager to point out a solution
to the team when something needs to be done in i rush, it
is better to stand back and let the team solve the problem.
Doing one or maybe a few quick fixes will quickly turn into
a habit that is soon the way to work. This will lead to help
dependence in both areas and that is the opposite of what
we want to achieve.

Leaving the control to the team or the dog can help us avoid
them relying on someone else to hand them solutions. In
the long run it is far better for the individuals if they learn
how to solve the problems by themselves. This applies to
both software development and clicker training with dogs.

We say that software teams are self-organizing around
their work, which means they are given an assignment,
trust and the freedom to solve the problem in the way
they find most suitable. This is letting go of control and
trusting the team. Self-organizing as a team term is mostly
about having the freedom to select how to organize around
solving a problem. There is no authority that controls the
way the team works and that tells the team on what and
how they should improve. This hopefully leads to teams

Similarities 14

that take pride in their work and responsibility in all that
they to.

When the dog is to do something we can either show it
how to do it (much direct help) or let it solve the problem
by itself. In the name of clicker training we select the latter
and by this we hand over much of the control to the dog.
The dog will probably take the chance to exert this “sense
of control” more often and that is also our goal.

The dog should feel it is not only following order, but also
have “a saying” in what is happening. By letting the dog
learn by trying things itself, this is also possible. A positive
side effect is also that the understanding and acceptance of
the exercise is better when done at free will.

“Clicker method replaces command & control, leader-
ship and threaths with trust, curiousity and empower-
ment (to try)” (Tweet)

A parallel between old workplace and dog training think-
ing is of course the Theory X* where the belief is that people
don’t want to do a good job unless bribed or threatened.
Here we also see the strict hierarchy that is built, managers
that master the workers, as a means to get the job done. If
we use this in the workplace, why should we not use the
same method for training our dogs? Threats, punishments
and at occasion a bribe or treat. Self organization and
distrubuted leadership is one way of turning this around.

"http://en.wikipedia.org/wiki/Theory_X_and_Theory_Y

http://en.wikipedia.org/wiki/Theory_X_and_Theory_Y
http://en.wikipedia.org/wiki/Theory_X_and_Theory_Y

Similarities 15

Progressing with baby steps

We want to use the same sort of very short feedback loops
in both agile software development and in clicker training.
In both we want to make a minimal effort to get to the end
goal, but at the same time we want to get all the parts good.
This means that we look at quality of the parts as well as
quality of the whole all the time. We often refer to this as
“building quality in”.

To make this happen we do things in small steps, baby steps
one might say. Every unit (small problem) we test in our
software is like a basic skill in our clicker training. We need
to make sure that both are in good shape, fit for building on
and do not regress to a bad state. We do this by exercising
them often and making sure they maintain the standard
or the criteria we have on them. The same thing happens
during our shaping exercises. Then the criteria is set for
each stage and we work in really small steps. Before we
actually know exactly how it will look, we ask the dog to
take the first step. If it is right, we build upon that. Pretty
much like a ping pong game.

When we put the parts together in dog training we do this
by chaining. Either forward or backward. When we have
successfully chained a few parts together we add more and
more until we have the whole drill. Every part is “tested”
with the criteria we set out from start. We only continue
the chain if every part is good enough and by that also
securing the parts of the chain at the same time as we secure

Similarities 16

the whole exercise. And guess, we do the same in software
but there we call it integration testing. In this part we test
“chunks” of software that may or may not have been built
by the same team or people. This linking things together is
one of the hardest parts in both software and dog training
(if you ask me).

In software we also talk about Behaviour Driven Develop-
ment (BDD), a technique where we instead of testing the
small parts, test the whole. That is, the whole behaviour of
a specific service or part of product. By talking about what
we want to see at the end we have something to aim for,
not just a set of parts to build separately.

To be able to test your own and your dog’s status you
can either compete or participate in an competition like
training event. Training is training and competition is
competition. You might think that the difference is not that
large but when nerves, emotions and whims come to play,
strange things can start to happen. Therefore many of us
need to train under conditions that are competition like to
lessen the chock when at a real competition. This is testing
for “production”.

“Clicker training is all about info discovery to find out
what to do (do the right thing) & then a touch of doing
it right” (Tweet)

Similarities 17

Don’t call us, we’ll call you

In a restaurant you have a few different options of how to
get your food. One options is to have the waiter come to
the table with the food. Another option is to have a buffet
where you can select what to eat and when to get it. The
first option is a push system and the other one is a pull
system. When you pull something you do it when you have
the time and capacity and most of the time voluntarily.

To push things, or force them, on your team or dog rarely
brings a good result. To use pull is to hand over the control
to the other part of when (and what) to do something.
In software we say that teams pull their “working orders”
from a list of work to do, whenever they are ready to take
on more work, not when someone else says they should
do it. We want to create high motivation and just going
through the motions is not an option. I believe that we
can benefit from using a pull approach in both software
development and clicker dog training.

So, pull can be used for both dog training and software
development. If the dog wants to do something and does
it voluntarily and when ready for it (pull), it will probably
have a better result than if forced to do it. Taking the
exercise away will here be negative for the dog and doing
the exercise a reward in itself.

Similarities 18

Working software / behaviour

Delivering value for someone is important in both prac-
tices. That is why we focus on working software and
competition / situation ready drills. Even when we start
out with something new we want it to be meaningful or
helping us learn new things already from the start.

Sometimes this makes us start working from the end.
An example of this is in backward chaining where we
sometimes start with the very last thing of a chain. That
can for example be sitting at heel, doing nothing else then
that. And since it is the end of a chain and where the dog
has to be when finished with the whole drill, it is valuable.
To get it all to work of course we have to add what led up
to this position. This could be sitting 25 meters from the
trainer and run to him at signal, ending up with sitting at
heel as trained earlier. Getting to the end state could be said
to be the most important, so we focus on that first.

Another example from software development is if we are
building for example an online shop. When done, it will
consist of a web frontend and a backend server. The web
frontend is what the shopper will see when browsing the
store. The backend server will hold all the data such as
shopper information and the items available in the shop.
Here, instead of starting with building a full backend with
all functionality we will instead start with the customer
facing part, the web frontend. Now we can test assumptions
like if customers will be interested in purchasing from our

Similarities 19

shop on a few customers and see if they were valid. If
nobody of the test customers understand how to navigate
in the shop we can change the design and try it out again.
This is easier with a frontend connected to a minimal
backend than if we had built all the functions in the
backend already.

Coaching, not managing

An agile team does not need managing as written in the old
books. They need a purpose, support with solving problems
outside their reach and maybe a coach for further growing.

“By punishing someone for failing they will likely fail
less often. But also try less often” (Tweet)

The same goes for the dog. Controlling the dog too hard
will be counter productive if we want it to try out new
things and feel good about it. But coaching gentle is in my
mind a bit different in the meaning that it looks more on the
“what” than the “how”. I guess the “why” does not apply
that much in the dog-training situation. So, it is more about
getting the dog to try doing (anything) than forcing it into
a certain thing. At least when talking about the coaching
part.

“Idon’t want to teach my dog a single thing. But the list
of things I'd like her to learn is long. And prioritized”
(Tweet)

Similarities 20

If you see a problem with your team or dog, I think it is a
good thing not to make a big deal about it. Maybe even not
saying or doing anything at all about it. If they who have
a problem see it by themselves they will be much more
committed to solving it. And it will probably be solved in
a better way. If we tell someone they have a problem and
also pushes a solution, the chances that it will backfire or
at least not work smoothly is pretty high. When having a
dog related problem we will try to focus on what is the
right thing to do in that situation, instead of focus on what
is going wrong. Then by rewarding the correct behaviour
and ignoring the incorrect one, we will put the correct one
higher on the reportoiare of the dog and extinguish (let
become forgotten) the other one.

Communication

Both are very much about using the right level of commu-
nication. Finding a high bandwidth communication that
suits all parts is a winning factor in an agile environment as
well as in dog training. Communication is also about how
we should treat eachother. Treat others the way you would
like to be treated. And it starts with how we communicate.
When a team can communicate their feelings and are
honest about them, they will probably also have a higher
bandwidth when talking about how to create value. One
way of speeding this up in the team is when team members
dare to show themselved vulnerable in front of each other.

Similarities 21

Clicker training is also about fast communication and fast
feedback. We want to create a quick flow in our exercises
to get the speedy learning that BF Skinner talks about. And
it is not about a one way communication just from trainer
to dog that needs to take place. The trainer also need to
see or catch the “questions” or “statements” in shape of for
example body language or energy level coming from the

dog.

To the masses

“The clicker can be (and is) as misused in “clicker
training” as scrum in agile. Training with clicker !=
training according to clicker method” (Tweet)

Both techniques have now reached a broader user base. At
the same time many of the practitioners use the methods in
a way that was not really supposed. In many cases even not
for much good. For example, many people say they “clicker
train” their dog just by using the clicker for reinforcement.
The clicker method is about so much more and the mix-
up is a bit unfortunate. The same thing happens for agile
methods where companies say they are doing for example
Scrum?, just by going through the motions of the process,
but not embracing a agile mindset.

“Clicker training and sw dev can both be run by the

*http://en.wikipedia.org/wiki/Scrum_(development)

http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Scrum_(development)

Similarities 22

book and still suck. Rules seldom triumphs passion and
motivation #clickeragilebook” (Tweet)

Mindset

“Take the time and effort to reward attitude / mindset
and not just the success that was the result of the
behaviour (Tweet)

Passion and creativity replace obedience and compliance.
Earlier methods in both areas where much about command
and control, forcing things through and trusting that build-
ing the parts right would make a good whole.

Now instead we look at ways to tap into the vast potential
of indivudals that by free will take the lead to deliver
value in the best possible way. This best will be different
from time to time and found by agile teams during their
voyage. Therefore curiosity, trust and continuous learning
are pillars of mindset common to both areas. Another
important factor both when thinking about ethics and
effectiveness is respect for others. People that get respect
from their peers will act more genuine in return, creating
a positive spiral. The trainer wants the dog to respect him
and this starts with him respecting the dog. This is done
via creating a safe environment and good communication
channels. Some would argue that respect is fear, but I say
it is the opposite.

Similarities 23

Not tools

Neither folks in a software team nor dogs are just tools used
to reach a certain goal. At least not in my opinion. I see
them as our training companions and workplace peers.

If the boss does not treat the people in their teams as
equals and make sure they have a meaningful job and work
environment, I think a lot of human potential is wasted.
Companies that are profitable are good, but even better
with profitable companies where people prosper and are
treated with respect.

The same things hold for dog training. At least I don’t see
my dog as a tool that I use for having fun or winning prices
and glory. I see her as my training partner that together
with me have a meaningful, fun and giving leisure activity.
If we win prices it only means we are working well together
and can get on with even more challenging tasks. That’s
why I don’t want to use a training method that does not
mean fun for both of us. I rather move more slowly or even
get less far than using methods that I find unethical or not
fun for the pair of us. Or even quit before putting success
over friendship...

“Software and dog training is way too important to
afford not having fun while doing it.”

Similarities 24

Focus on the end result

Even though we split things up in to pieces in both areas
we look at the whole pretty much all the time. In software
we have the end goals from the user and in clicker training
for competition we have an image of how we want it to
look at a competition. It is really easy to loose the whole at
times but disconnecting from it can cost us a few surprises.
That’s why we in software have acceptance tests and in dog
training we try to chain whole exercises and sometimes the
whole competition program.

The dog trainer should set up criteria for the dog and then
hold the dog accountable for these. This does not mean any
kind of blame or physical punishment, only that the correct
repetitions are the only ones to be reinforced. The trainer
should also hold himself accountable for everything around
the training and to take into account all the circumstances
that can effect the dog at the given moment.

Marine corps and Ninjas

To be able to do different things and to do them good you
need to be good at a range of different things. Often many
of these things are really simple in isolation. On the other
hand you need to be really good at performing them so that
you can do several of them in combination when it really
matters. Two groups that practice (or practiced) this are

Similarities 25

Marine Corps (picked this up from conversation with Jabe
Bloom) and ancient Ninjas. These two groups are known
for very special training to be ready for their very special
assignments.

I don’t say that we in agile and clicker training should
prepare for war, but learning the basics so that it can be
performed backwards in the middle of the night won’t hurt.
Therefore people dedicated to good software (which we
generally are in agile) practice programming in so called
Code Katas. Yes, the name even reminds us that this relates
to what the Ninjas did back in the days. By fluently be
able to solve different kind of problems we will create an
opportunity to do other improvements instead of spending
extra time trying to come up with a solution. Having
trained over and over again will keep us from forgetting
about the problem solving skills even when the heat is on.
And trust me, the heat will be on!

In clicker training the basic skills are where we spend our
kata time. Being really good at the basic skill of sit in one
situation will also make it easier to get it to work well in
another situation. This could be for example a quick sit
while in motion. Having done the homework well makes
the rest much easier.

Similarities 26

Finding the balance

To succeed in respective area we need to find the delicate
balance between different “values”. We want to be able to
work close to the border to chaos without falling over the
edge, at the same time as we want to have enough structure
to be in control. We need to be really creative at the same
time as staying within the borders of what is allowed. We
want to try to do the impossible at the same time as we
need to be realistic.

Sometimes things get too intense. In some implementations
of agile frameworks (for example eXtreme programming) a
technique called pair programming is used a lot. It basically
means that people solve problems together, working very
closely and intensively together. When doing it right it can
bring great results, but on the other hand, it can sometimes
wear people out from being too intense. As most other
powerful things, use with care!

In clicker training we want to have different levels of stress
at the dog to be able to perform different things. In for
example a situation where the dog is to run fast, we aim
for a higher stress level than in a sitiation where the dog
should stay put for several minutes. Trying to get the dog
to the right level of stress can sometimes be too stressful for
both the trainer and the dog. We want the dog to be both in
a good stress level and also concentrated, and finding this
balance is not easy.

Similarities 27

Positive reinforcement and use
of the clicker

“I wonder if merely positive reinforcement clicker style
can help change team behaviour at work. Negative
punishment, positive reinforcement” (Tweet)

Clicker method is all about positive reinforcement so I
don’t think I have to make a big case for it here when
talking about dog training. We show the dog that it is
doing the right thing by some kind of reinforcement, and
by adding something it is positive. This is the core of the
clicker method.

But how does this apply to software teams. If you thought
that I would describe a best practice for clicking people
on an software team I'm afraid you will be disappointed.
Totally. Sorry.

Positive reinforcement, if done right, will likely give pos-
itive effects in form of connection in the team. But when
working with humans this is probably not really accepted
since it can be called manipulative. What is better suited in
a team is genuine respect and honesty with each other. This
leading to people expressing their feelings with maybe the
same words as an “positive reinforcement conversation”,
but without any thoughts of manipulation. So, even if we
don’t use the clicker method or positive reinforcement in
the same way we can still have the same mindset but on
another level. The key is doing all these things together

Similarities 28

with the team and not one person manipulating the rest.

Ssummary

When we trust and respect the individuals we work with
we can unleash the full potential of our relationship. This is
not merely a sign of niceness, it is a cornerstone of success
in both work and training.

By stepping away from command and control and towards
self organization, we can unleash often hidden potential.
Leave as much as possible of the “how to do things” to the
ones performing the actual work. In software this is the
team. In dog training it is the dog. Letting go of control
might be hard, but is in retrospect often much rewarded.

Hand in hand with self organization comes the need for
short feedback loops. The team or dog needs to know if they
are heading in the right direction. Without this important
feedback, self organization often fails. The goal is what the
team form around and work towards.

We aim to do the right thing in the right way. That is, doing
what matters to someone and also doing it good. By using
short feedback cycles to gather information about how well
we are performing, we can learn and adapt to better ways
of working. We call this inspect and adapt.

To succeed with the inspect and adapt loop we need to be
open and honest with information. This is much easier in

Similarities 29

relationships with a high level of trust. A good information
flow that works in all directions enables fast and reliable
communication, which is at the hearth of both clicker and
agile.

When we have the things described above to build upon,
we reduce the fear of failing. We are looking for everyone
involved to take part in making the result awesome. This
might be done by boldly testing something that turns out
completely wrong. Doing this with a mindset that wrong
is one step on the way to right, helps us learn new things
along the way.

I believe we can achieve greatness without forcing, threat-
ening or using short-term solutions with long term neg-
ative consequences. Instead we start with small improve-
ments in our work that reinforces learning, and by ex-
tension, better performance. This way of reaching better
performance while helping people and dogs to grow, is one
of my dreams. Will you join me?

	Contents
	Background
	Similarities
	Inspect and adapt
	Short feedback loops
	Focus on quality
	Learning to solve problems, not just hiding them
	The power of self organizing
	Progressing with baby steps
	Don't call us, we'll call you
	Working software / behaviour
	Coaching, not managing
	Communication
	To the masses
	Mindset
	Not tools
	Focus on the end result
	Marine corps and Ninjas
	Finding the balance
	Positive reinforcement and use of the clicker
	Summary

