

Clean Architecture en iOS
Principios y buenas practicas de disefio aplicadas en iOS.

Yair Carreno
Este libro esté a la venta en http://leanpub.com/clean-architecture-en-ios

Esta version se publicé en 2020-06-06

)

Leanpub

Este es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el proceso de
publicacion. Lean Publishing es el acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener retroalimentacion del lector hasta conseguir el libro
adecuado.

© 2019 - 2020 Yair Carreno

http://leanpub.com/clean-architecture-en-ios
http://leanpub.com/
http://leanpub.com/manifesto

Indice general

Principiosde disefio
Inversion de dependencia
Inversion de control
Inyeccion de dependencia

Principios de diseno

Inversion de dependencia

La inversion de dependencia es un principio fundamental sobre el cual se sustenta muchos conceptos
usados en diferentes estilos de arquitectura incluyendo Clean Architecture, de alli la importancia de
comprender muy bien este principio.

Para entender el principio el lector debe imaginar que tiene una relacién entre dos elementos como
se muestra en la figura 1.1, en donde el elemento A depende del elemento B.

Figura 1.1 Dependencia entre elementos

;Qué significa que el elemento A depende de B?

Significa que el elemento A esta utilizando alguna funcionalidad o servicio ofrecido por B para
cumplir con alguna tarea, es decir que el elemento A depende del elemento B para cumplir con sus
funciones a cabalidad. A ese tipo de relacion se le llama dependencia.

Ahora bien, ;Coémo se hace para que la dependencia se invierta, es decir que el elemento A no
dependa directamente de B sino que al contrario el elemento B dependa de A?

Esto se logra a través de un componente que sirve de intermediario entre el elemento A y B.
Este componente es conocido en algunos lenguajes de programacion como interface, en iOS y en
particular en Swift el equivalente es un protocol.

La funcion principal de la interface no se limita solo a invertir la relacién de dependencia, también
permite separar la abstracciéon de la implementacion, es decir desacoplar los componentes. El
desacoplamiento es vital en cualquier arquitectura y es una practica recomendada en el disefio de
componentes de software.

En la figura 1.2 se muestra la nueva relacion establecida con la interface agregada.

Principios de disefio 2

Figura 1.2 Inversion de dependencia entre elementos

En este caso, el elemento A utiliza la interface I y a su vez el elemento B hereda de la interface I e
implementa las operaciones definidas en I.

En esta nueva relaciéon al elemento A ya no le importa lo que ocurra con B ya que solo esta
relacionado con el elemento I, mientras que por otro lado el elemento B si depende del elemento
I de una forma desacoplada con la libertad de implementar las operaciones definidas en I a su
conveniencia.

(Qué ocurriria si fuera necesario reemplazar el elemento B por una determinada razén, ya sea que
el elemento B se volvid obsoleto o requiere una actualizacion?

En ese caso se lleva a cabo la modificacion agregando un nuevo elemento C con la tnica condicion
de que debe conformar el elemento I y por lo tanto implementar las operaciones definidas en I.

En la figura 1.3 se muestra la nueva relacion:

Figura 1.3 Desacoplamiento e inversion de dependencia entre elementos

Se puede notar que no hubo necesidad de tocar el elemento A gracias al desacoplamiento y la
inversion de la dependencia.

En estilos de arquitectura tales como Clean Architecture o Hexagonal Architecture se utiliza este

Principios de disefio 3

principio de disefio que tiene sus origenes en el patron Separated Interface'. Es aplicado en las
fronteras de los niveles de la aplicacion, tema que se revisara en el siguiente capitulo llamado Niveles
en una aplicacion.

Los elementos tipo I es decir las interfaces son conocidos como puertos y a los componentes que los
implementan como por ejemplo en este caso B y C, se les conoce como Adapters.

Inversion de control

Existen dos tipos de relaciones entre los elementos presentados en la figura 1.4

Aggregation Inheritance

A —» | <—— B

Figura 1.4 Relaciones de agregacion vs herencia

La relacion entre el elemento A y el elemento I es una relacion de agregacion mientras que la relacion
entre el elemento B y el elemento I es de herencia.

o Relaciones de asociacién, agregacion y composicion

En el apéndice A se describe como distinguir cuando una relacion entre elementos es de
asociacion, agregacién o composicion.

Existe un mecanismo conocido como delegacion® que permite usar dicha relaciéon de agregacion para
separar adecuadamente las responsabilidades de un elemento y encomendar ciertas responsabilida-
des a otro elemento.

Dicho mecanismo es lo que se conoce como inversion de control, ya que un elemento puede delegarle
la ejecucion de una tarea a otro elemento, en otras palabras le entrega el control de una tarea a otro
elemento.

Para entender mejor el concepto se muestra la figura 1.5 con un ejemplo de pseudocodigo:

!Separated Interface: Patterns of enterprise application architecture, page 476 by Martin Fowler.
*Delegation: Design Patterns - Elements of Reusable Object-Oriented Software, page 20 by GoF.

Principios de disefio 4

class A{

var | b class B: | {
protocol | { task {
taskinA { > func task(} 0 . —_
b.task() } q } do the job!
})
)

Figura 1.5 Ejemplo de pseudocéddigo en inversion de control

El elemento A a través de agregacion conoce la abstraccion de B mas no su implementacion. A
contiene una tarea llamada taskInA en la cual delega parte de la operacion al elemento B a través
de la tarea task.

El elemento A desconoce como la tarea delegada es ejecutada en el elemento B, solo sabe que el
elemento B tiene la capacidad de realizar dicha tarea.

La aplicacion de inversion de control aporta al cuamplimiento del principio Single Responsibility* ya
que permite que cada elemento se encargue solo de las funciones para las cuales fueron disefiados y
tenga una tnica razén de cambio.

Inyeccion de dependencia

Inyeccion de dependencia® es un patréon de disefio que aplica el mecanismo de inversién de control
de tal forma que un elemento A puede conocer un elemento B a través de una relacion de agregacion
sin que la responsabilidad de la creacién de la instancia del elemento B quede del lado del elemento
A.

En la figura 1.6 se puede notar que el elemento A conoce de la existencia de un elemento de tipo B
que conforma la interfaz I, sin embargo el elemento A desconoce la forma en que el elemento B se
instancia o se crea.

Dependencies Manager

letIb=8B(— class A {

[~ var b

class B: I {

protocol | { task {
unc task() <} do the job!

}

taskinA {
b.task() }

} }

\

}

Figura 1.6 Inyeccion de dependencias

*The Single Responsibility Principle: Clean Architecture, page 61 by Robert C. Martin.
“Dependency Injection: Clean Code Elements of Reusable Object-Oriented Software, chapter 11 by Robert C. Martin.

Principios de disefio 5

Asi que, ;Quién crea la instancia del elemento B?

Esta tarea es delegada a una entidad o sistema externo comuinmente conocido como Gestor de
inyeccion de dependencias. Un gestor de inyeccion de dependencias se puede implementar en la
aplicacién a través de:

« El patrén Service Locator.
« A través de la integracion de librerias disefiadas para dicha funcion de inyectar objetos’.

« A través de la implementacion manual haciendo inyeccién por constructor, por método o por
propiedad.

Para concluir y como se mencion6 al comienzo, estos tres principios y conceptos recientemente
explicados se utilizan en gran medida en estilos de arquitecturas tales como Clean Architecture
o Hexagonal Architecture, de alli la importancia de comprender dichos principios a cabalidad,
reconocerlos cuando se aplican y entender sus objetivos.

*Resolver by Michael Long, Dagger by Google.

https://github.com/hmlongco/Resolver
https://github.com/google/dagger

	Tabla de contenidos
	Principios de diseño
	Inversión de dependencia
	Inversión de control
	Inyección de dependencia

