ChatGPT:
Your Python Coach

Mastering the Essentials in 100 Prompts

Sergio Rojas-Galeano

ChatGPT: Your Python Coach

Mastering the Essentials in 100 Prompts

Sergio Rojas-Galeano, PhD.

Bogot4, Colombia

About the Author

Sergio Rojas-Galeano is an enthusiastic computer scientist with a passion for the cross-roads
between Artificial Intelligence, Machine Learning, Evolutionary Computation, Natural
Language Processing, Software Engineering, and Scientific Edition. With professional
experience from both academic and industry positions in Colombia and England, he is
deeply committed to upholding ethical standards and advancing the field of computer
science. Currently, he serves as a Full Professor at Universidad Distrital Francisco José de
Caldas (Colombia), where he has taught programming and computational intelligence for
over two decades. With a PhD in Computer Science from University College London (UCL)
in the UK (awarded in 2009), he has also been a visiting scholar at UCL (in 2022) and
Universidad de Mdlaga in Spain (in 2023). He is author or co-author of over 70 scientific
papers and has previously published the book, Models of Learning and Optimisation for Data
Scientists (LeanPub, 2019).

email: sargaleano@gmail.com

License
This document is licensed as:

©10Ie)

Permission to use this document is subject to the License; any other use is strictly prohibited.
The contents of this document are provided on an "AS IS" basis without warranties of any
kind, either express or implied. The author assumes no responsibility or liability for any
consequences arising from the use of this document, including but not limited to errors,
omissions, or inaccuracies. The reader assumes full responsibility for the application of the
concepts and techniques described in this book.

© 2023 by Sergio Rojas-Galeano.

Colophon

This document was typeset using IZTEX and the kaobook class. The author crafted the
content with the help of OpenAl’s ChatGPT content-generation system, based on his own
ideas, purpose and style. Cover design was created by the author using templates and
art available at the Canva graphic design platform. All product names, logos, brands,
trademarks and registered trademarks are property of their respective owners. All company,
product and service names, as well as celebrity, book, character, band, team or movie names
mentioned in this book are used solely for identification and educational purposes. Use of
these names, trademarks and brands does not imply endorsement.

First Edition
June 2023
Bogotd, Colombia

https://www.latex-project.org/
https://github.com/fmarotta/kaobook/
https://chat.openai.com/chat
www.canva.com

Preface

Welcome to ChatGPT: Your Python Coach. Mastering the Essentials in 100 Prompts! If you're
reading this, it means you're about to embark on an exciting journey into the world of
programming. But why Python, you may ask? Well, Python is one of the most widely
used and versatile programming languages out there, with applications ranging from web
development and data analysis to machine learning and artificial intelligence (AI).

In fact, there has been a growing interest in Al and its applications in recent years, including
the development of language models like ChatGPT. While there are valid concerns regarding
the ethical implications, data biases, and potential for generating fake content, it is worth
noting that in the realm of programming, these concerns can be somewhat mitigated as the
content generated by ChatGPT primarily consists of code, which can be easily evaluated
for its validity and appropriateness by simply running it. This provides an advantage in
minimising the risks associated with hallucination or inaccurate information, as the output
can be verified through practical execution. As such, language models like ChatGPT have
become valuable tools for programming tasks, offering developers enhanced assistance in
their coding endeavours.

This guide has been carefully crafted to help you navigate the basic concepts of Python
programming with ease, with ChatGPT as your trusty mentor. ChatGPT is a powerful
language model designed to assist you with any questions or doubts you may have while
learning Python. It will provide you with examples, explanations, and feedback, making
your learning experience interactive and engaging.

In this guide, you'll learn the fundamentals of Python programming, including variables,
data types, operators, flow control structures such as conditionals and loops, containers
such as lists and dictionaries and modularisation and reutilisation concepts. You'll also get
to work on fun and exciting challenges that will put your newfound skills to the test.

But this guide is more than just a collection of exercises and examples. It’s an invitation to
explore the power of programming and its potential impact on our lives, and to see how Al
and language models like ChatGPT are expected to leverage the abilities and productivity
of programmers to create powerful applications for a promising future. As you delve
deeper into the world of Python, you'll witness how programming can be used to solve
real-world problems, automate tedious tasks, and innovate products and services.

The majority of the content in this book, including this preface, was initially generated with
the assistance of ChatGPT. However, it is important to note that the draft material served
as a foundation which I then extensively revised, adjusted, and enriched. This process was
driven by my educational expertise, with the goal of creating didactic and informative
content for readers. While ChatGPT played a role in generating the initial material, the
final content has been carefully curated and tailored to ensure its educational value and
correctness.

To promote transparency in this innovative approach to Al-assisted writing, I have deliber-
ately chosen to include a comprehensive list of the 100 prompts I conceived and utilised to
teed ChatGPT, ensuring thorough coverage of the intended thematic scope of this guide.
This list will be incorporated at the end of the book for easy reference. Furthermore, this
List of Prompts may empower readers to reproduce a similar yet personalised version of the
book that aligns with their individual preferences and requirements.

Besides, I will utilise endnotes to reference each prompt in its corresponding position on
the list whenever it is used in the text. For instance, the first prompt employed to generate
the initial draft of this preface is referred next '.

Lastly, I've created a companion repository that houses a collection of Jupyter Notebooks
that contain the Python code examples from the book, thoughtfully organised by chapters
for convenient browsing and exploration:

Link not available in sample book

Moreover, starting from Chapter 4, I've added an exciting feature. For the more engaging
code examples, I've included links to the PythonTutor. com website. These links allow you
to visualise the step-by-step execution of the code, dynamically observing the program’s
memory state. Look for these links at the bottom of the code listings and output boxes. It’s
a fantastic way to enhance your understanding and bring the code to life!

So, if you are eager to learn programming and start creating programs with Python and
ChatGPT, I hope you find this guide useful and enjoyable to read.

Sergio Rojas-Galeano
Bogotd, June 23, 2023

PythonTutor.com

Contents

Preface v
Contents vii
Introduction 3
Is this the right book foryou? 3
AboutPython 3
Programmingcycle 4
Thetools 5
UsingColab e 6
Using PythonTutor 8
ChatGPT as a programming coach 10
Using ChatGPT 1
ChatGPT prompt template 14
1 Know your Basics 15
11 Hello,World! e 15
1.2 Strings and string formatting o oo Lo 17
1.3 Hands-ontime! 22
2 Data Building Blocks 27
21 Datatypes e 27
2.2 BasicInput/Output 0 L. 30
23 Acodingbuddy o o 32
2.4 Hands-ontime! 36
3 The Operations Room 39
31 Arithmeticoperators 39
3.2 Comparisonoperators L Lo 41
3.3 Logicaloperators. L o 43
3.4 Bitwiseoperators 44
3.5 Assignmentoperators oo 48
3.6 Identityoperators o o 49
3.7 Memberships operators L o L L 51
3.8 Exponentiationoperator L. 52
3.9 Advanced mathoperators. L. 53
310 Hands-ontime! 55
4 The Control Tower 59

41 If/Elsestatements 59

4.2 Match-casestatements. e

43 Forloopstatements L.
44 Whileloopstatements o oL
4.5 Nested control structures
4.6 Hands-ontime! e

5 The Containers Zone

51 Lists e e e e e e e e
52 Tuples e
5.3 Sets e e e
54 Strings.
55 Dictionaries. e e e e e e e
5.6 Hands-ontime! e

6 Modular Affairs

6.1 Modularisation and Reusability

6.2 Functions e

6.3 Classesand Objects,

6.4 Hands-ontime!
7 Finale

71 DiggingFurther

7.2 SuggestedReadings

List of the 100 prompts

64
66
69
74
81

91
91
99
103
107
113
126

133
133
136
143
153

161
161
167

169

Introduction

Is this the right book for you?

This book is designed to help newcomers like you learn the basics of
programming with ease, specifically in the Python language, one of the
most versatile and widely used programming languages out there.

But this book is more than just a typical programming guide. It’s like
having a dedicated coach by your side, guiding you through the learning
journey with examples, explanations, and feedback. And that coach
happens to be an Al language model - ChatGPT. With ChatGPT as your
guide, you'll have access to a powerful tool that will help you understand
the essential programming concepts. You will receive real-time feedback
that will help you learn faster and more effectively, ultimately helping

you to become a proficient programmer.

This book serves as an introductory guide to fundamental concepts
in Python, including algorithms, flow control structures, containers,
and modularisation. Mastering these basics will provide you with a
solid foundation for tackling more advanced topics in future volumes.
So, embrace these fundamental concepts and gear up for the thrilling
challenges that await you. In the meantime, this chapter introduces the
tools that will be used throughout the book. If you are already familiar
with these tools and want to dive straight into coding, feel free to skip
this chapter and jump to Chapter 1.

About Python

Python is a programming language that’s as easy as pie — or rather, as
easy as writing down a recipe for your favourite dessert! It was created
in the late 1980s by a Dutch programmer named Guido van Rossum,
who named it after the Monty Python comedy troupe.’

Today, Python is used by everyone from NASA to Instagram to build
everything from space rovers to photo filters. It's known for its simplicity,
readability, and versatility. In fact, it’s one of the most popular program-
ming languages in the world, and for good reason. It’s a language that’s
easy to learn but has powerful capabilities, making it ideal for beginners
and experts alike.

Chapter contents

Is this book for you?...... 3
About Python.............. 3
Programming cycle........ 4
The tools.................. 5
Using Colab............... 6
Using PythonTutor. 8
ChatGPT as a coach....... 10
Using ChatGPT........... 11
Prompt templates......... 13
Monty Python

Monty Python is a
British comedy group
known for their unique
and absurdist humour.
Their television show,
Monty Python’s Flying
Circus, aired from 1969
t01974 and gained a cult
following. They also cre-
ated several popular
films, including Monty
Python and the Holy
Grail and Life of Brian.
Their influence on com-
edy and pop culture
has been significant and
continues to be cele-
brated by fans world-
wide.

10 | INTRODUCTION

Disclosure

This book was writ-
ten with the assistance
of ChatGPT. Through-
out the book, pieces
of automatically gener-
ated content served as
a draft, which I then
reviewed, verified, ad-
justed, remixed, and
augmented until they
reached their final form.
For the sake of trans-
parency, I've also in-
cluded the prompts I
used to feed the model
to generate the drafts,
which I labelled with a
superscript number di-
rectly following the fi-
nal text fragment where
they were used. These
numbers indicate their
position in the List of
Prompts provided at the
end of the book.

ChatGPT as a programming coach

ChatGPT is a language model created by OpenAl that is designed
to communicate with humans using natural language. It is a type of
artificial intelligence that can understand and respond to text input in a
conversational way. It has been trained on a vast amount of data to be
able to understand and generate natural language, including structured
high-level computer languages, making it an excellent tool to help
students learn programming in a conversational entertaining way.!?

As a student learning programming, ChatGPT can serve as a helpful
coach. You can ask it questions about programming concepts, ask for
examples of code, or even get feedback on your own code. It can provide
explanations and clarifications on programming topics and serve as a
tool for practising coding skills.

Concretely, here are some ways ChatGPT can help you learn program-
ming:

» It can provide explanations and examples of programming con-
cepts and syntax, helping you to better understand them.

» It can answer coding questions, such as why a particular syntax
rule is needed or how to carry out a specific task.

» It can help you debug your code by suggesting possible solutions
and explaining why certain errors occur.

» It can assist you in learning how to write efficient and optimised
code by providing feedback on your code’s performance.

» It can suggest resources and learning materials to help you further
your understanding of programming.

» It can help you document your code so that it is easier for other
programmers to understand or for you to remember in future
occasions.

» It can translate code between different programming languages to
create new versions of your programs.

» It can provide contextual references about the meaning, history,
or anecdotes related to the development of programming and
computer science in general.

Although ChatGPT can be a valuable tool for learning programming, it
should not be relied on as the sole source of information or feedback.
It’s important to use it responsibly, cross-check responses with other
sources, and be aware of potential inaccuracies or biases in the data used
to train this Al language model.

N [y

w

a1

Using ChatGPT | 13

<2/2 m Is it true that you know how to program? Or is it just that you learned to code... what are
your thoughts on this? And show me your skills with a little example

As an Al language model, | was programmed by a team of skilled engineers and data
scientists at OpenAl. | was not "taught" to code in the traditional sense, but rather | was
trained on a large corpus of text, including source code, and learned to generate code
based on that input.

However, | do have the ability to generate code in several programming languages,

"iliiiiﬁi.

including Python, Java, and JavaScript. Here's a simple Python example:

(n):
for i in range(1,
£fi%3-==
print(
el i%
print(

1 i%5==0:
‘S Regenerate response
print("Buzz") 9 P

Figure 10: ChatGPT chat

Free Research Preview. ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT Mar 23 Version page

In this book, I will use ChatGPT as described before. To make the
material more readable, I will format the prompts, explanatory text,
code and output of the response, using different coloured text boxes.
For the sake of illustration, I have reproduced the above screenshot in
the aforementioned formatted style:

Is it true that you know how to program? Or is it just that you learned to code... what
are your thoughts on this? And show me your skills with a little example.

As an Al language model, I was programmed by a team of skilled engineers and data
scientists at OpenAl I was not "taught" to code in the traditional sense, but rather I
was trained on a large corpus of text, including source code, and learned to generate
code based on that input. Here’s an example with its output:

def fizzbuzz(n):
for i in range(1, n+l):
if 1 % =0 and 1 % 5 == 0:

print("FizzBuzz")

Fizz

Buzz

Know your Basics

1.1 Hello, World!

Explain the concept of the "Hello, World!” program in a simple but colorful manner, without
using any code. Additionally, include a relatable anecdote to provide beginners in programming
with a warmful introduction to the topic.'*

Ah, the legendary "Hello, World!" program! This is the perfect way to kick off your journey
into programming, and it’s an experience that you'll always remember. Imagine yourself
sitting at your computer, feeling a mix of excitement and nervousness. You're about to
write your first Python program ever!

The "Hello, World!" program is the simplest program you can write, but it’s a significant
event. It’s the equivalent of a newborn baby’s first cry or a musician’s first note on a new
instrument. This program is the foundation of all programming languages, and it’s the
perfect starting point for anyone who wants to learn to code.

Now, you might be wondering, "Why on earth would I want to write a program that just
says "Hello, World!"?" Well, it’s not about the message itself, but rather about the process
of writing the program. This simple program is a great way to get familiar with a new
language, overcome the fear of starting something new, and gain the confidence to continue
learning and exploring.

But why the message "Hello World"? Who invented it? What's the meaning?'®

The origin of the "Hello, World!" program is somewhat unclear, but it is believed to have
originated from the Bell Labs in the early 1970s. The first recorded instance of the phrase
being used in a programming context was in a 1974 book about the programming language
C by Brian Kernighan and Dennis Ritchie.

As for the meaning behind the message, it is simply a way for programmers to test that
their program is functioning properly and able to display output. It’s a tradition and a rite
of passage for beginners in the programming world, signalling the start of their journey
towards becoming proficient programmers.

Well, enough with the words. Let’s dive into the code and begin the ChatGPT coaching
experience.

Ready, set, code!

16 | KNOW YOUR BASICS

Write the classic "Hello, World!” program in Python and explain it. Provide the output as
well. I will be using Colab.'®

Here’s the classic "Hello, World!" program in Python:

print("Hello, world!")

The print() function is a built-in function in Python that allows you to output text or other
data to the console, in this case the text (also known as string) "Hello, World!". The output
should look like this:

Hello, world!
To run this program in Google Colab, follow these steps:

1. Click on the "Copy code" button on ChatGPT.
2. Paste it in the first cell of your notebook in Colab.
3. Click the "play" button next to the cell or press "Shift + Enter"

Explain what a syntax error is and demonstrate 3 possible syntax errors in the "Hello, World!’
program with their respective outputs.'”

When writing a program, you need to follow the correct syntax of the programming
language. A syntax error occurs when you make a mistake in the syntax of the code, such
as missing a punctuation mark, using the wrong case for a keyword, or typing an incorrect
operator. These errors prevent the code from being interpreted correctly. Here are three
possible syntax errors that could have occurred in the "Hello, World!" program:

1. Missing Parenthesis:

print("Hello, World!"
File "<stdin>", line 1

print("Hello, World!"

SyntaxError: unexpected EOF while parsing
The error message tells us that the unexpected end of file (EOF) was encountered
while parsing the code.

2. Misspelled Keyword:

prnt("Hello, World!")
File "<stdin>", line 1
prnt("Hello, World!")

A~

NameError: name 'prnt’ is not defined

—_

N

(6]

=

a1

(o))

N

[oe}

\O

Data Building Blocks

2.1 Data types

What exactly is a program? How does it relate to data?>

A program is a set of instructions that tells a computer what to do. It is a sequence
of statements that are executed by the computer in order to accomplish a specific task.
Programs are written in a programming language, which is a set of syntax rules that define
how the instructions are to be written.

Data is any kind of information that can be stored and processed by a computer. It can be
numbers, text, images, audio, or video. Data is used by programs to perform their tasks.
For example, a program that calculates the average of a set of numbers will need to read
the numbers from a data file or ask the user to enter them.

The relationship between programs and data is that programs can be used to create, store,
retrieve, and manipulate data. They can also be used to analyse data and to generate new
information.

Here are some examples of how programs and data are related:

» A word processor uses data (text) to create documents.
» A spreadsheet uses data (numbers) to calculate values.

» A database uses data (records) to store information.

» A web browser uses data (web pages) to display information on a screen.

» A game uses data (characters, levels, etc.) to create an interactive experience.

Ok. Explain with examples and outputs how data is represented in Python. Provide examples
from comics characters to better understand the concept.>!

In Python, data is represented by assigning values to variables. These values can be of
different types, such as strings, integers, and booleans. Here are some examples:

Assigning a string to a variable
hero = "Spider-Man"
print("Character:", hero)

Assigning an integer to a variable
age = 23

print("Age:", age)

Assigning a boolean to a variable
is_villain = False

print("Is villain?", is_villain)

32 | DATA BUILDING BLOCKS

2.3 A coding buddy

ChatGPT is not only capable of suggesting coding exercises but can also solve them all by
itself! This amazing feature opens up a whole new world of exciting learning possibilities
for you! You can challenge yourself by asking ChatGPT to propose a coding problem. Once
you've solved it using your own knowledge and skills, you can compare your solution with
ChatGPT’s. This is where the real fun begins! You can get feedback from ChatGPT on the
differences between your solution and its own. You can inquire about which solution is
more efficient, or learn more about new techniques and tricks that you didn’t know before
but ChatGPT’s got covered! Just imagine how much fun you'll have with your new coding
buddy, ChatGPT!

Let’s see an example of how this works.

Hi there, ChatGPT! I'd like to practice my coding skills with an exercise that involves user
input, data type conversion, and printing output, maybe even including a menu of options.
Could you please suggest an exercise for me to work on? Once I have the statement, I'd also
appreciate it if you could show me an example of the expected output. Thanks!>

Hi, budding programmer! Let’s practice your user input, data type conversion, and printing skills
with an entertaining exercise. Write a program that asks the user for at least 5 pieces of personal
information, such as name, age, and hobbies, etc. Then, offer the user a menu of two options: "1-Short
Bio” and "2-Long Bio”. Depending on the user’s choice, your program should print either a short or
long biography. Get creative with your output and have fun! Here’s an example of the output:

Welcome to the Personal Bio Program!

Please enter your name: John

Please enter your surname: Smith

Please enter your age: 25

Please enter your favorite hobby: books
Please enter your favorite food: pizza

Please enter your favorite color: red

Menu of options:
1. Short Bio
2. Long Bio

Enter your choice (1 or 2): 1

- Short Bio ---

John, 25, is a programming student whose favourite hobby is reading books.

The Operations Room

List all of the Python operators and provide a brief description for each.*?

Here is a list of different types of Python operators and their definitions:

1.

Arithmetic operators: used for performing mathematical operations, such as addition,
subtraction, multiplication, division, etc.

. Comparison operators: used for comparing values and returning a Boolean value

(True or False), such as equal to, not equal to, greater than, less than, etc.

. Logical operators: used for combining multiple conditions and returning a Boolean

value, such as and, or, not.

. Bitwise operators: used for performing operations on individual bits of binary

numbers, such as AND, OR, XOR, etc.

. Assignment operators: used for assigning values to variables, such as =, +=, -=, *=,

/=, etc.

. Identity operators: used for comparing the memory location of two objects, such as

is, is not.

. Membership operators: used for checking if a value is present in a sequence, such as

in, not in.

. Exponentiation operator: used for raising a number to a power, represented by **.

So, let’s take a closer look at each of them.

3.1 Arithmetic operators

Explain the details of arithmetic operators in Python in a colourful tone and include a single
code example to illustrate the use of all the operators. The example should compare entertaining
statistics about Marvel vs X-men movies and box office.*>

In Python, arithmetic operators are used to perform basic mathematical operations such as
addition, subtraction, multiplication, and division. These operators are used to manipulate
numerical data types such as integers and floating-point numbers.

Here are the key arithmetic operators in Python:

» Addition: The plus sign (+) is used for addition. It adds two values together. For

example, 2 + 2 equals 4.

» Subtraction: The minus sign (-) is used for subtraction. It subtracts the second value

from the first value. For example, 5 - 2 equals 3.

The Control Tower

List all of the control structures in programming and provide a brief description for each.>

In programming, there are several control structures that allow you to control the flow of
execution in your code. These control structures can be categorized into three main types:
branching structures, repetition structures, and nested structures.

1. Branching Structures (Conditionals):

» If-Else Statement: Executes a block of code if a certain condition is true. It can
also include an optional else statement to provide an alternative block of code
to execute if the condition is false.

» Match-case Statement: Evaluates an expression and matches it against multiple
cases, executing the code block associated with the matched case.

2. Repetition Structures (Loops):

» For Loop: Executes a block of code for a specific number of iterations. It is often
used when the number of iterations is known in advance.

» While Loop: Executes a block of code repeatedly as long as a specified condition
is true. It is useful when the number of iterations is not known beforehand.

» Do-While Loop: Similar to the while loop, but it guarantees that the code block
is executed at least once before checking the condition.

3. Nested Structures:

» Nested Conditionals: Allows you to have an if-else statement within another
if-else statement. It provides more complex branching based on multiple condi-
tions.

» Nested Loops: Involves placing one loop inside another loop. This allows for
more intricate control over repetitive tasks.

These control structures give you the ability to make decisions, repeat actions, and conceive
more intricate program logic. By combining these structures effectively, you can create
powerful and flexible programs to meet various requirements.

So, let’s take a closer look at each of them.

4.1 If/Else statements

Explain everything I need to know about if/else statements in Python in a fun and creative
way, with playful examples.*°

Sure! Let’s dive into the exciting world of conditionals statements in Python.

74 | THE CONTROL TOWER

4.5 Nested control structures

What is a nested control structure and why is it useful?”°

A nested control structure is a control structure (such as an if statement, for loop, or
while loop) that is placed within another control structure. It allows for multiple levels of
branching or looping within a program.

Nested control structures are powerful tools in programming that allow for the handling
of complex logic and the execution of advanced tasks. They enable the creation of intricate
decision-making processes and iterative operations, providing flexibility and adaptability
to programs. With nested control structures, you can design code that responds to
multiple conditions, performs repetitive tasks with varying complexity, and implements
sophisticated algorithms. This dynamic approach makes programs more efficient and
capable of solving complex problems, as they can adapt to changing conditions, make
decisions based on multiple factors, and execute iterative operations at different levels of
depth.

However, it’s important to use nested control structures judiciously and maintain code
readability. As the depth of nesting increases, code can become harder to understand and
debug. Therefore, it’s crucial to strike a balance between using nested control structures to
tackle complex scenarios and keeping the code maintainable and comprehensible.

Let us now dive into nesting control structures in Python. Show me how to use nested
conditionals allowing for multiple levels of branching, nested loops including nested double
for loops, double while loops and mixed while/for or for/while loops, as well as combinations of
loops within conditionals and conditional within loops. Use examples from superheroes and
comics to be creative and playful in your explanation.”!

Sure! Let’s dive into the exciting world of superheroes to exploring the concept of nested
control structures in Python.

1. Superhero vs Supervillain. Here’s an example program that asks the user to choose a
superhero and supervillain, and then determines who beats who using two-level
nested conditionals.

In this example, the nested conditionals allow you to handle various combinations of
superhero and super-villain choices. Each nested block checks the selected superhero
and super-villain, and based on the combination, it prints a corresponding "who
beats who" message. If the chosen combination does not match any of the nested
conditionals, it displays an appropriate error message.

Let’s take a look at the code:

The Containers Zone

Explain what a container structure is, then list all of the container structures available in
Python and provide a brief description for each, using real-life analogies and a friendly tone.”®

A container structure in Python is a data structure that is capable of holding multiple values
or objects. It allows you to organise and store data in a structured manner. Each container
structure has its own unique characteristics and is suitable for different purposes.

1. Lists: Think of a shopping bag where you can put various items. It is an ordered
collection of elements that can be of different types.

2. Tuples: Imagine a sealed envelope that contains multiple pieces of information. A
tuple is similar to a list, but it is immutable, meaning it cannot be modified once
created.

3. Sets: Picture a drawer filled with unique items. A set is an unordered collection of
unique elements.

4. Strings: Consider a string as a sentence or a sequence of characters. It is an immutable
container that holds a collection of characters.

5. Dictionaries: Visualise a real-life dictionary where words and their definitions are
stored. A dictionary is a key-value pair data structure.

These container structures provide flexibility in organising and manipulating data based
on your specific needs. By choosing the right container structure, you can efficiently store
and process data in your Python programs.

So, let’s take a closer look at each of them.

5.1 Lists

Explain everything I need to know about lists in Python in a fun and creative way, using
playful examples.”

Sure! Let’s embark on a playful adventure into the world of Python lists! Imagine you are a
wizard with a magical backpack that can hold all sorts of fantastic items. In Python, lists
are just like your magical backpack, where you can keep, add, remove and retrieve items at
your convenience!

1. Creating Lists: To create a list, imagine it as your magical backpack. You can put
anything you want inside, like shiny gems, powerful potions, or enchanted scrolls.
Just use square brackets [] and separate the items with commas.

100

THE CONTAINERS ZONE

Ok. Now let’s look at some code samples to see tuples in action! This time, why not use rock
bands to illustrate the items you listed previously?%?

Sure! Let’s dive into some code examples using rock bands to illustrate the different aspects
of tuples. We'll explore each item previously mentioned in a fun and creative way.

1.

N

a1

N

w

3.

Immutable Lineup: Say you are organising a rock concert, you can use a tuple to
define the lineup of bands. Once the lineup is set, it remains fixed throughout the
concert. Let’s see an example:

lineup = ("The Beatles", "Led Zeppelin", "AC/DC", "Guns N’ Roses", "Queen")
print(lineup)

Uncommenting the line below will raise an error

lineup[0] = "Coldplay"

Once the arrangement is set using a tuple, it cannot be changed. Attempting to modify
an element of the tuple will result in an error, because tuples are immutable, just like
trying to replace a band after the concert has started.

=== Immutable Lineup ===
('The Beatles’, 'Led Zeppelin’, 'AC/DC’, "Guns N’ Roses", ’'Queen’)

. Ordered Placement: When planning a concert, you want to ensure that the bands

perform in a specific order. Tuples preserve the order of elements. Let’s see how it
looks:

lineup = ("The Beatles", "Led Zeppelin", "AC/DC", "Guns N’ Roses", "Queen")

for band in lineup:

print("Next band:", band)

In this example, the bands perform in the order defined by the tuple. The loop iterates
over the lineup, and each band is printed in the correct order.

=== Ordered Placement ===
Next band: The Beatles
Next band: Led Zeppelin
Next band: AC/DC

Next band: Guns N’ Roses

Next band: Queen

Mix and Match: Rock bands can have diverse lineups with members playing different
roles. Tuples allow you to create complex structures by combining different types of
data. Let’s see an example with the Beatles:

Modular Affairs

6.1 Modularisation and Reusability

Explain briefly the concept of modularisation and reusability, as well as why they are useful in
programming projects. Then, using real-world analogies, explain the various approaches for
implementing these notions in a friendly but neat manner.**

Reusability and modularisation are like secret tricks of the trade in software development,
especially for big and complex projects. They come with a bunch of benefits that make life
easier for programmers.

When you write reusable code, you don’t have to start from scratch every time. You can
save lots of time and effort by using existing solutions instead of reinventing the wheel.
And with modularisation, you break down your code into smaller, manageable pieces. It’s
like having puzzle pieces that fit together perfectly. This makes it easier to understand,
maintain, and fix any bugs that pop up. Plus, you can reuse those modular pieces in
different parts of your project.

So, when it comes to tackling those larger projects, embracing reusability and modularisation
is key. It helps you work smarter, collaborate seamlessly, and keeps your code shining
bright for the long run. In Python, you have a bunch of cool techniques and practices to
put these ideas into action:

1. Functions: Functions are like specialised tools in a kitchen. They encapsulate specific
tasks and can be reused across different recipes. Similarly, in programming, functions
encapsulate specific operations, promoting code reusability. By utilising functions,
programmers can write modular code that can be easily reused, making it easier to
handle larger and more complex projects.

2. Classes and Object-Oriented Programming (OOP): Classes in OOP are like spe-
cialised workers on a construction site. Each worker has a specific role and expertise.
Similarly, classes encapsulate data and behaviour into objects, promoting code reuse.
By leveraging classes and objects, programmers can create modular and scalable
code, making it easier to manage complexity in bigger projects.

3. Modules and Packages: Modules and packages are like toolboxes with labelled
compartments for different tools. They provide a way to organise and package related
code components, promoting code reusability. By using modules and packages,
programmers can easily find and reuse code functionalities, allowing for efficient
development and maintenance of larger projects.

Classes and Objects | 143

20| for friend in filtered_friends:

21 print(friend)

Example 1 demonstrates the use of a lambda function as the key parameter in the
sorted() function. The lambda function lambda x: len(x) takes a friend’s name as
input x and returns the length of the name using ten(x). This lambda function serves
as the basis for sorting the friends list by the length of their names.

Example 2 showcases the use of a lambda function as the filtering condition in the
filter() function. The lambda function lambda x: x.startswith(’H’) takes a friend’s
name as input x and returns a boolean value indicating whether the name starts with
"H’, using startswith(’H"). This lambda function is used to filter the friends list and
include only those friends whose names start with "H’".

=== Sorted Friends by Name Length ===
Ron Weasley (11)
Harry Potter (12)
Draco Malfoy (12)

Hermione Granger (16)

=== Friends with Names Starting with 'H’ ===
Harry Potter

Hermione Granger

N Visualise a step-by-step execution of this code on PythonTutor: https://tinyurl.com/3jkk8meu
Lambda functions are compact and inline functions that are useful for simple, one-line
operations. They provide a convenient way to define functions on the fly without the
need for a formal def statement.

6.3 Classes and Objects

Ok. So let’s continue with some code examples to see classes in action! Consider using classic
mouvies and characters trivia to illustrate the items you listed previously, including random
features.””

Certainly! Below are a few code examples that demonstrate the use of classes in the context
of movies trivia.

» Mighty Templates: Classes are like mighty templates for creating objects with
predefined structures. They define the overall structure and behaviour of objects.
Once you have defined a class, you can use it to create as many instances or objects
from that class as you need. Each object will have its own set of data and will behave
according to the template defined by the class.

https://tinyurl.com/3jkk8meu

168 | FINALE

The End

List of the 100 Prompts

1. "ChatGPT: Your Python Coach. Mastering the Essentials in 100 Prompts" is the title of a book I'm writing to
teach the fundamentals of Python. Provide a draft version of an engaging and thought-provoking Preface
for it. Emphasise the impact Al, and language models in particular, are having in many areas, including
programming, and how it is expected to leverage programmers’ abilities and productivity to create powerful
applications in the near future, mentioning in passing that the issues regarding fake content and hallucination
that have been detected on these language models are alleviated in the area of programming because the
generated code can be validated by simply running it. Comment also that the initial generated content has
been carefully revised and enrich based on my educational expertise.

2. Explain with a colourful tone that the purpose of this book is to initiate a newcomer to the world of
programming, in particular, to the Python language, and to help them learn the basic concepts with examples,
explanations, and feedback, just like a teacher guides a student through their learning journey. Only that here,
that teacher is ChatGPT. Emphasise the new possibilities and advantages of using modern developments in
Al to assist the learning and development process of programmers.

3. Provide a witty description of the Python programming language that is suitable for a first-year college
student. Make some notes on the language’s history and current version, speculate on its future, and provide
useful links to organisations or websites where the reader can obtain more technical information.

4. Write a short note on Monty Python.

5. Briefly describe the key differences between Python 2.x and Python 3.x versions. Highlight the latest version’s
advantages.

6. Create a scheme of the standard cycle of program development, using Latex smartdiagram package with the
circular diagram type.

7. Explain to a first-year college reader the standard cycle of program development, including the steps of
writing (coding), running, testing, and correcting (debugging) (do it with a bulleted list).

8. Clarify that Python is an interpreted computer language; explain how it differs from a compiled language
(advantages and weaknesses). Mention that there are a variety of IDEs available, but in this book, rather than
dealing with software installation hassles, I will rely on ready-to-use environments that meet the needs of
this book, so we can focus on concepts and algorithms. Jupiter Notebooks, Colaboratory, PythonTutor, and
ChatGPT will be used as tools. Make a bullet list of these tools, including a brief description, website, and the
steps required to open an account if one is required.

9. Describe in detail how to create a new Jupiter Notebook in Google Colab.
10. Explain the two types of cells in Jupyter Notebook.
11. Explain in detail how to use PythonTutor.

12. Explain to a first-year college student what ChatGPT is, how it can help students learn programming, how to
use it responsibly to achieve good learning goals, and whether there are any ethical concerns about using it
or relying too heavily on it and how to address them.

N 4

This guide has been carefully
crafted to help you navigate the
basic concepts of Python
programming with ease, with
ChatGPT as your trusty mentor.

ChatGPT is a powerful language
model designed to assist you
with any questions or doubts
you may have while learning
Python. It will provide you with
examples, explanations, and

feedback, making your learning

experience interactive and

engaging.

	ChatGPT: Your Python Coach
	Preface
	Contents
	Introduction
	Is this the right book for you?
	About Python
	Programming cycle
	The tools
	Using Colab
	Using PythonTutor
	ChatGPT as a programming coach
	Using ChatGPT
	ChatGPT prompt template

	Know your Basics
	Hello, World!

	Hello, World!
	Strings and string formatting

	Strings and string formatting
	Hands-on time!

	Hands-on time!
	Data Building Blocks
	Data types

	Data types
	Basic Input/Output

	Basic Input/Output
	A coding buddy

	A coding buddy
	Hands-on time!

	Hands-on time!
	The Operations Room
	Arithmetic operators

	Arithmetic operators
	Comparison operators

	Comparison operators
	Logical operators

	Logical operators
	Bitwise operators

	Bitwise operators
	Assignment operators

	Assignment operators
	Identity operators

	Identity operators
	Memberships operators

	Memberships operators
	Exponentiation operator

	Exponentiation operator
	Advanced math operators

	Advanced math operators
	Hands-on time!

	Hands-on time!
	The Control Tower
	If/Else statements

	If/Else statements
	Match-case statements

	Match-case statements
	For loop statements

	For loop statements
	While loop statements

	While loop statements
	Nested control structures

	Nested control structures
	Hands-on time!

	Hands-on time!
	The Containers Zone
	Lists

	Lists
	Tuples

	Tuples
	Sets

	Sets
	Strings

	Strings
	Dictionaries

	Dictionaries
	Hands-on time!

	Hands-on time!
	Modular Affairs
	Modularisation and Reusability

	Modularisation and Reusability
	Functions

	Functions
	Classes and Objects

	Classes and Objects
	Hands-on time!

	Hands-on time!
	Finale
	Digging Further

	Digging Further
	Suggested Readings

	Suggested Readings

