This sample of C#eckmate: Learning C# and Programming Chess is provided free of charge.
I hope the contents will demonstrate my writing style and general direction of the book, and
perhaps convince you to support this independent author and make a purchase.

You will see some apparent errors in this text, notably as pairs of question marks (“??”). These
indicate a broken reference, where a sample chapter is referring to a page, section, or subject
from the full book that is not in the sample. Rest assured that those references are complete and
accurate in the full version of the book.

You can find a full copy of this text at https://leanpub.com/checkmate-csharp.

https://leanpub.com/checkmate-csharp

Introduction

Welcome to C#eckmate: Learning C# and Programming Chess!

The inspiration for this book is twofold. In 2003 I wanted to learn ASP.NET, and was fortunate to
find a book called ASP.NET Website Programming: Problem, Design, Solution by Marco Bellinaso
and Kevin Hoffman. Instead of simply walking through ASP.NET’s APIs and repackaging offi-
cial documentation, Bellinaso and Hoffman’s book showed how to build an interactive website
from scratch, introducing ASP.NET topics as they became relevant to the implementation of a
content-driven dynamic website. Their chapters followed a “problem, design, solution” pattern,
in which they introduced a problem to be solved (“the site needs user accounts”), explored de-
sign topics related to the problem (authentication, permissions, profiling, administration, etc.),
and then developed a full-source-code solution to the problem (including C# server code, SQL
database queries, and HTML/JavaScript for the frontend). Their approach taught me ASP.NET
much faster than a more traditional technical book would have, and the lessons I learned from
their examples helped me develop my own successful ASP.NET-powered websites. When I first
thought about writing a programming book, I knew it would need to follow in Bellinaso and
Hoffman’s footsteps, implementing a real project in the course of teaching some more formal
topic.

But what would that project be? My second inspiration comes from projects given to me as
a computer science undergraduate at California Polytechnic State University, San Luis Obispo.
One project in particular — implementing Othello in C++ — has inspired many of the assignments
I give my students, and now serves as a foundation for this book. I love involving board games
in the programming courses that I teach, as their implementations typically combine a variety of
programming topics into a single assignment that many students find motivating because they
enjoy playing games in their social time. I recently taught a class about C# and .NET programming
in which students were tasked with implementing chess; at the end of that course, I knew that I
had found the right project for my book idea.

As an educator, I believe in in the learn by doing philosophy. The world doesn’t need another
C# reference text with 47 chapters and arbitrary, disjointed examples that do little more than
prove the author got their code to compile. Passive learning by reading dry texts works for some
people, but most benefit from a more active learning approach. When I teach a programming
course, I find that students learn best when assigned challenging projects that incorporate not
only lessons from lecture, but also learning opportunities from other disciplines. So while this
book has the same goal as many other texts — learning the C# programming language — we’ll
approach it in an atypical way: by applying lessons from our study of the language to develop
a sophisticated application throughout the length of the book. Along the way we will confront
challenges in software engineering and architecture, algorithm design, computer security, cross-
platform development, and much more. And by applying solutions to these challenges to a larger
context, drawing on the reader’s background experience and the writer’s guiding hand, it is my

i

hope that those lessons will stick more successfully than if they were presented as end-of-chapter
throw-away exercises.

Goals and Topics

I want this text to serve two purposes: learning the C# programming language, and programming
a sophisticated implementation of chess.

Why chess? The game is complicated yet familiar. Piece movements are easy to program, but
with enough patterns and complexity to make effective demonstrations of various software engi-
neering and architecture techniques. There will be many tricks to explore when deciding how to
represent a chess game’s state, and many of C#’s features will simplify our designs and improve
the cohesion and coupling of our code. We’ll learn about design patterns when fitting chess into a
generic board game-playing application, and find a visceral pleasure when we program a user in-
terface for the game, complete with an artificial intelligence opponent. In short, chess (and board
games in general) ties together a great number of topics in computer science, and the sophisti-
cated implementation we’ll cover in this book should provide a number of learning opportunities
beyond simple proficiency in the C# programming language.

Learning C#

Part[l of this book is aimed at intermediate programmers who are experience in an object-oriented
programming language like Java or Python. After introducing the .NET Framework and the
Visual Studio IDE, we will dive into the C# programming language from an experienced learner’s
perspective. We won’t waste time with what a variable is, or what an if statement is for, or
what a class is... rather, we will fast-forward to the important parts of the language, frequently
contrasting it with Java and Python. You can skip Part[l]if you already know C#, but a quick skim
might be warranted.

Programming chess

Parts [II through ?? — while containing lessons on C# and many of of the .NET libraries — are
focused on implementing two board games: Othelld'|and chess?

Part[Il| proposes a software framework for a board game-playing console application. The appli-
cation will support (theoretically) any two-player board game, but we will focus on one example
game (Othello) in particular. Othello is a moderately difficult game to program, and studying its
design in software will hopefully yield insights that will help us design an implementation of the
much more difficult game of chess. After concluding Othello’s design, we’ll introduce a rigorous
testing framework for validating our Othello code and the chess code that we’ve yet to write. Part

https://en.wikipedia.org/wiki/Reversi
*https://en.wikipedia.org/wiki/Chess

il

M then concludes with a lengthy chapter on designing our chess implementation, with extensions
to the testing framework to validate our newest work.

Part ?? introduces the goal of a graphical user interface application. We will learn enough of Win-
dows Presentation Foundation — Microsoft’s modern user interface library for .NET on Windows
— to program an interface for Othello, and then once again turn our attention to chess.

Part ?? aims to integrate a worthy artificial intelligence opponent into our game-playing applica-
tion. We will introduce the Minimax algorithm for decision-making, then apply it to our general
board game framework and integrate the resulting Al opponent into our console and GUI applica-
tions. If we find the resulting opponent lacking, we will go back and consider ways of optimizing
our chess implementation without changing the public interface developed in Part

Problem, Design, Implementation

Parts Il and ?? of the book will be organized in a problem, design, implementation pattern. Each
chapter will begin by identifying a problem that must be solved to implement a generic board
game-playing application. We will then apply lessons from software architecture, engineering,
and testing to design a solution to our problems. An implementation of the design will follow.

Target Audience

This is not a book for beginning programmers. The chapters on learning C# will assume a gen-
eral familiarity with imperative and object-oriented programming, equivalent to 2-3 years of
programming courses in a university computer science curriculum; an ideal reader would have
experience with languages like Java, C++, or Python, and be ready to learn a similar language.
We'll be skipping most of the basics of programming — “what are variables?”, “what are func-
tions?” - in favor of a faster tour through C# that focuses more on applications and patterns
thanks to the prior knowledge of the reader.

Conventions

The text of this book is formatted in different styles and layouts to help disseminate the many
lessons and side topics within.

« Most of the book is written in prose, using this font.

« Code segments are written in typewriter font, as in int x = 10. Short expressions and
statements will appear inline within paragraphs, but longer examples will be emphasized
with full syntax highlighting:

public static void Main(string[] args) {
Console.WriteLine("Hello, world!");

}

iv

« Bold font typically denotes the introduction of new terms, or to highlight a summary state-
ment, particularly within a numbered or bulleted list.

« Italicized font is used for general emphasis. It also highlights the names of menus within
applications (File, Tools, etc.).

« Many types of highlighted boxes will set aside text that isn’t strictly necessary to the con-
tent being discussed:

Discussion

Discussions involve lengthier and informal explanations of a recent topic, often involving
history, theory, or other background knowledge that help highlight a lesson.

Info

Info blocks will typically contain formal definitions and documentation for language features
or program design decisions.

Warning

Warnings will highlight common mistakes or potential pitfalls that are easy to overlook.

Tip

Tips include miscellaneous thoughts and advice from the writer’s personal experiences.

I like avocados. I give them to students who get high scores on exams, and use them as silly
examples in exercises. I'd like to share some avocado facts during this book. You can ignore
these blocks if you don’t care for my silly distractions.

Code style

I try to use a consistent coding style when writing C# code. Most of the details are irrelevant, but
a few are noteworthy:

+ I name the member variables of a class starting with a lowercase “m”, followed by Pascal-
Casing for the rest of the variable name. For example, if a class has a member variable for
“title text”, I would name it mTitleText. The m emphasizes that the variable is a member of
the class, not a temporary value. All other variables are named using camelCasing.

« lindent with tabs and align with spaces. Normally I set tab width to 3 spaces, but the book’s
formatting works better with shorter indents, so we’ll use 2 spaces for tabs in the text. (The
beauty of tabs, of course, being that you can set your editor to whatever tab size you prefer
and then we can stop arguing about it.)

« T use implicit typing with the var keyword whenever the type of the variable I'm declaring
is unambiguous from context and the variable’s name.

Source Code

Most of the book’s source code is available for free on GitHub, at https://github.com/nealterrell/
checkmate-source. The code is organized by book Part, and has projects you can compile and
run using Visual Studio 2017. I encourage you to fork my repository as you work through the
book, making your own changes and implementations as you feel the inspiration.

About the Author

Hi, I'm Neal! [am a lecturer in the Computer Engineering and Computer Science department at
California State University Long Beach. What’s a lecturer? We are faculty members who only
teach, as opposed to professors who do research, publish, and administer a department. All the
time that professors spend advancing the state of the art of computer science, I get to spend
learning and practicing to be a better teacher.

I teach many different courses: theory and mathematics classes like discrete math, algorithms,
and data structures; programming-focused classes like introductory Python and intermediate
Java and C++; and senior electives in programming language theory and design, search engine
technology and information theory, and .NET development. My students know me (I think) as
a challenging but fair instructor who demands a lot but provides the resources necessary for
success to those who seek them.

I have been programming with C# since 2002, and it remains my favorite programming language.
I am also proficient in C++0x, Java, Python, JavaScript, Clojure, F#, and know enough Erlang and
Prolog to get in trouble.

This is the first book I've ever written, though I've published hundreds of pages of lecture notes
and lab manuals for the courses I teach. I hope you enjoy it!

vi

https://github.com/nealterrell/checkmate-source
https://github.com/nealterrell/checkmate-source

Part1
C# and the .NET Framework

Chapter 6:
LINQ

Language Integrated Query (LINQ) is a .NET library that extends the .NET collection classes
— IEnumerable<T> in particular - to incorporate lessons from functional programming (FP) lan-
guages regarding the filtering, transformation, and aggregation of collections of data. It consists
of a set of extension classes that add new member methods to the collection classes, as well as a
SQL-like sub-language for working with those methods.

6.1 Extension Methods

Ada is obsessed with palindromes. She writes a static C# method to test if a given string is a
palindrome, ignoring capitalization:

public class StringUtil {
public static bool IsPalindrome(string s) {
s = s.ToLower();
for (int i = 0, j = s.Length - 1; i < s.Length / 2; i++, j--) {
if (s[i] !'=s[jD {
return false;
}
¥
return true;
}
}

She checks her code by calling it with her own name and the name of her best friend as arguments:

bool palindromel = StringUtils.IsPalindrome("Ada");
bool palindrome2 = StringUtils.IsPalindrome('Isaac™);
Console.WriteLine(palindromel); // should be true
Console.WriteLine(palindrome2); // should be false

Ada proudly shows her work to Isaac, and while he is touched by her concern for the palindromic-
ity of his own name, he notes that Ada’s IsPalindrome method could really be part of the String
class itself. "Don’t be silly, Isaac,” Ada replies, "I don’t own the String class and it would be illegal
for me to try and add something to it." Ada’s programming instructors collectively smile at her
reverence for encapsulation, but Isaac is unimpressed. "A public method operating on a class’

Pronounced “link”.

6.1. EXTENSION METHODS CHAPTER 6. LINQ

public interface does not break encapsulation,' he replies. "Any reasonable type system should
allow you to amend a type with such a method."

Indeed, C# agrees with Isaac, and provides a mechanism called extension methods for "adding"
new methods to existing types, without having to recompile the original type or otherwise access
its source code. An extension method is a static method that can be called as if it were a member
method of a different class. Ada must make two changes to her method: it must be contained
inside a static class, and its string parameter must be annotated as this:

namespace AdaExtensions {
public static class StringExtensions {
public static bool IsPalindrome(this string s) {
// as before

Note that she has not modified the String class directly. To use her method as a member of
a string value, one must add a using directive referencing the namespace of the class with the
extension method (in this example, using AdaExtensions;). The IsPalindrome method can then
be called on any instance of the String class:

bool palindromel = "Ada".IsPalindrome();

Ada has, in effect, added a new public method to the String class without modifying or having
access to the class itself! Her StringExtensions class is referred to as an extension class.

Discussion

There is no semantic difference in what Ada has done compared to the static method of
her first attempt, so what’s the point? First, we reduce the number of keystrokes to call
the method; your money-making fingers will appreciate doing less work without sacrificing
clarity. Second, there is more implicit meaning in a member method call - which clearly
operates on and relates to a specific instance of a type — than in a static method call to an
unfamiliar class. We will use extension methods when working with FluentAssertions in
Chapter ??, in addition to their presence in LINQ itself.

Before you run off to write extension methods for every type you’ve ever used, consider this
strong limitation: because an extension method is not a member of the class it is extending, it
does not have access to the class’ private members. Any operation you wish to add to another
type must be fully expressible using the type’s public members only, as in Ada’s IsPalindrome
method. In general, if you can write it as a static method, you can probably write it as an exten-
sion method instead, as long as it would make sense for the method to be a member of the class
you are extending,.

6.2. DELEGATES AND GETTING FUNKY CHAPTER 6. LINQ

Tip

Extension methods are opt-in, as they require using a particular namespace before seeing the
methods as part of the extended type. Someone who doesn’t want the extensions cluttering
the type’s API can choose not to use the namespace and simply call an extension like any
other static method. To respect this option, it is traditional to separate extension classes
into a distinct namespace containing only such classes; that namespace often has the word
"Extensions" in it.

Info

Extensions can add methods to classes, but not properties or fields in any form. There are
proposalg? to add “Extension Everything” to a future version of C#, but for now we have to
be satisfied with only using extension methods.

“https://github.com/dotnet/roslyn/issues/11159

6.2 Delegates and Getting Funky

Most languages provide a way to declare a variable that refers to a function. This may seem
strange if it’s your first encounter with the idea: variables are supposed to hold values, and how
can a function be a value? But it’s really not so strange. Variables really refer to objects, and
objects are things. Things are defined by the values they can equal, and the operations they can
perform, and so a function can be seen as a thing just as any other variable type you're already
comfortable with:

« an int can equal integer values from —23! to 23! — 1. Arithmetic operations can be per-
formed on int values.

 a String can equal any sequence of 0 or more characters. There are many operations on
String values: Substring, Contains, StartsWith, Length, etc.

« afunction can equal a block of code that takes a certain set of parameters and returns a par-
ticular type of value. The only operation we can perform on a function is to invoke/execute
it.

And now you’re convinced! A variable can refer to a function just as easily as it can refer to a
string, a file, a network connection, or a bank account.

How, then, do we declare variables as referring to functions, and how do we invoke a function
referred to by a variable? Like all variables, we need to declare the type of a function in order to
create a variable referring to it. In Ye Olden Days of .NET, delegates were used to give meaningful
names to function types. Declaring a delegate creates a new type in a library, just like declaring
a new class or struct; the delegate type always represents a type of function, by identifying
the types of the function’s parameters and the type of the function’s return value. The following C#
code creates a new delegate type:

public delegate int MyDelegate(int a, int b);

6.2. DELEGATES AND GETTING FUNKY CHAPTER 6. LINQ

The components of the declaration:
« Access modifier (public): like any type, sets the accessibility of the delegate.
+ delegate: identifies this declaration as that of a delegate type, and not an actual function.
« Return type (int): the type of value returned by functions that this delegate represents.

+ Type name (MyDelegate): the name of the delegate type, like the name of a class. Variables
will be declared using this type name.

« Parameter list ((int a, int b)): a list of types (important) and names (less important) of
the parameters that are accepted by any function this delegate represents.

The MyDelegate type above allows us to create a variable that can refer to any function that takes
two ints as parameters (even if they aren’t named a and b — the names are irrelevant) and returns
an int value. The Math.Max static method is a function that matches this description; to create
a variable that refers to that function, we declare it using the MyDelegate type, as we would any
variable:

MyDelegate f = Math.Max;

We can reassign f to any other function matching the MyDelegate requirement, like Math.Min:

f = Math.Min;

Finally, to invoke the function that f currently refers to, we use normal function-call syntax:

£f(5, 3); // returns 3, since f is Math.Min

Discussion

If you're a C or C++ programmer, you can think of delegates as a named type-safe function
pointer. Our code is equivalent to the C-style function pointer

int (+f)(int,int) = min;
£(5, 3);
and the modern C++ std: : function type

typedef std::function<int(int, int)> MyDelegate;
MyDelegate f = std::min;
£(5, 3);

I introduced delegates as “old school” because they represent a low-level capability of the CLI
that was exposed through C# using a clunky system, and you rarely see modern C# projects
using them. Having to declare and name delegate types any time you wanted to use function
pointers quickly grew tiresome. Fortunately, C# 3.0 introduced a pair of types to represent any
specific type of function: Func and Action.

6.2. DELEGATES AND GETTING FUNKY CHAPTER 6. LINQ

Func<..., TResult>

The Func<. .., TResult> delegate type is modern C#’s way of representing function pointers. A
generic type, Func lets us declare references to functions as long as we know their return type
and the types of their parameters. If we declare a Func with only one generic parameter type,
then the function represented by the Func variable takes no parameters, and returns a value of
the generic parameter type. If we supply multiple generic parameters, then the last is the return
type of the function, and the rest, in order, give the types of the function’s parameters. A few
examples will help:

// A function with no parameters, returning string.
Func<string> f1 = Console.ReadlLine;

// A function taking two int parameters and returning int.
Func<int, int, int> f2 = Math.Min;

// A function taking a string parameter and returning int.
Func<string, int> f3 = int.Parse;

Each of the Func variables above can be invoked with the normal function call syntax, as long
as we provide the necessary parameters. One fun part of delegates and Func is that the compiler
checks everything for us at compile time: if I declare

Func<int, int, int> f4 = Console.ReadLine

then my compiler will issue an error that the delegate type Func<int, int, int>isincompatible
with the function Console.ReadLine. Likewise, if I take the variable £2 and attempt to invoke it
with two strings

f2("Abra", "Kadabra")

the compiler will emit an error that the delegate type Func<int, int, int> cannot accept two
string parameters.

Action<T, ...>

What if we want a delegate to a function that has a void return type? We unfortunately can’t
put void into a generic type parameter, because void is a special type that can only be used as
a function’s return type. Enter the Action<T> delegate, which is identical in use and behavior
to Func, except that all Action<T, ...> delegates have a void return type. Thus, the generic
parameters to Action<T> get to skip to the chase, specifying only the types of the function’s
parameters.

And if we want a delegate to a void function with no parameters? Then the non-generic base
Action type, with no generic parameters, gets its moment of fame.

// A function taking a string parameter with no return value.
Action<string> f5 = Console.WriteLine;

6.2. DELEGATES AND GETTING FUNKY CHAPTER 6. LINQ

// A function with no parameters and no return value.
Action f6 = SomeBoringFunction;

Avocado trees suffer from their fair share of pests and diseases, causing no end of heartbreak
to commercial and home growers alike. Persea mites build silver webs on the undersides of
avocado leaves and drink sap from their veins, leading to necrosis along the vein lines and
the eventual death of the leaf. Mites won’t kill the tree directly, but leaf loss affect the tree’s
overall health in other ways, like leading to sunburn. (Did you know trees can get sunburns?
Young citrus and avocado trees are usually painted with a diluted white latex paint to protect
them until they grow a sufficient canopy.)

A far bigger concern for all avocado enthusiasts is the mold genus Phytophthora, derived from
the Greek words for “plant destruction”. Phytophthora cinnamomi in particular is an enor-
mously destructive invasive mold species that affects dozen of commercial crops worldwide,
including avocado and cinnamon trees. Overly-wet soils aid the spread of Phytophthora,
which in turn causes “root rot” in avocado trees, affecting the tree’s ability to absorb water
through its roots and leading to the death of leaves, branches, and eventually the entire tree.
There is no cure, though horticultural best practices can limit the spread and damage once
Phytophthora is found in a region’s soil.

Delegates to non-static member methods

Recall the Substring method of the string class, which takes two integer parameters and re-
turns a string. A delegate to such a function would be of type Func<int, int, string>, but
how do we actually declare a delegate to an instance (non-static) method of a class? Func<int,
int, string> f = string.Substring doesn’t work, because it implies that Substring is a static
method, which it is not. Func<int, int, string> f = Substring also doesn’t work, because
we haven’t identified which class the method is a member of. Unlike static methods, instance
methods require an actual object instance in order to invoke. To declare our delegate, we have to
identify which string object we want to use the Substring of, like this:

string val = "Phytophthora cinnamomi';
Func<int, int, string> f = val.Substring;
f(4, 3); // returns "oph".

Info

There’s a good technical explanation for why we need to indicate the instance we are in-
voking a member method on when capturing it as a delegate, besides the intuitive “how else
would we know what string to use in the Substring method?” The explanation: Substring
isn’t really a method taking two integers and returning a string. Surprised? Perhaps not; we've
already stated this fact in another fashion: in order to execute, Substring needs to know
which string instance it is operating on.

6.3. LAMBDA EXPRESSIONS CHAPTER 6. LINQ

“Data that needs to be known for a function to execute” sounds an awful lot like the descrip-
tion of a “parameter”, and indeed, in the example above, the string val is actually secretly
passed as a parameter to the Substring method when it is invoked. Every instance method,
it turns out, is actually compiled to a form that takes an additional parameter besides those
explicitly listed by the programmer. This secret doesn’t have an academic name - I like to
call it the “context parameter”, as it establishes the context on which the method is being
invoked, but I've also heard “instance parameter” and like that too — but it does have a real
name in C#: this, a humble keyword that usually gets taught as being optional in method
bodies (not to be confused with the first parameter of an extension method), but in reality
refers to a very real parameter to each instance method. The CLI is responsible for pass-
ing the variable val as the “this” parameter to Substring in our example, and the body of
Substring gets to use that parameter either explicitly (using this.xx to refer to fields of the
parameter) or implicitly by directly referencing fields of the String class.

With this knowledge, we would more accurately describe the Substring method as being of
the type Func<string, int, int, string>.. in other words, it requires a string context
parameter, two int formal parameters, and returns a string.

Python programmers are more aware of this fact than those with a C++ or Java background.
In Python, the context parameter is explicit: every instance method of a class (including
constructors!) must manually declare a parameter for the instance object, which by tradition
is called self.

6.3 Lambda Expressions

All the delegates we’ve created so far have referred to actual functions from .NET (or one we can
imagine existing, like SomeBoringFunction). What if we want a delegate to refer to a function
that doesn’t exist, say a function to tell if an integer is positive or not? Then we’d have to write
the function first:

public static bool IsPositive(int x) {
return x > 0;

}

and then declare a Func delegate as

Func<int, bool> test = IsPositive;

But that’s a lot of work for a function that is so trivially easy and short as IsPositive. In the
near future we will want the ability to create small, simple functions without going through
all the syntax of a full C# method declaration. C# gives us that ability in the form of lambda
expressions.

A lambda expression declares an anonymous function: a function with no name, belonging
to no class. Anonymous functions are just as capable as any “normal” method, and can take
parameters, declare variables, call other functions, return values, etc. They just don’t get a name

6.4. FUNCTIONAL PROGRAMMING CHAPTER 6. LINQ

of their own. What use is a function with no name, and how can we possibly call such a function?
By assigning it to a delegate variable.

We use the => operator to declare a lambda expression. To the left of the =>, we place a paren-
thesized list of parameters to our anonymous function. We have two options on what to place to
the right of the operator:

1. If we write a single expression (ex: x > 0,y * 2, Math.Min(a, b) - 4) then the body of
the anonymous function consists of a return followed by the written expression.

2. If we place an open curly brace, we can write the body of the anonymous function as we
would any other method, including manually returning a value.

We can rewrite IsPositive as a lambda expression in these two styles as thus:

// A single expression for the function body.
Func<int, bool> testl = (int x) => x > 0;
// A full curly-brace function body.
Func<int, bool> test2 = (int x) => {

return x > 0;

¥
Both test1l and test2 can be invoked as with any other delegate.

If our lambda expression only takes a single parameter, the parentheses around the parameter list
can be removed. If the types of the parameters can be inferred from context, then we can omit
those as well. Our third way of declaring IsPositive as a lambda expression is the shortest by
using these two tricks:

// Inferring the type of x.
Func<int, bool> test3 = x => x > 0;

The compiler knows test3 to be of type Func<int, bool>; it therefore knows beyond all doubt
that the function test3 refers to must take a single parameter of type int. Seeing the lambda
expression has only one parameter, the compiler infers the type of x to be int, then type-checks
the function body and finds it to be returning bool, which also matches test3’s declared type.

Why bother with this seemingly obscure feature? Because it forms a foundation for functional
programming and LINQ, as both benefit from the brevity of lambda expressions for anonymous
functions.

6.4 Functional Programming

The functional programming paradigm far exceeds the scope of this book. Thousands of texts,
articles, and blog posts espousing the benefits of immutability, first-class functions, and higher
order functions await the dedicated learner, and I encourage all my students to learn at least the
basic principles of FP to apply to all their programming tasks. LINQ itself draws inspiration
from three common FP functions called map, filter, and reduce, and knowing the origins of these
functions can help better understand LINQ.

6.4. FUNCTIONAL PROGRAMMING CHAPTER 6. LINQ

Filter

Ada wants to write a method to take a parameter list of integers and return a list containing all
of the positive integers from the argument. She codes this simple method:

public static List<int> PositiveInts(List<int> values) {
var results = new List<int>();
foreach (int i in values) {
if (4 > 0) {
results.Add(i);

}

return results;

}

Tip

Note that Ada’s method does not modify the parameter, instead returning a new list contain-
ing the results. The default expectation of a programmer who passes a collection to a method
is that the collection will not modified by the method.

Suppose she now wants a method that returns all negative integers from a list. Imagine Ada
writing an almost-identical method NegativeInts whose sole change is a different condition:

if (1 <0) {

Now imagine EvenInts — returning the even integers — and 0ddInts, MultiplesOf5Ints, etc.,
an unending stream of methods that all encode the same abstract pattern: given a list of values,
return a new list of all values from the input that satisfy some arbitrary condition. Isaac has
come across this pattern before, and tells Ada that functional programming languages name it
filter. Isaac and Ada agree that both the type of the data in the list (can’t we do something similar
with strings, or floating-point numbers, or any other type?) and the exact rule for selecting the
satisfying data (the predicatef) are unimportant to the general flow of the function.

Ada writes her own version of filter in C# using the Func<T, TResult> delegate we learned ear-
lier:

public static List<T> Filter<T>(List<T> values, Func<T, bool> pred) {
var results = new List<T>();
foreach (T i in values) {
if (pred(i)) {
results.Add(i);
}
}

return results;

2predicate: A function that returns either true or false.

10

6.4. FUNCTIONAL PROGRAMMING CHAPTER 6. LINQ

and then calls it with an anonymous function to recreate the logic of PositivelInts:

List<int> myVals = ...;
List<int> positives = Filter(myVals, i => i > 0);

As we saw earlier, the lambda expression i => i > 0 returns true if a value i is positive; with
this test as the function pred, her Filter function returns a new list containing only the integer
values in myVals that are positive. Voila!

Info

This is our first time writing a generic method, which we briefly learned about in Chapter
??. The important bits of the Filter declaration start with the <T> that follows Filter,
indicating that the method is a generic method. The <T> establishes the name of the single
generic type as T; when the function is called later, T will be replaced by the actual type that
C# infers based on the place that Filter is used. We can use T as the type of a variable within
the parameter list, return type, and body of our generic method, and we do all three of those:
establishing that the parameters are a List<T> (this is how the compiler will infer T: based on
the type of list passed in) and a function taking a T and returning a true or false; giving the
return type a list of T, exactly matching the parameter’s type; and declaring a new List<T>
in the body. We even doubly establish that each element of values is type T in the foreach
loop.

When we call Filter(myVals, i => i > 0), the C# compiler will infer T to be int based on
the type of myVals. It will then verify that the inferred generic type is valid for the second
parameter, the lambda expression i => i > 0. According to Filter’s parameter list, the
Func passed to it must accept a T parameter, which means i must be an int. If that is true,
then the expression i > 0 is semantically valid, and returns type bool. Since this matches
the type of pred, this call to Filter is allowed, and returns a List<int>.

Map

A second important function from FP is map. Suppose that Ada wants to take a list of integers
and return a list of the squares of each of the integers in the argument list. In her own reliable
way, she writes:

public static List<int> Squares(List<int> values) {
var results = new List<int>();
foreach (int i in values) {
results.Add(i = i);
}
return results;

}

We repeat our exercise from before and imagine other methods like Doubles (results.Add(i =
2)), Triples (results.Add(i * 3)), even methods that result in non-integer values like SquareRoots

11

6.5. ORIGINS OF LINQ CHAPTER 6. LINQ

(results = new List<double>(); ... results.Add(Math.Sqrt(i))). In all cases Isaac and
Ada identify three abstract components of our method: the list of values to iterate through; a
function to convert each of the values into another value; and the type that the values are con-
verted into. Ada can then write Map as:

public static List<TResult> Map<T, TResult>(List<T> values, Func<T, TResult>
convert) {
var results = new List<TResult>();
foreach (T i in values) {
results.Add(convert(i));
}
return results;

}

and, as before, recreate her method Squares using an anonymous function:

List<int> myVals = ...;
List<int> squares = Map(myVals, i => i * i);

Discussion

Map has two generic parameters, which allows us to use different types for the list of values
passed in (type T) and the type that the given values get converted into (type TResult). As
before, the compiler is able to infer the actual types for the generic parameters based on the
context in which the function is called. Above, T is inferred to be int based on myVals, and
TResult is also inferred as int because the lambda expression i => i * i takesa parameter
of type T and invokes the * operator; when T is int, this results in another int value.

Since we use two generic parameters, we can invoke Map to return a type that does not
match the input list’s. Calling Map(myVals, i => Math.Sqrt(i)) would establish TResult
as double, the return type of the Math. Sqrt function. The return type from Map would then
be List<double>.

Finally, Isaac notes that the output of either of these functions can be fed as input to the other,
allowing Ada to, among other things, square all the positive integers in a list, ignoring the nega-
tives:

List<int> myVals = ...;
List<int> results = Map(Filter(myVals, i => i > 0), i => i * 1i);

It’s a little dense at first, but after practice Ada finds no trouble reading code like this. "Order

of operations," she reminds herself; "first we filter to only contain i’s that are positive, then we
square all those i’s, and end up with a list of integers."

6.5 Origins of LINQ

A few observations about Ada’s code from the previous section will lead us to some core ideas of
LINOQ:

12

6.6. CORE LINQ METHODS CHAPTER 6. LINQ

1. Do the Filter and Map functions only work if the parameters are List collections in partic-
ular? That is, when filtering a bunch of integers, is it mandatory that those integers be in
an array list-like structure, or could we also filter other structures like binary trees or hash
tables?

2. Must Filter and Map return their results specifically in a List? Could they be made more
flexible by returning a different type? What type would that be?

3. Are there any types that cannot be filtered or mapped?
Ada knows the answers to these questions... do you?

1. "Of course not. All we do with the input list is iterate through it, one value at a time. It
could be a linked list for all I care, as long as it is enumerable."

2. "Sometimes I will want the results in a particular structure, but usually I won’t care, as long
as the result is enumerable.”

3. "None. All types have attributes that can be used in a filter predicate, or transformed into
another type by a mapping function.”

These answers form the starting observation for LINQ: any enumerable sequence of values
can be filtered, mapped, and manipulated in many other ways to produce another sequence
of values. The LINQ library, in the System.Ling namespace, adds a number of extension methods
to the TEnumerable<T> interface. These methods implement filter, map, and many other methods
for manipulating sequences.

6.6 Core LINQ Methods

Where

The first LINQ method we will examine is Where, which has the following signature:

public static IEnumerable<T> Where<T>(this IEnumerable<T> seq,
Func<T, bool> pred)

You may recognize this signature as nearly identical to Ada’s Filter function, and indeed, Where
is LINQ’s implementation of filter. When called on an IEnumerable of some type, Where will
return another IEnumerable containing only the values that satisfy the given predicate. Isaac
provides the first example filters an array of integers to only the positive values:

int[] myVals {1, -5, 2, 4};
var filtered = myVals.Where(i => i < 0);

Warning

You must include a using System.Ling; directive to use LINQ methods.

13

6.6. CORE LINQ METHODS CHAPTER 6. LINQ

What type is filtered? Since C# arrays implement IEnumerable, we can see that the seq param-
eter to Where is of type TEnumerable<int>, making the generic type T equivalent to int. Thus,
the predicate pred is of type Func<int, bool> (a function from int to bool) and filtered is of
type IEnumerable<int>.

What’s interesting here is that we have no idea how Where actually works. We can be certain that
it calls our pred method to decide which elements of seq to include in the returned IEnumerable,
but what exact data structure is returned? Is it a list? Is it a plane? Is it Superman? We don’t know,
and we (probably) don’t ultimately care: we can iterate through the result with an enumerator,
and that’s usually all we need.

Tip

One day you’ll need to know how Where actually works, but today is not that day, young
Padawan.

Select

Next we will examine the LINQ method Select:

public static IEnumerable<TResult> Select<T, TResult>(
this IEnumerable<T> seq, Func<T, TResult> conv)

We again recognize this signature as being equivalent to Ada’s Map function. When called on
an IEnumerable, LINQ’s Select will return another IEnumerable by mapping each value in the
input to a new value using the mapping function conv. Isaac’s example maps an array of strings
to their lengths:

string[] myVals = {"Ada", "Isaac", "Neal", "Jaclyn"};
var mapped = myVals.Select(s => s.Length);

This time we must examine both parameters to Select to determine the type of mapped. myVals
is clearly an IEnumerable<string>, setting the generic parameter T as string. But what about
TResult? For that, examine the anonymous function used as the mapping function. s must be
a string (since T is string), and the Length property of a string returns int, making TResult
equate to int. Thus, mapped is IEnumerable<int>! We can then determine mapped to be a se-
quence of the integer values 3, 5, 4, and 6.

Aggregate

Sensing she’s ready for her next challenge in functional thinking, Isaac asks Ada to program a
method that finds the sum of all the elements of a sequence of integers. She complies:

public static int Sum(IEnumerable<int> seq) {
int sum = 0;
foreach (int i in seq) {

14

6.6. CORE LINQ METHODS CHAPTER 6. LINQ

sum = sum + i;
}
return sum;

}

Ada is then prompted to explain the behavior of her code when executed on the array {1, 5, 4,
2, 3}. “First, we add the current sum of 0 with the first element of the array, 1, to get a sum of 1.
Then, we take the current sum of 1 and add it to the next element, 2. Then the sum of 3 is added
to the next element, 3, and we repeat until the final sum of 15 is found.”

Isaac draws something on the nearby chalkboard:
3+ 2+ 4+ (B+(1+0)))) =15

and Ada agrees that the math expression he wrote is equivalent to the work that her function
performs. “What changes would you make,” he continues, “to find the product of a sequence of
integers?” Ada’s answer is hopefully clear: start the calculation at 1 instead of 0, and use operator
* instead of +. The chalkboard expression then changes to

3x (2% (4x(5x(1x1)))) =120

and then one final challenge is issued: finding the largest integer in the sequence. Ada takes
a moment before recognizing the solution: start the calculation at int.MinValuef| and change
the expression in the loop to largest = Math.Max(largest, i). Sensing Isaac’s next and last
question, Ada adds a final expression to the chalkboard:

max (3, max (2, max (4, max (5, max (1, —231))))) =95

Do you sense a pattern in these functions? In each, we take some initial value and apply a two-
argument function to that value and the first value of the sequence. We then apply the function
again to the result of the previous function and the second value from the sequence; then again
with the previous result and the third value from the sequence; etc., until we have a single value
from the final function call. This pattern is a third famous function from functional programming.
Lisp languages like Clojure call it reduce, while ML-derived languages like F# and Haskell call
it fold. C++ calls the function accumulate. LINQ has the most clear name, in my opinion:

aggre gate

The LINQ method Aggregate has two different overloads, depending on what you want the initial
value of the calculation to be. Each implementation repeatedly applies some given two-argument
function to the elements of the sequence that Aggregate is called on, feeding the result of one
iteration of the function to the next.

1. public static T Aggregate<T>(Func<T, T, T> aggFunc): given a function of two argu-
ments of type T that returns a value of type T, this method feeds the first two elements of
the sequence to the function aggFunc, which must “combine” those values in some way

3The smallest (most negative) value an Int32 CLI type can store, equal to —231.
*aggregate: to bring together; to collect into one sum, mass, or body.

15

6.7. OTHER FUN OPERATIONS CHAPTER 6. LINQ

into another value of type T. That result is then passed to the next iteration of the function
along with the next value from the sequence, repeating until a single final value of type T
is computed and returned.

2. public static TResult Aggregate<T, TResult>(TResult initialValue,
Func<TResult, T, TResult> aggFunc): this overload is more akin to the pattern we
noticed above. We supply an initial value manually, of type TResult. The function we
provide must take a parameter of type TResult along with one of type T (the type of values
in the sequence), and produce a new value of type TResult. The final value produced by
the aggregation is also of type TResult.

We can implement Ada’s Sum method, along with Product and LargestOf using Aggregate:

. array.Aggregate(0, (a, b) => a + b) is a literal translation of Ada’s Sum method. We
give the explicit initial value of 0, and a function that adds two integers together. This
example uses the second of the two Aggregate options, in which the initial value is explic-
itly passed. TResult is int (based on the argument 0), making aggFunc a Func<int, int,
int>. Our lambda function adds two variables inferred to be integers, which definitely re-
sults in an int.

To see why this computes the sum of the sequence {1, 5, 4, 2, 3}, we feed 0 as a and
the first element of the array (1) to our lambda function, which results in a 1. That value
is then fed back as a, with a b of 5, to get 6. This repeats to find intermediate values of 10,
12, and finally 15, which is returned.

« We can use the first Aggregate option to shorten this function call: array.Aggregate((a,
b) => a + b) uses the first two elements of the sequence as the first a and b values respec-
tively, then continues with the repetition as above.

+ Product is a simple translation from our Sum equivalent: array.Aggregate((a, b) => a
* b).

« LargestOf is actually the shortest: array.Aggregate(Math.Max). Math.Max takes two ar-
guments of type int and returns a type int. 1 and 5 are passed to Math.Max, which returns
5; 5 and 4 are passed to Math.Max, which returns 5; etc., until 5 is returned as the answer.

Aggregate is the least important of the three core LINQ methods, which is great because it’s
also the hardest to know how to apply correctly. We’ll have perhaps one or two opportunities to
employ the function during our board game implementations in Part

6.7 Other Fun Operations

Counts and emptiness

Want to know how many elements are in an IEnumerable, or if that enumeration is empty? Look
no further!

16

6.7. OTHER FUN OPERATIONS CHAPTER 6. LINQ

1. The Count() method will return an integer count of the number of elements in the enu-
meration. Be careful with this method: although Count() will “cheat” and call the
.Count property (which is typically a constant-time access of a member field) if a given
IEnumerable is also an ICollection, not all enumerations can take advantage of this opti-
mization. If what you’re enumerating is not actually a collection, then calling Count () will
force the .NET virtual machine to “walk” through the entire sequence counting as it goes
along. Calling Count() twice in a row is doubly disastrous, as it walks the enumeration
twice!

Moral of the story: if you really need to know the exact length of a sequence, consider con-
verting it to a list (see the next section), or at the very least ensure you only call Count ()
once for any sequence.

Discussion

The “walk through the enumeration” implementation of Count() can be visualized as an
aggregation! sequence.Aggregate(0, (a, b) => a + 1) will add 1 to an initial value of
0 for each element b in the sequence (the elements themselves are more or less ignored),
returning the count of the sequence.

Don’t actually do this, of course. Just call Count ().

2. The Any() method will return true if and only if the sequence has at least one element,
and false if it is empty. An overload of Any accepts a predicate function and returns true
if at least one element of the sequence satisfies the predicate; it is equivalent to calling
Where(...).Any().

Although Any() is conceptually equivalent to Count() > 0, we know from the discussion
of Count() that we would be foolish to use it as a means of checking for (non-)emptiness.

Conversion methods

The IEnumerable<T> interface is a little lacking in functionality, and if you want to do anything
more complicated than iterating through an entire sequence returned by a LINQ method, you’ll
probably want to convert that sequence into a concrete data structure like List or Dictionary.
You might be tempted to call a constructor: List<T>, for example, has a constructor taking an
IEnumerable<T> and initializing the elements of the list using those from the sequence. Avoid
this temptation! LINQ provides methods to convert an TEnumerable<T> to a List or aDictionary
that use fancy tricks to improve efficiency in certain cases. Those methods are:

1. ToList(): constructs a List<T> large enough to fit the elements of the enumerable se-
quence, then adds the elements of the sequence to that list, such that the first element of
the sequence is at list index 0. Reference types are copied to the list as a reference to the
same object that is in the sequence (we call this a shallow copy); value types are copied
by value, placing a duplicate of the original element in the list (a deep copy).

17

6.7. OTHER FUN OPERATIONS CHAPTER 6. LINQ

Once we have a List<T>, we can do useful things like find the index of a particular data
element, retrieve items based on index, or insert new items into the sequence, all of which
are either impossible or inefficient on TEnumerables.

2. ToDictionary(): converting a sequence to a dictionary isn’t quite so straightforward. We
probably imagine that the values of the dictionary will be the same values as in the sequence,
but what keys will be associated with those values? We must supply ToDictionary() with
a function called the key selector, a function of type Func<T, TKey> that transforms an el-
ement of the sequence to the key you want associated with that value in the final dictionary.

For example, suppose we have an IEnumerable<Hero> using the Hero class from Chap-
ter ??. We can convert that sequence into a dictionary that maps from a Hero’s Name to
the Hero object itself by calling heroes.ToDictionary(h => h.Name); the lambda func-
tion is the key selector, transforming a Hero into a string. The resulting value is of type
Dictionary<string, Hero>.

Extracting single elements

Where returns a sequence of values matching a predicate, but what if you only want one value
back? You could take the resulting IEnumerable, call GetEnumerator, force the enumerator to
find the first element with MoveNext (), and then read that element with the Current property...
but that’s an obnoxious amount of work. You could also call .ToList () and then use the indexer
property to get the element at position 0, but that requires copying every element from the se-
quence to a new list, and that’s an obnoxious amount of work for the virtual machine. Instead,
two methods are provided to unwrap a single element from a sequence:

1. First(): returns the first element of the sequence. This method throws an exception if the
sequence is empty, which you should catch and deal with if this outcome is at all possi-
ble. You can avoid an exception by calling FirstOrDefault() instead, which will return
null if given an empty sequence of reference types, or a default-constructed instance if the
sequence is of value types. Since default-constructed value types can be difficult to dif-
ferentiate from “real” values, I recommend only using FirstOrDefault on sequences of
reference types.

Example: given a sequence of Hero objects, we can retrieve the first hero in the sequence
that has at least 20 hit points by calling heros.Where(h => h.HitPoints >= 20)
.FirstOrDefault().

2. Single(): does the same thing as First(), including a SingleOrDefault() option, how-
ever these methods also throw an exception if the sequence has more than one element.
You should use Single if your program would be in error if a prior LINQ call resulted in
more than one value, such as finding a particular name among a sequence of heroes whose
names are supposed to be unique, or finding the one square on a chess board that contains
black’s king piece. Either of these would be in error if the Where clause identifying the de-
sired values returned more than one value, and Single enforces that condition better than

18

6.7. OTHER FUN OPERATIONS CHAPTER 6. LINQ

First.

Both Single and First have an overload taking a predicate function (Func<T, bool>) that re-
turns the first element of the sequence that satisfies the predicate. This single method call can
replace any situation in which a Where is followed by a First/Single, such as the example
heroes.Where(h => h.HitPoints >= 20).FirstOrDefault(). This option simplifies the calls
to heroes.FirstOrDefault(h => h.HitPoints >= 20), and can be directly read as “return the
first hero with at least 20 hit points”, rather than “filter heroes to only those with at least 20 hit
points, then return the first of them”.

Sorting sequences

The OrderBy() method allows us to sort an enumeration by selecting a key to represent each
data element, and then sorting by the natural (ascending) ordering of that key. Key types must
implement the IComparable interface. For example, we can use OrderBy to sort our sequence
of Hero objects by their names: heroes.OrderBy(h => h.Name). The resulting sequence will
contain the same heroes as in the original sequence, but ordered in increasing alphabetical order
by their Name property.

It’s important to note that OrderBy does not sort the original sequence passed to it; a new se-
quence is produced in the order requested, using a stabld’| quicksort to perform the ordering.

Two small things to remember about ordering:

+ ThenBy() can be used to sort a sequence on an additional key, after first sorting by the key
specified in a preceding OrderBy (). For example, heroes.OrderBy(h => h.Level).ThenBy(h
=> h.Name) sorts a sequence of heroes in increasing order by level, and for any two or more
heroes with the same level, those are sorted among themselves by name.

+ OrderByDescending() can be used to sort a sequence in descending order, and its equivalent
ThenByDescending can add a descending secondary sort key.

Selecting subsequences

We can combine the Skip() and Take () methods to extract subsequences from an existing TEnumerable<T>:

« Skip(int n): given a sequence of values, skip the first n elements of the sequence, and
return a new IEnumerable<T> consisting of the remaining elements from the original se-
quence.

« Take(int n): given a sequence of values, return a new IEnumerable<T> that only contains
up to the first n elements of the original sequence.

SIf two keys are equal, then whichever key was before the other in the original sequence will still be before the
other after the sort is complete.

19

6.8. EXERCISES CHAPTER 6. LINQ

Together, we can implement the rough equivalent of a “substring” operation on general IEnumerable
sequences: someSequence.Skip(4).Take(3) is equivalent to calling Substring(4, 3) onastring
value.

Discussion

In fact, the String class itself implements IEnumerable<char>, so any LINQ method can be
called on string variables to access individual characters of the string. The LINQ query
“Phytophthora”.Skip(3).Take(5) returns “topht”, the same result as calling the String
method “Phytophthora”.Substring(3, 5). As with our discussion about Aggregate() and
Count (), there’s no real reason to do this... it’s just a trick to show off in front of your friends.

What if you don’t know exactly how many elements to skip or take? SkipWhile and TakeWhile
to the rescue!

+ SkipWhile(Func<T, bool> pred): given a predicate function, skip elements of the se-
quence as long as the elements satisfy the predicate. Returns a new IEnumerable<T> con-
sisting of the first element that does not satisfy the predicate, and all elements that follow.

o TakeWhile(Func<T, bool> pred): returns a new IEnumerable<T> that contains all ele-
ments up to but not including the first element in the sequence that does not satisfy the
predicate.

6.8 Exercises

LINQ is a powerful tool, but it takes some experience to recognize which LINQ functions to use,
and in which order, to solve a particular problem. The following exercises should help you rec-
ognize situations where LINQ can help you write shorter code with greater clarity. One solution
is worked for you. In these exercises, suppose we have a class called Film representing a motion
picture film, (partially) implemented like this:

class Film {
public string Title {get;}
public string ProductionCompany {get;}
public double Budget {get;}
public double Earnings {get;}
public int LengthInMinutes {get;}
public int YearOfRelease {get;}

}

and a variable TEnumerable<Film> films initialized to some sequence of Film objects. For each
of the following questions, first decide the type of the value you are being asked to produce, then
write the required C# expression(s).

20

6.8. EXERCISES CHAPTER 6. LINQ

1. Create a sequence of titles for all films that were produced by Pixar Animation Studios.

Answer

The result should be IEnumerable<string>.

films.Where(f => f.ProductionCompany == “Pixar Animation Studios”).Select(f =>
f.Title);

2. Create a sequence of the 5 highest-earning films.

3. Find the average budget of films produced by Lucasfilm Ltd. (Multiple statements may be
required.)

4. Determine the title of the film that has the highest profit-per-minute-of-length ratio. (Profit:
the difference between earnings and budget.)

5. Reorder the films by the year of release in ascending order. Calculate the total earnings of
only the films including and following the first film in the reordered sequence that is less
than 120 minutes in length.

The PartI folder of the book’s source code (https://github.com/nealterrell/checkmate-source)
has a C# project called LingExercises. In the Program. cs file of that project, you will find a vari-
able films that you can use to test your answers, and compare them to the correct solutions given

in the source code.

21

https://github.com/nealterrell/checkmate-source

Part 11

Implementing Board Games

22

Chapter 7:

Board Game Design

And so we begin our second goal of the book: the development of a sophisticated implementation
of chess.

That goal is actually much more broad: as hinted in the our ultimate plan is the
development of an application that plays a wide range of arbitrary board games. To start towards
our goal, we’ll begin with a design exercise to help identify behaviors and traits of board games
that need to be modeled in our software. We’ll apply principles from object-oriented program-
ming to design a flexible framework for representing board games, and then build an application
that consumes our framework and allows a user to play any board game that plugs into the frame-
work using a command-line interface. We’ll introduce several software design techniques that
will make our framework easy to implement and work with, and other scattered lessons about
NET, LINQ, and class design will strengthen our C# programming skills.

We won'’t design any specific games in this chapter, but the lessons and code developed now will
aid us when we program Othello in Chapter ?? and chess in Chapter ??.

Since this is the first chapter of Part[[} it may help to review the Problem, Design, Solution section
of the Introduction on pageiv which will remind you of the change in book format starting with
this chapter.

7.1 Problem

We want to build a console application for playing any arbitrary two-person board game. We
have in mind, in particular, the games Othello, chess, checkers, tic-tac-toe, connect four, and
mancala, knowing from personal experience that these games all fit into a particular design.
The user will select a game from a list of implemented options, and will then play the game
by typing commands into the console. The commands will include applying a move, undoing
a move, showing the history of moves applied to the game, and indicating who is winning the
game.

We want our application to be agnostic to the exact game being played. Our main game loop,
which will ask the user what command to perform and then apply that command, should not
have any knowledge of specific game types. We do not want to see logic like "if the user chose
to play Othello, then ask where they want to place a piece; else if the user is playing chess, ask
them to select a piece and then an ending location; else..." That will allow us to develop new game
types in the future and seamlessly plug them into our application.

23

7.2. DESIGN CHAPTER 7. BOARD GAME DESIGN

The games themselves will need to be programmed. With an eye toward the future, we want our
game logic to be independent of the presentation of the game; we will want to use the game logic
code from our console application to drive a graphical user interface of the same game. Our game
implementations should not assume that we are using a console for input, or that they are being
printed as text output.

Also considering the future, we want our game framework to support an artificial-intelligence
opponent. An Al will need to query certain information about game boards in order to make op-
timal play decisions, so we will be sure to make that information available through the interfaces
we design.

7.2 Design

Application framework

How do we build an application to play board games that doesn’t care what exact game is being
played? By programming only to an interface. For now, we don’t literally mean the C# interface
keyword... rather, we mean the publicly-known capabilities of some “thing” we are modeling. The
interface of a “list” indicates that it can add, remove, and retrieve items at specific indexes; the
interface of an automobile says that we can turn the engine on/off, engage the engine, and engage
the breaks. Our first job is to design the interfaces necessary for our board game application.

Let’s start by designing an interface that identifies a set of operations that any board game can
perform. These operations should allow a game-agnostic application to "drive" any game that
implements the interface... as long as we can identify those operations.

Let’s picture the least complex game we have in mind: tic-tac-toe. A simple tic-tac-toe application
would probably look something like this:

1. Create a representation of a tic-tac-toe board.

2. Repeatedly:
(a) Display the tic-tac-toe board to the user, and identify whose turn it is.
(b) Ask the user to select one of the nine squares to place a piece on.
(c) Verify that the selected square is empty, and ask again if it is not.
(d) Place the current player’s piece on the selected square, and update the current player.
(e) Loop as long as the game is not over.

Now imagine playing Othello in a similar application... what changes?

1. Create a representation of an Othello board.

2. Repeatedly:
(a) Display the Othello board to the user, and identify whose turn it is.

24

7.2. DESIGN CHAPTER 7. BOARD GAME DESIGN

(b) Ask the user to select one of the sixty-four squares to place a piece on.

(c) Verify that the selected square is a valid move for the current player, and ask again
if it is not.

(d) Place the current player’s piece on the selected square, flip enemy pieces, and update
the current player.

(e) Loop as long as the game is not over.

Not much has changed! Indeed, we can abstract this sequence of operations into a game-agnostic
application, by noticing that every board game application we have in mind follows a general
pattern:

1. Create a representation of the game board.

2. Repeatedly:
(a) Display the game board to the user, and identify whose turn it is.
(b) Ask the user to select one of the possible moves for the current board
(c) Verify that the selected move is one of the possible moves, and ask again if it is not.
(d) Apply the selected move, and update the game’s state.
(e) Loop as long as the game is not over.

Or, more succinctly:

1. Create the game model.

2. Repeatedly:
(a) Display.
(b) Input.
(c) Validate.
(d) Apply.
(e) Loop.

All we have to do is design a framework for representing different board games that enable an
application built in this way.

Board game models

With an idea of what our main application will look like, we can turn our focus to representing
the state of a board game and operations on that state.

We want to separate the model of our games from their visual representations, and from the
application code itself. To do so, we will implement the model, view, controller (MVC) software

25

7.2. DESIGN CHAPTER 7. BOARD GAME DESIGN

architecture. In MVC, code is separated into different modules based on its concerns. Code for
representing the state of the application - in this case, the current state of a game’s board - goes
into the model module. Classes in the model only talk to other classes in the model, and these
classes do not concern themselves with how they will be used by others. The goal of a class in
the model is to provide a representation of a single concrete idea, as self-contained as possible,
with as few assumptions about the outside world as possible.

We will design an interface called IGameBoard (following the .NET tradition, in which interface
names are prefixed with “I”) to represent the state and rules of any arbitrary board game. Board
games are so varied in implementation that it may seem impossible to create an interface to
represent any game, but we’ve already done the hard work of identifying the operations necessary
to be a game: the operations needed to program our main application. We will require that any
game designed for our application implement the following operations:

+ Get all possible moves: a game should be able to generate a sequence of all moves that
the current player could choose for any current game board state, reflecting the rules of
the game itself. The moves can be represented in a game-specific way (Othello identifies a
move based on its row/column coordinates; connect four needs only a column to identify
a move; chess perhaps needs a starting location and ending location).

« Apply amove: given an entry from the game’s sequence of possible moves, a game should
be able to update its own internal state to reflect the application of that move, in a game-
specific way.

« Undo a move: with an eye towards an artificial intelligence opponent in the future, games
should be able to undo the last move applied to the board, restoring the game to whatever
state it was in prior to the application of that move.

+ Identify a history of applied moves: a game should keep track of the order that moves
were applied to it, to allow a user to know how a game played out from the beginning.

+ Identify the current player: a game should be able to report whose turn it currently is.

+ Indicate when the game is done: a game should know when it has completed due to the
actions of the players, in a game-specific way.

+ Indicate the advantaged player: a game should be able to indicate which player is cur-
rently "ahead" in the game, and report that advantage as a relative value in a game-specific
way.

Any game we plan to implement will need a model class that implements IGameBoard. The class
will declare any members needed to represent the specific game, in a way that is compatible with
the IGameBoard operations.

Game moves

Game boards have to report possible moves and accept moves to be applied... but what is a
“move”? We can identify four different ways in which the abstract idea of a move shows up in

26

7.2. DESIGN CHAPTER 7. BOARD GAME DESIGN

our plans so far:
1. A user must input a move to apply during the main game loop.
2. The main loop must validate a move, making sure it is one of the board’s possible moves.
3. A board must accept a move to apply, assuming it is valid.
4. A board must remember an applied move in its move history.
A fifth requirement will support our long-term plans for our main application:
5. A move in the move history should remember which player applied the move.

Those requirements specify many ways in which moves are used, but really only one behavior:
moves must be able to compare themselves for equality, so that a controller can ensure that a
selected move is equal to one of a board’s possible moves. We also note only one trait: a move
should know which player applied the move.

Views and output

The view class(es) for a particular game will be separated from its model logic. Views have to
be designed to work with a particular output medium, and so this module will be designed with
console input and output in mind. In general, anything to do with a game’s representation in a
console window, or with parsing textual representations of game components, belongs in a view
class.

The view for a game is concerned with two primary tasks: printing a text representation of a
game state to a given output stream, and parsing text entered by a user to represent a move for
a game. Each game will implement its own view class that is capable of these two tasks, and the
controller will use an instance of a view class to perform the Display and part of the Input steps
from the abstract game loop earlier on page

Controller

The controller portion of an MVC application "drives" the program by initializing the model,
generating output with the view, and then gathering input from the user with which to update
the model. Our controller module will consist of a single class with a Main method that acts as
the application’s entry point. The controller will implement the abstract "play a game" loop from
the Application framework section on page

Miscellaneous
We observe that most of the games we have in mind use square game boards with positions that

can be identified using row/column coordinates. Rather than write dozens of methods that pass
pairs of int parameters to identify positions, we’ll encapsulate the idea into a single type and use

27

7.3. IMPLEMENTATION CHAPTER 7. BOARD GAME DESIGN

it when appropriate. We’ll build the BoardPosition class as an immutable value type (struct),
checking to make sure we follow the guidelines we developed on page ?? regarding value vs.
reference types:

1. BoardPosition logically represents a single value, similar to primitive types. (It is a single
position on a game board.)

2. Only 8 bytes of member state is necessary (two 4-byte integers), making stack allocation
viable.

3. It will be immutable, with operations for creating new BoardPositions based on existing
values.

4. Tt will not have to be boxed frequently. We cannot see a reason to ever box a BoardPosition.

’Grow an avocado tree at home!” shouts the Internet. With five simple steps, we are assured,
we can grow our own avocado tree straight from the seeds we so callously throw away. Just
cut a small slice from the bottom, stick a pair of toothpicks into the sides, and suspend over
a cup of water until roots grow. Holy guacamole!

Go ahead and try for yourself. I'll check back with you in ten years. If you're lucky, your
tree might be growing fruit by then. But you probably won’t like them. Like all fruit trees,
avocado trees are not true to seed: the plant that grows from a seed of a parent won'’t be the
same as the parent. Trees from seed usually have poor quality fruits, or don’t bear fruit at all!
You’ll have to put aside your dreams of swimming in Hass for now... there are explanations
and solutions for this genetic behavior, but all in good time.

7.3 Implementation

Projects and assemblies

We’ll start with a Visual Studio Blank Solution, which will give us greater control over our phys-
ical project organization than if we made a C# project directly. The name of a Solution does not
affect any of the code that gets generated, but we will follow the naming schemes we outlined in
the Design section. (See Figure[7.1})

This will be a multi-project solution, and we’ll start by organizing the projects into src (for source
code) and test (for unit tests) Solution Folders. Solution Folders don’t automatically map to file
system directories, so we’ll have to set the path of each project we create by hand, but will give
us a little more organization within Visual Studio. (Figure|[7.2])

28

7.3. IMPLEMENTATION CHAPTER 7. BOARD GAME DESIGN

Mew Project ? X

MET Framework 4.5.2 = Sort by: Default

 nstelied bdlj Blank Solution Visual Studio Solutions Type: Visual Studio Solutions

4 Templates - Create an empty solution containing no
b Visual C# ojects

sual Basic

sual C++

zure Data Lake
Script
TypeScript
Other Project Types

Visual Studio Solutions

b Online
Mame: Lethargic.BoardGames
Location: chusersinealdocume sual studio

Solution name:

¢ Solution E
Calculate C Metrics
Add

Solution te urce Control...

Open Folder in File Explorer i \ EM... Ctrl+Shift+ A

Existing Iltem... Shift+Alt+ A

Enable Lightweight Solution Load

MNew Solution Folder

Properties Alt+Enter

Figure 7.2: Adding Solution Folders.

Next we’ll set up the projects we need for this chapter. Following our MVC design pattern, we’ll
need separate projects for our model classes, our view classes, and our controller classes. For each

29

7.3. IMPLEMENTATION CHAPTER 7. BOARD GAME DESIGN

we need to choose an output type and a target framework.

« Output type: in .NET, this refers to whether a project will be compiled as a .dIl assembly

with no entry point (main method), or as an application that can be executed. Generally
speaking, Class Libraries should be selected for any project that is not the entry point for an
application. We want our model and view projects to be Class Libraries, and our controller
project to be a Console Application.

"Class Library" used to be descriptive enough to get started, but in modern .NET devel-
opment we need to be a little more specific. Just look at how many project types match the
filter "C# class library" in Visual Studio (some may be missing depending on your installa-
tion choices). (See Figure[7.3])

Target framework: given the growth of the .NET ecosystem detailed in Part I, Visual Stu-
dio allows us to target specific flavors of .NET depending on our needs. We will target NET
Standard 1.0 for our model and view projects, as we anticipate the code in those projects
being platform-agnostic. (The game of chess does not change if you play on Windows vs.
Linux.) Our controller project needs to target a specific CLI implementation; we will choose

NET Core, given its cross-platform nature.

Add Mew Project

b Recent
4 |nstalled

4 Visual C#

Visual F#

b Online

Marme:

Location:

MET Framework 43.2 - Sortby: Default - = |1z
(4.3
@ WCF Service Library Visual C#
A project for creating a class library that

C# ets &
rsal Eﬁ:ﬁ! Class Library (.NET Core) Visual C# targets .NET Standard.

ssic Desktop

c#
E]:;ﬁ ! Class Library (NET Standard) Visual C#
#

C

Ej[;ﬁ ! Class Library (.NET Framewaork) Visual C#
(£.]

Eﬂi! Class Library (Portable) Visual C#
C#

Eﬁ:ﬁ ! Class Library (Universal Windows) Visual C#
C

v E]Qﬁ! Class Library (For U-50L Application) Azure Data Lake

Lethargic.BoardGames.Model

chusersineal\documentsivisual studie 2017\ProjectstLethargic.BoardGameshsre - Browse...

Figure 7.3: Adding Solution Folders.

Following the naming guidelines set earlier, we will create two Class Library (.NET Standard)
projects named Lethargic.BoardGames.Model and Lethargic.BoardGames.View. After that, we
add a Console App (.NET Core) project named Lethargic.BoardGames.ConsoleApp.

30

7.3. IMPLEMENTATION CHAPTER 7. BOARD GAME DESIGN

Warning

Be careful to add \src to the Location at the bottom of the Add New Project windows, and to
create the projects in the first place by right-clicking the src Solution Folder in the Solution
Explorer window. Both are needed for the projects to end up in the physical \src file system
folder and the logical src Solution Folder.

By default, Visual Studio will initialize our .NET Standard projects to use the highest installed
version. Newer versions of .NET Standard add more APIs (classes and methods) to the standard,
giving developers a greater range of capabilities they can use when targeting NET Standard... but
we don’t need those capabilities. Our code is simple enough that NET Standard 1.0 will suffice,
and so we will change it. Right-click on the two Class Library projects in the Solution Explorer
and go to Properties. In the Application tab, change the Target framework to .NETStandard 1.0.

(Figure[7.4])

Application
" "
Build
Build Events Assembly name: Default namespace: ~
Package |Lethargic.BnardGames.Mndel | |Lethargic.BDardGames.ModeI
Debug Target framework: Output type:
Signing .METStandard 1.0 ~ | | Class Library ~
Resources Startup object:
(Mot set) = "]
£ >
Figure 7.4: Changing to .NET Standard 1.0.
Tip

When choosing a version of .NET Standard, choose the lowest-numbered standard that con-
tains all the APIs your code needs. That will maximize the number of systems your code is
compatible with.

Finally, our projects need to reference each other so that code defined in the model can be used
in the view, and both the view and model can be used in the controller. We right-click on Depen-
dencies under our Lethargic.BoardGames.View project in the Solution Explorer, then select Add
Reference, and check Lethargic.BoardGames.Model in the dialog that appears. We repeat this for
the Lethargic.BoardGames.ConsoleApp project, adding both the .Model and .View projects as
references.

At the end of the entire Part III, we will have a Solution layout like this:

31

7.3. IMPLEMENTATION CHAPTER 7. BOARD GAME DESIGN

w1 Solution 'Lethargic.BoardGames' (9 projects)
4 fml src

p Lethargic.BoardGames.. o

p Lethargic.BoardGames.Chess.View

b Lethargic.BoardGames.ConsoleApp
P Lethargic.BoardGames.Model
[
[
[:

Lethargic.BoardGa
Lethargic.BoardGa
y Lethargic.BoardGames.View
4] test
P Lethargic.BoardGa
P Lethargic.BoardGa

Figure 7.5: The Visual Studio projects you will have by the end of Part II.

For now, you will only have the three projects we just created.

Implementing IGameMove

Remember how we only identified one behavior and one trait for game move objects? That
behavior (testing for equality) and trait (indicating a player) leads us to a very simple interface
that all move types must implement:

interface IGameMove : IEquatable<IGameMove> {
int Player { get; }
}

This interface will serve as the base type for any type that represents a move on a game board,
with each game type that we implement creating its own IGameMove-derived type. It requires only
a single method: bool Equals(IGameMove other), for comparing two move objects for equality.
Any board operation that manipulates “moves” will accept or return values that implement this
interface.

The Player property will use the semantics defined for the CurrentPlayer property of IGameBoard,
explained on page [34] This property will only be defined for moves that have been applied to a
board, and will remember the number of the player who applied the move.

Implementing IGameBoard

In contrast to move objects, we noted many behaviors and traits that all game board models
should implement (page[25). We will translate those to C# methods and properties of the IGameBoard
class:

interface IGameBoard {
IEnumerable<IGameMove> GetPossibleMoves();
void ApplyMove(IGameMove m);

32

7.3. IMPLEMENTATION CHAPTER 7. BOARD GAME DESIGN

void UndoLastMove();

IReadOnlyList<IGameMove> MoveHistory { get; }
int CurrentPlayer { get; }
bool IsFinished { get; }
GameAdvantage CurrentAdvantage { get; }
}

Any class that represents the state of a game’s board will implement this interface. Note how we
translated our English requirements for board types into this C# interface:

+ Get all possible moves: a method returning a sequence of IGameMove objects representing
the possible moves for the current board state.

« Apply a move: a method taking an IGameMove-derived value appropriate to the current
game type.

+ Undo a move: a void method requiring no other inputs.

+ Identify a history of applied moves, Identify the current player, Indicate when the
game is done, and Indicate the advantaged player: get-only properties for these board
traits.

There are many notable decisions in this design:

Properties vs. methods

Any operation that could be expensive should be a method, not a property. GetPossibleMoves
is the only method that could be a property; "a sequence of possible moves" could be seen as a
semantic "property" of a game board. However, generating a list of possible moves could be an
expensive operation for a game, and so we make it a method. The other properties feel like true
properties, and we expect they will most likely be implemented using private members that get
updated when the board state changes.

GetPossibleMoves’ return type

Internally, we expect that most games will use a list to represent the game’s possible moves, but
that information is not important to the consumers of an IGameBoard. A sequence of possible
moves will most likely be used to iterate through in its entirety: perhaps to print all possible
moves to the console, or to enumerate the moves searching for one that matches a selection
made by the user. We can’t see a strong justification for knowing more about the collection used
to represent the sequence, and so we choose IEnumerable<IGameMove> as the return type.

Discussion

Applying the lessons we learned in Chapter ??, we note that this return type on a method
indicates that the returned collection is a temporary value that is not tied to a game’s chang-

33

7.3. IMPLEMENTATION CHAPTER 7. BOARD GAME DESIGN

ing state. We will allow a consumer to get possible moves for a game, then apply a move to
the game, and not expect the previously-collected sequence of possible moves to magically
update.

ApplyMove takes an IGameMove

Note that ApplyMove takes the base interface IGameMove as a parameter. In theory, this allows a
misinformed or malicious user to pass any move type to any board type’s ApplyMove. An Othello
board can’t be expected to make sense of a chess board’s move, so this operation clearly makes
no semantic sense and would be in violation of the interface. Still, good defensive programming
will require us to validate that any IGameMove passed to an IGameBoard instance be verified to be
of the correct expected move type.

In addition, we make it part of ApplyMove’s contract that the move passed as a parameter must
be an object that was returned as part of a GetPossibleMoves enumeration.

Using IReadOnlyList<T>

We recognize that the history of moves applied to a board should be represented using a list, as
the order that moves were applied to a board is an important fact that should be exposed through
the interface. But we don’t want to allow consumers of an IGameBoard to add or remove game
moves to/from the history list, which would otherwise be allowed if we exposed the history as
an IList. TReadOnlyList<T> allows retrieval of applied moves based on index, but not adding or
removing moves.

Representing the current player

Although all the games we have in mind are two-player games, we don’t want to enforce that as
a requirement in the interface. If we did want to do this, we’d represent the current player as an
enum with only two possible values. Without that option, we’ll stick to an integer, and expect
games to report players using the positive whole numbers, e.g., 1,2,.... Using a 4-byte int might
seem like overkill, but it gives flexibility, and games can use a smaller type if they want, letting
NET coerce their smaller member to an int for the property’s return value.

Representing the advantage

The CurrentAdvantage property has a return type of GameAdvantage, which is a type we have not
seen. This type will simply bundle a player number with an integer representing their "advan-
tage". Each game will define what an "advantage" is: in Othello, advantage will be the difference
in the number of pieces each player controls, whereas tic-tac-toe might not define advantage at
all. We decide to use a class here to allow for games that have more than 2 players; otherwise, an
integer value might suffice, with positive indicating player 1’s advantage and negative indicating
player 2’s.

34

7.3. IMPLEMENTATION CHAPTER 7. BOARD GAME DESIGN

Indicating the winner

If IsFinished is true, the game needs to also report which player won the game. That will be
done through the CurrentAdvantage property, whose value will be interpreted as the winner of
the game if and only if IsFinished is true; otherwise, it indicates who is "winning".

Implementing IConsoleView

The IConsoleView interface defines the capabilities of a class in the view module of our console
application. IConsoleView objects are responsible for printing a corresponding IGameBoard to a
text output stream, and for parsing a string representation of an IGameMove to be used with a
game board.

interface IConsoleView {
string BoardToString(IGameBoard board);
string MoveToString(IGameMove move);
IGameMove ParseMove(string moveText);
string PlayerToString(int player);

BoardToString

BoardToString takes an IGameBoard as a parameter and returns a string representation of that
board, suitable for printing to a text stream writer that is not assumed to be standard output.
View classes can thus be used to "print" a board to a file, a network connection, or any other text
output stream.

As noted in the discussion of ApplyMove’s parameter, in theory an IConsoleView could be asked
to print a model from another game. We consider this a semantic error that implementations
should guard against.

MoveToString

MoveToString takes a move object created by a model of the same game and returns a string to
represent that move in textual output.

Why not move BoardToString and MoveToString to the built-in ToString() methods of model
classes? First, to clearly separate concerns: models have no care for how they are represented,
and including a ToString designed for console output would violate that principle. Second, this
separation allows us to implement ToString in model classes for a different purpose: to aid in de-
bugging, as many debuggers will use an object’s ToString output to give an at-a-glance summary
of an object’s state.

35

7.3. IMPLEMENTATION CHAPTER 7. BOARD GAME DESIGN

ParseMove

ParseMove takes a string representation of a move and constructs a model object matching that
representation. In general, calling ParseMove on a string created by MoveToString should produce
an IGameMove that is equivalent to the original object sent to MoveToString.

PlayerToString

Finally, each board type uses different labels for its players: "black" and "white" fit for Othello
and chess, but tic-tac-toe uses "X" and "O", connect four is usually "Blue" and "Red", etc. An
IConsoleView’s last responsibility is producing a string representation for a given player value.

Main application

Although our Problem this chapter suggested a robust main with many different commands (ap-
ply a move, undo a move, show the history, etc.), we’ll start simple: a Main method in a NET Core
application that performs our abstract game loop.

public static void Main(string[] args) {
IGameBoard board = ...; // construct some IGameBoard type
IConsoleView view = ...; // construct corresponding IConsoleView

while (!board.IsFinished) {
// Print the board to the console.
Console.WriteLine(view.BoardToString(board));

// Print the possible moves.
Console.WriteLine("Possible moves:");
IEnumerable<IGameMove> possMoves = board.GetPossibleMoves();

Console.WritelLine(string.Join(",",
possMoves.Select(view.MoveToString)));

// Print the current player and input their move.

Console.WriteLine("It is {0}’s turn.",
view.PlayerToString(board.CurrentPlayer));

Console.WriteLine("Enter a move: ");

string input = Console.ReadLine();

// Parse the move and make sure there is an equivalent possible move.
IGameMove toApply = view.ParseMove(input);
IGameMove foundMove = possMoves.FirstOrDefault(toApply.Equals);
if (foundMove == null) {
Console.WritelLine("Sorry, that move is invalid.");
}

else {

36

7.3. IMPLEMENTATION CHAPTER 7. BOARD GAME DESIGN

}

}

board.ApplyMove (foundMove) ;

A few lines might need some explanation:

// construct some IGameBoard type: we haven’t programmed a concrete game
implementation yet, so we can’t actually construct a game to play. Once we do, we can
finish these two lines to construct the appropriate IGameBoard- and IConsoleView-derived
classes for our target game. Later we’ll discuss ways of discovering all game types auto-
matically.

string.Join: this method takes a string separator and an enumerable of objects, and re-
turns a single string by concatenating all the objects in the enumerable together, with one
copy of the separator between each pair of adjacent objects. If the objects are not already
strings, their ToString() method will be called. For example,

string.Join("/", new string[] {"leanpub.com", "checkmate-csharp", "read"})

returns the string "leanpub.com/checkmate-csharp/read".

possMoves. Select(view.MoveToString): this LINQ call takes a sequence of possible moves
(of unknown game type), and calls the MoveToString () method of the game’s IConsoleView
to convert each into a string for printing. The new sequence of strings is then Joined with
commas.

possMoves. SingleOrDefault(toApply.Equals): another LINQ call, this finds the first en-
try in possMoves that is equivalent to the move entered by the user. Remember that the
IGameMove interface requires overloading bool Equals(IGameMove other) to check for
two move objects being equivalent. Note that we are not calling toApply.Equals(); we
are passing a reference to the Equals method of IGameMove when bound to the specific
object instance referred to by toApply.

Discussion

This LINQ call demonstrates two techniques from Chapter [6] We choose SingleOrDefault
because a list of possible moves should probably not contain two different move objects that
are both equal to the user’s input; that would indicate an implementation error, and the
exception that SingleOrDefault throws would indicate such to the programmer. The ex-
pression toApply.Equals is an example of taking a delegate to a non-static method of an
object, and allows us to pass a one-argument predicate function to SingleOrDefault that is
bound specifically to the object the user has chosen to apply.

37

7.3. IMPLEMENTATION CHAPTER 7. BOARD GAME DESIGN

Miscellaneous

BoardPosition
Our implementation of a board position value type:

public struct BoardPosition : IEquatable<BoardPosition> {
public int Row { get; private set; }
public int Col { get; private set; }

public BoardPosition(int row, int col) {
Row = row;
Col = col;

public BoardPosition Translate(int rDelta, int cDelta) {
return new BoardPosition(Row + rDelta, Col + cDelta);

public bool Equals(BoardPosition other) {
return Row == other.Row && Col == other.Col;

Note that Row and Col are read-only properties, with no way to mutate a BoardPosition object
once it is created. This is intentional, to hide any confusion about value vs. reference semantics.

Discussion

Even experienced programmers often miss when an object is a struct. If that object has mu-
tator methods and has been passed/copied to another variable, mutating the original object
will not mutate the copied variable, because structs are copy-by-value (value semantics). By
making BoardPosition immutable, this confusion can never happen, as you can’t mutate the
original in the first place.

We implement IEquatable<BoardPosition> to inherit a strongly-typed bool Equals(BoardPosition
other) method. This allows consumers of the class to compare two BoardPosition objects using

this method, instead of the Object method bool Equals(Object other). (The Object method
requires a boxing and unboxing operation when passing a value type like BoardPosition.)

Finally, the Translate utility method will be useful later when using BoardPosition objects to
"walk" along a game board. We will often see code like:

BoardPosition p = ...; // some position we’ve already considered.
// Do something with p;

// Then move up one square, regardless of where p is.

p = p.Translate(-1, 0);

38

7.4. SUMMARY CHAPTER 7. BOARD GAME DESIGN

If the rows of a board are numbered like an array, then translating by (-1, 0) is akin to moving up
one row.

BoardDirection

Our implementation of a board direction value type is simple enough; if you need the source,
you can find it in the book source code online. Its notable properties are RowDelta and ColDelta,
giving the "X" and "Y" coordinates of the direction vector, respectively. It also owns a static prop-
erty named CardinalDirections, which is a sequence of BoardDirection objects representing
one-square movements in the eight cardinal directions.

For convenience, we will also amend the BoardPosition type with a second Translate overload,
this one taking a BoardDirection parameter:

public BoardPosition Translate(BoardDirection dir) {
return Translate(dir.RowDelta, dir.ColDelta);

}

7.4 Summary

In this chapter we laid the foundations for our board game framework by defining the interfaces
that allow us to program a sophisticated application without even knowing the specific game we
want to play. By identifying the behaviors and traits common to many board games and encoding
them into a C# interface, we will be able to implement data types for Othello, chess, and many
other games and plug those types into our game-agnostic main application. We will demonstrate
this process — implementing a game type, and integrating it into our main application — starting
in the next chapter, but we can actually preview the process now with a very simple board game:
tic-tac-tod!l

Let’s suppose we have a way of identifying moves on a tic-tac-toe board, and also a way of
representing the current state (which player has a piece at which squares) of a tic-tac-toe board.
Can you define in English a process for implementing these IGameBoard methods in the context
of tic-tac-toe?

1. GetPossibleMoves: produce a list of all valid squares where the current player can move.
2. ApplyMove: given a move representation, update the board state with the new move.

3. UndoMove: with access to the most recently-applied move, revert the game state to “before”
the move.

4. IsFinished: determine whether the game is over.

5. CurrentAdvantage: if the game is over, determine which player won.

https://en.wikipedia.org/wiki/Tic-tac-toe

39

7.4. SUMMARY CHAPTER 7. BOARD GAME DESIGN

Perhaps we lack the C# prowess to actually code your ideas, but 'm confident you were able to
imagine solutions to these operations. Congratulations! You've just designed your first board
game implementation, and after finishing Chapter ??, I'm sure you’ll be able to program tic-tac-
toe and plug it into the system we’ve created here.

C# lessons

.NET versions: when to create Class Library vs. Application projects, and when to choose
NET Standard, .NET Library, or .NET Core.

IReadOnlyList<T>: an interface for an immutable list whose elements can be accessed by

index.

string.Join: concatenating the elements of a list into a single string using a separator.

Value types: reasons to make a new value type using the struct keyword.

40

	Introduction
	I C# and the .NET Framework
	LINQ
	Extension Methods
	Delegates and Getting Funky
	Func<..., TResult>
	Action<T, ...>
	Delegates to non-static member methods

	Lambda Expressions
	Functional Programming
	Filter
	Map

	Origins of LINQ
	Core LINQ Methods
	Where
	Select
	Aggregate

	Other Fun Operations
	Counts and emptiness
	Conversion methods
	Extracting single elements
	Sorting sequences
	Selecting subsequences

	Exercises

	II Implementing Board Games
	Board Game Design
	Problem
	Design
	Application framework
	Board game models
	Game moves
	Views and output
	Controller
	Miscellaneous

	Implementation
	Projects and assemblies
	Implementing IGameMove
	Implementing IGameBoard
	Implementing IConsoleView
	Main application
	Miscellaneous

	Summary
	C# lessons

