
�(MFY,59�
9Z�*SYWJSFITW�

IJ�5^YMTS�
%TVIRHI�PSW�*YRHEQIRXSW�IR�����4VSQTXW

8JWLNT�7TOFX�,FQJFST



Sobre el Autor
Sergio Rojas-Galeano es un científico de la computación entusiasta de la Inteligencia
Artificial, el Aprendizaje Automático, la Computación Evolutiva, el Procesamiento del
Lenguaje Natural, la Ingeniería de Software y la Edición Científica. Con experiencia
profesional tanto en posiciones académicas como industriales en Colombia e Inglaterra,
está comprometido con la investigación, el avance y la promoción de los estándares
éticos en la disciplina de la ciencia de la computación. Actualmente se desempeña como
profesor titular en la Universidad Distrital Francisco José de Caldas (Colombia), donde ha
enseñado programación e inteligencia computacional durante más de dos décadas. Con un
doctorado en Ciencias de la Computación de University College London (UCL) en el Reino
Unido (obtenido en ����), también ha sido investigador visitante en UCL (en ����) y en la
Universidad de Málaga en España (en ����). Es autor o coautor de más de �� artículos
científicos y anteriormente publicó el libro Models of Learning and Optimisation for Data
Scientists (LeanPub, ����) y la versión en inglés de este libro, ChatGPT: Your Python Tutor
(LeanPub, ����).

email: sargaleano@gmail.com

Licencia
Este documento está licenciado bajo:

El permiso para utilizar este documento está sujeto a la Licencia; cualquier otro uso está
estrictamente prohibido. El contenido de este documento se proporciona "TAL CUAL",
sin garantías de ningún tipo, ya sean expresas o implícitas. El autor no asume ninguna
responsabilidad o responsabilidad por las consecuencias derivadas del uso de este
documento, incluidos, entre otros, errores, omisiones o inexactitudes. El lector asume la
responsabilidad total de la aplicación de los conceptos y técnicas descritos en este libro.

© ���� por Sergio Rojas-Galeano.

Colofón
Este documento fue maquetado utilizando LATEX y la clase kaobook. El autor elaboró
el contenido con la ayuda del sistema de generación de contenido ChatGPT de OpenAI,
basado en sus propias ideas, propósito y estilo. El diseño de la portada fue creado
por el autor utilizando plantillas y arte disponibles en la plataforma de diseño gráfico
Canva. Todos los nombres de productos, logotipos, marcas, marcas comerciales y marcas
registradas son propiedad de sus respectivos propietarios. Todos los nombres de empresas,
productos y servicios, así como los nombres de celebridades, libros, personajes, bandas,
clubes deportivos o películas mencionados en este libro, se utilizan únicamente con fines
didácticos y de reconocimiento. El uso de estos nombres o marcas no implica respaldo
alguno.

Primera edición – v�.�
Julio de ����
Bogotá, Colombia

https://www.latex-project.org/
https://github.com/fmarotta/kaobook/
https://chat.openai.com/chat
www.canva.com


Prefacio

¡Bienvenido a ChatGPT: Tu Entrenador de Python. Aprende los Fundamentos en ��� Prompts! Si
estás leyendo esto, significa que estás a punto de embarcarte en un emocionante viaje al
mundo de la programación. Pero, ¿por qué Python, podrías preguntar? Bueno, Python
es uno de los lenguajes de programación más ampliamente utilizados y versátiles, con
aplicaciones que van desde el desarrollo web y análisis de datos hasta el aprendizaje
automático e inteligencia artificial (IA).

De hecho, en los últimos años ha habido un creciente interés en la IA y sus aplicaciones,
incluido el desarrollo de modelos de lenguaje como ChatGPT. Si bien estos modelos
admiten cuestionamientos válidos acerca de las implicaciones éticas, los sesgos de datos
y la posibilidad de generar contenido falso, vale la pena señalar que en el ámbito de la
programación, el contenido generado por ChatGPT consiste principalmente de código que
puede evaluarse fácilmente en cuanto a su validez y efectividad simplemente ejecutándolo,
con lo cuál tales riesgos se ven mitigados en cierta medida. Esto ofrece una ventaja al
aminorar los fallos asociados con alucinaciones o información inexacta, ya que la salida
se puede verificar a través de la misma máquina, cuando la interpreta. Es así que los
modelos de lenguaje como ChatGPT se han convertido en herramientas valiosas para tareas
de programación, ofreciendo a los desarrolladores una asistencia provechosa para sus
proyectos de codificación.

Esta guía ha sido cuidadosamente diseñada para ayudarte a navegar por los conceptos
básicos de la programación en Python con facilidad, usando ChatGPT como tu mentor
de confianza. ChatGPT es un potente modelo de lenguaje diseñado para ayudarte con
cualquier pregunta o duda que puedas tener mientras aprendes Python. Te proporcionará
ejemplos, explicaciones y retroalimentación, haciendo que tu experiencia de aprendizaje
sea interactiva y entretenida.

Con ella aprenderás los fundamentos de la programación en Python, incluyendo variables,
tipos de datos, operadores, estructuras de control de flujo como condicionales y bucles,
contenedores como listas y diccionarios, y conceptos de modularización y reutilización.
También enfrentarás desafíos divertidos y emocionantes que pondrán a prueba tus nuevas
habilidades.

Pero esta guía es más que una simple colección de ejemplos y ejercicios. Es una invitación
a explorar el poder de la programación y su impacto potencial en nuestras vidas, y a
comprobar cómo la IA y los modelos de lenguaje como ChatGPT pueden potenciar las
habilidades y productividad de los programadores para crear aplicaciones poderosas para
un futuro prometedor. A medida que te adentres en el mundo de Python, verás cómo
la programación se puede utilizar para resolver problemas prácticos, automatizar tareas
tediosas e innovar productos y servicios.



La mayoría del contenido de este libro, incluyendo este prólogo, fue generado inicialmente
con la ayuda de ChatGPT. Sin embargo, es importante señalar que el material inicial sirvió
como un borrador que luego revisé, ajusté y enriquecí ampliamente. Este proceso fue
mediado por mi experiencia educativa, con el objetivo de crear un contenido didáctico e
informativo para los lectores. Si bien ChatGPT desempeñó un papel en la generación del
material base, el contenido final ha sido cuidadosamente seleccionado y moldeado para
garantizar su valor educativo y correctitud.

Para promover la transparencia en este enfoque innovador de escritura académica asistida
por IA, he decidido deliberadamente incluir una lista exhaustiva de las ��� indicaciones
(o prompts como se conocen en Inglés) que concebí y utilicé para alimentar a ChatGPT,
asegurando una cobertura completa del alcance temático previsto en esta guía. Esta lista
se incorporará al final del libro para una fácil referencia. Además, esta Lista de Prompts
habilita a los lectores para que puedan eventualmente reproducir una versión similar y
personalizada del libro, que se ajuste a sus preferencias y necesidades individuales.

Además, para referir a cada prompt utilizaré citaciones numéricas correspondientes a su
posición en la lista, en cada lugar del texto donde lo utilice. Por ejemplo, el primer prompt
utilizado para generar el borrador inicial de este prólogo se cita seguidamente�.

Por último, he creado un repositorio complementario que aloja una colección de Jupyter
Notebooks que contienen los ejemplos de código de Python del libro, cuidadosamente
organizados por capítulos para una navegación y exploración conveniente:

Link no disponible en la versión de muestra

Además, a partir del Capítulo �, he agregado una característica llamativa, para los ejemplos
de código más interesantes. Se trata de enlaces al sitio web PythonTutor.com. Estos enlaces
te permiten visualizar la ejecución paso a paso del código, observando dinámicamente el
estado de la memoria del programa. Busca estos enlaces en la parte inferior de las listas de
código y los recuadros de salida. ¡Es una forma fantástica de mejorar tu comprensión y
darle vida al código!

Así que, si estás ansioso por aprender a programar y comenzar a crear programas con
Python y ChatGPT, espero que encuentres esta guía útil y placentera de leer.

Sergio Rojas-Galeano
Bogotá, Julio ��, ����

PythonTutor.com


Índice general

Prefacio vii

Índice general ix

Introducción �
¿Es este el libro adecuado para ti? . . . . . . . . . . . . . . . . . . . . . . . . . . �
Acerca de Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
El ciclo de programación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
Las herramientas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
Uso de Colab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
Uso de PythonTutor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
ChatGPT como entrenador de programación . . . . . . . . . . . . . . . . . . . . ��
Uso de ChatGPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
Plantilla de prompts para ChatGPT . . . . . . . . . . . . . . . . . . . . . . . . . . ��

� Un Vistazo a lo Esencial ��
�.� ¡Hola, mundo! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Cadenas de caracteres y formato de cadenas . . . . . . . . . . . . . . . . . ��
�.� ¡Manos a la obra! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

� Datos y Variables en Acción ��
�.� Tipos de datos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Entrada/salida básica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Un compañero de programación . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� ¡Manos a la obra! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

� La Sala de Operaciones ��
�.� Operadores aritméticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Operadores de comparación . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Operadores lógicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Operadores a nivel de bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Operadores de asignación . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Operadores de identidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Operadores de pertenencia . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Operador de exponenciación . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Operadores matemáticos avanzados . . . . . . . . . . . . . . . . . . . . . . ��
�.�� ¡Manos a la obra! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

� La Torre de Control ��
�.� Sentencia condicional if/else . . . . . . . . . . . . . . . . . . . . . . . . . ��



�.� Sentencia match/case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Sentencia de bucle for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Sentencia de bucle while . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Estructuras de control anidadas . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� ¡Manos a la obra! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

� Zona de Contenedores ��
�.� Listas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Tuplas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���
�.� Conjuntos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���
�.� Cadenas de caracteres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���
�.� Diccionarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���
�.� ¡Manos a la obra! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

� Soluciones Modulares ���
�.� Modularización y reusabilidad . . . . . . . . . . . . . . . . . . . . . . . . . ���
�.� Funciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���
�.� Clases y objetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���
�.� ¡Manos a la obra! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

� Acto Final ���
�.� ¿Qué sigue a continuación? . . . . . . . . . . . . . . . . . . . . . . . . . . . ���
�.� Lecturas sugeridas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

Lista de los ��� prompts ���



Contenido de Capítulo

¿Es este libro adecuado para ti?. . . . . . �
Acerca de Python. . . . . . . . . . . . . . . . . . . .�
El ciclo de programación. . . . . . . . . . . . �
Las herramientas. . . . . . . . . . . . . . . . . . . .�
Uso de Colab. . . . . . . . . . . . . . . . . . . . . . . . �
Uso de PythonTutor. . . . . . . . . . . . . . . . .�
ChatGPT como entrenador. . . . . . . . . .��
Uso de ChatGPT. . . . . . . . . . . . . . . . . . . ��
Plantillas de prompts. . . . . . . . . . . . . . .��

Monty Python

Monty Python es un
grupo de comedia bri-
tánico conocido por su
humor único y absur-
do. Su programa de tele-
visión, Monty Python’s
Flying Circus, se emitió
desde ���� hasta ���� y
ganó un culto de segui-
dores. También crearon
varias películas popula-
res, incluyendo Monty
Python and the Holy
Grail y Life of Brian. Su
influencia en la comedia
y la cultura popular ha
sido significativa y con-
tinúa siendo celebrada
por fans de todo el mun-
do.�

Introducción

¿Es este el libro adecuado para ti?

Este libro está diseñado para ayudar a personas como tú, que se están
iniciando en la programación, a aprender los conceptos básicos con
facilidad, específicamente en el lenguaje Python, uno de los lenguajes
de programación más versátiles y ampliamente utilizados.

Pero este libro es más que una guía de programación típica. Es como tener
un entrenador dedicado a tu lado, guiándote en el viaje de aprendizaje
con ejemplos, explicaciones y retroalimentación. Y ese entrenador resulta
ser un modelo de lenguaje de IA: ChatGPT. Con ChatGPT como tu guía,
tendrás acceso a una poderosa herramienta que te ayudará a comprender
los conceptos de programación esenciales. Recibirás retroalimentación
en tiempo real que te ayudará a aprender más rápido y de manera
más efectiva, lo que en última instancia te permitirá convertirte en un
programador competente.�

Este libro sirve como una guía introductoria a conceptos fundamentales
en Python, incluyendo algoritmos, estructuras de control de flujo, conte-
nedores y modularización. Dominar estos fundamentos te proporcionará
una base sólida para abordar temas más avanzados en futuros volúme-
nes. Así que, asimila estos conceptos fundamentales y prepárate para
los emocionantes desafíos que te esperan. Mientras tanto, este capítulo
presenta las herramientas que se utilizarán a lo largo del libro. Si ya estás
familiarizado/a con estas herramientas y deseas comenzar a programar
directamente, puedes omitir este capítulo y pasar al Capítulo �.

Acerca de Python

Python es un lenguaje de programación versatil y amigable para princi-
piantes. Fue creado a finales de la década de ���� por un programador
holandés llamado Guido van Rossum, quien lo nombró en honor al
grupo de comedia británico, Monty Python.�

Hoy en día, Python es utilizado para el desarrollo de software en
numerosas organizaciones, desde la NASA hasta Instagram, para equipar
desde rovers espaciales hasta filtros fotográficos. De hecho, es uno de los
lenguajes de programación más populares en el mundo, y por una buena



Uso de ChatGPT ��

Figura �: Página principal
de ChatGPT.

Figura ��: Página de chat
de ChatGPT.

�. Si la respuesta no responde completamente tu pregunta o nece-
sitas más información, escribe otro prompt, envíalo a ChatGPT y
continúa la conversación. El historial de conversaciones anteriores
se mantiene en el lado izquierdo de la pantalla, por lo que puedes
regresar y retomar cualquiera de ellas si lo deseas.

En este libro, utilizaré ChatGPT como se describió anteriormente. Para
hacer el material más legible, formatearé los prompts, texto explicativo,
código y salida de la respuesta usando diferentes cajas de texto de
colores. A modo de ilustración, he reproducido la captura de pantalla
anterior en el estilo de formato mencionado (traducido al Español):

�Es cierto que sabes programar� �O es solo que aprendiste a codificar... qué piensas al
respecto� Y muéstrame tus habilidades con un pequeño ejemplo.



Un Vistazo a lo Esencial�
�.� ¡Hola, mundo!

Explica el concepto del programa “�Hola, mundo�” de una manera sencilla pero colorida, sin
utilizar código. Además, incluye una anécdota relacionada para proporcionar a los principiantes
en programación una introducción cálida al tema.��

¡Ah, el legendario programa ¡Hola, mundo!! Esta es la forma perfecta de comenzar tu viaje
en la programación, y es una experiencia que siempre recordarás. Imagínate sentado frente
a tu computadora, sintiendo una mezcla de emoción y nerviosismo. ¡Estás a punto de
escribir tu primer programa en Python!

El programa ¡Hola, mundo! es el programa más sencillo que puedes escribir, pero es un
evento significativo. Es el equivalente al primer llanto de un recién nacido o a la primera
nota de un músico en un nuevo instrumento. Este programa es la base de todos los lenguajes
de programación, y es el punto de partida perfecto para cualquiera que quiera aprender a
programar.

Ahora, podrías preguntarte, “¿Por qué cominos querría escribir un programa que sim-
plemente diga: ¡Hola, mundo!?” Bueno, no se trata del mensaje en sí, sino del proceso de
escribir el programa. Este programa sencillo es una excelente manera de familiarizarte con
un nuevo lenguaje, superar el miedo a comenzar algo nuevo y ganar la confianza para
seguir aprendiendo y explorando.

Pero, �por qué el mensaje �Hola, mundo�� �Quién lo inventó� �Cuál es su significado���

El origen del programa ¡Hola, mundo! es algo incierto, pero se cree que se originó en los Bell
Labs a principios de la década de ����. La primera instancia registrada de la frase utilizada
en un contexto de programación fue en un libro de ���� sobre el lenguaje de programación
C escrito por Brian Kernighan y Dennis Ritchie.

En cuanto al significado detrás del mensaje, simplemente es una forma para que los
programadores prueben que su programa está funcionando correctamente y puede mostrar
una salida. Es una tradición y un rito de iniciación para los principiantes en el mundo de la
programación.

Bueno, suficiente de palabras. Vamos a sumergirnos en el código y comenzar la experiencia
de entrenamiento con ChatGPT.

¡En sus marcas, listos... código!



�� UN VISTAZO A LO ESENCIAL

Escribe el clásico programa ’�Hola, mundo�’ en Python y explícalo. Proporciona también la
salida. Utilizaré Colab.��

Aquí está el clásico programa ¡Hola, mundo! en Python:

� print("¡Hola, mundo!")

La función print() es una función incorporada en Python que te permite mostrar texto
u otros datos en la consola, en este caso el texto (también conocido como cadena) “¡Hola,
mundo!”. La salida debería verse así:

¡Hola, mundo!

Para ejecutar este programa en Google Colab, sigue estos pasos:

�. Haz clic en el botón Copy code en ChatGPT.
�. Pégalo en la primera celda de tu cuaderno en Colab.
�. Haz clic en el botón ⇤ junto a la celda o presiona Shift + Enter.

Explica qué es un error de sintaxis y muestra � posibles errores de sintaxis en el programa
’�Hola, mundo�’ con sus respectivas salidas.��

Cuando escribes un programa, debes seguir las reglas de sintaxis correcta del lenguaje
de programación. Un error de sintaxis ocurre cuando el código que escribes no cumple
con dichas reglas, como omitir un signo de puntuación, utilizar mayúsculas incorrectas
para una palabra clave o escribir un operador incorrecto. Estos errores evitan que el código
se interprete correctamente. A continuación tres posibles errores de sintaxis que podrían
haber ocurrido en el programa ¡Hola, mundo!:

�. Paréntesis faltante:

print("¡Hola, mundo!"

File "<stdin>", line 1

print("¡Hola, mundo!"

^

SyntaxError: unexpected EOF while parsing

El mensaje de error nos dice que se encontró el final inesperado del archivo (EOF)
mientras se analizaba el código.

�. Palabra clave mal escrita:

prnt("¡Hola, mundo!")

File "<stdin>", line 1

prnt("¡Hola, mundo!")

^

NameError: name ’prnt’ is not defined



�Manos a la obra� ��

�.� ¡Manos a la obra!

Me gustaría poner en práctica lo que acabo de aprender sobre print�� y el formateo de cadenas.
Por favor, proporciona cuatro ejercicios de código en los que deba corregir los errores para que
se ejecuten correctamente.��

Aquí tienes cuatro ejercicios en los que debes corregir los errores para que se ejecuten
correctamente:

Ejercicio �:

� print(¡Hola, Mundo!)

Ejercicio �:

� mensaje = "Tengo {} manzanas"

� print(mensaje+format(5))

Ejercicio �:

� nombre = input("¿Cuál es tu nombre? ")

� edad = input("¿Cuántos años tienes? ")

� print("Tu nombre es {} y tienes {} años."format(nombre, edad))

Ejercicio �:

� numero = 42

� print("La respuesta es {.10}".format(numero))

Me gustaría poner en práctica lo que acabo de aprender sobre print�� y el formateo de cadenas.
Esta vez, sugiere algunos ejercicios que se puedan resolver utilizando solo print�� y el formateo
de cadenas.��

Ejercicio �:
Imprime un recibo de compra como el que se muestra a continuación.

-----------------------------------

| RECIBO |

| Artículo | Cantidad | Precio|

|--------------|----------|-------|

| Manzanas | 3 | $1.50 |

| Bananas | 2 | $0.80 |

| Naranjas | 4 | $2.00 |

-----------------------------------



Datos y Variables en Acción�
�.� Tipos de datos

�Qué es exactamente un programa� �Cómo se relaciona con los datos���

Un programa es un conjunto de instrucciones que le dice a una computadora qué hacer. Es
una secuencia de declaraciones que son ejecutadas por la computadora para realizar una
tarea específica. Los programas se escriben en un lenguaje de programación, que es un
conjunto de reglas de sintaxis que define cómo deben escribirse tales instrucciones.

Los datos son cualquier tipo de información que puede ser almacenada y procesada por una
computadora. Pueden ser números, texto, imágenes, audio o video. Los programas utilizan
los datos para realizar sus tareas. Por ejemplo, un programa que calcula el promedio de
un conjunto de números necesitará leer los números desde un archivo de datos o pedir al
usuario que los ingrese.

La relación entre los programas y los datos es que los programas se pueden utilizar para
crear, almacenar, recuperar y manipular datos. También se pueden utilizar para analizar
datos y generar nueva información.

Aquí hay algunos ejemplos de cómo se relacionan los programas y los datos:

I Un procesador de texto utiliza datos (texto) para crear documentos.

I Una hoja de cálculo utiliza datos (números) para calcular valores.

I Una base de datos utiliza datos (registros) para almacenar información.

I Un navegador web utiliza datos (páginas web) para mostrar información en una
pantalla.

I Un juego utiliza datos (personajes, niveles, etc.) para crear una experiencia interactiva.

Entendido. Explica con ejemplos y salidas en pantalla cómo se representa los datos en Python.
Proporciona ejemplos de personajes de cómics para entender mejor el concepto.��

En Python, los datos se representan asignando valores a variables. Estos valores pueden
ser de diferentes tipos, como cadenas de texto, enteros y booleanos. Aquí tienes algunos
ejemplos:

� # Asigna una cadena de texto a una variable

� heroe = "Spider-Man"

� print("Personaje:", heroe)

�



La Sala de Operaciones�
Enumera todos los operadores de Python y proporciona una breve descripción para cada
uno.��

Aquí tienes una lista de los diferentes tipos de operadores en Python y sus definiciones:

�. Operadores aritméticos: se utilizan para realizar operaciones matemáticas, como la
suma, resta, multiplicación, división, etc.

�. Operadores de comparación: se utilizan para comparar valores y devolver un valor
booleano (Verdadero o Falso), como igual a, no igual a, mayor que, menor que, etc.

�. Operadores lógicos: se utilizan para evaluar la verdad o falsedad de combinaciones
de proposiciones o condiciones.

�. Operadores a nivel de bits: se utilizan para realizar operaciones en bits individuales
de números binarios.

�. Operadores de asignación: se utilizan para asignar valores a variables, incluso
operándolas con operadores aritméticos.

�. Operadores de identidad: se utilizan para comparar la ubicación en memoria de dos
objetos.

�. Operadores de pertenencia: se utilizan para comprobar si un valor pertenece o no
pertenece en una secuencia.

�. Operador de exponenciación: se utiliza para elevar un número a una potencia.

Así que demos un vistazo más de cerca a cada uno de ellos.

�.� Operadores aritméticos

Explica los detalles de los operadores aritméticos en Python en un tono divertido e incluye
un ejemplo de código para ilustrar el uso de todos los operadores. El ejemplo debe comparar
estadísticas entretenidas sobre las películas de Marvel y X-Men y su recaudo en taquilla.��

En Python, los operadores aritméticos se utilizan para realizar operaciones matemáticas
básicas, como la suma, resta, multiplicación y división. Estos operadores se utilizan para
manipular tipos de datos numéricos como enteros y números de punto flotante.

Seguidamente se presentan los operadores aritméticos clave en Python:

I Suma: El signo más (+) se utiliza para la suma de dos valores. Suma el segundo valor
al primero. Por ejemplo, � + � es igual a �.

I Resta: El signo menos (-) se utiliza para la resta. Resta el segundo valor del primer
valor. Por ejemplo, � - � es igual a �.



Operadores lógicos ��

Real Madrid (70) y Barcelona (65) tienen la misma cantidad de puntos: False

Real Madrid (76) y Barcelona (85) tienen una cantidad diferente de goles anotados:

True

Real Madrid (39) ha recibido menos goles que Barcelona (38): False

La diferencia de goles del Real Madrid (37) es menor o igual a la diferencia de

goles del Barcelona (47): True

Real Madrid (70) tiene más puntos que Barcelona (65): True

Barcelona (38) ha recibido más goles que el Real Madrid (39): False

Como ilustra este ejemplo, estos operadores de comparación son muy útiles en la progra-
mación de Python, ya que nos permiten verificar las relaciones entre diferentes valores y
tomar decisiones basadas en esas relaciones.

�.� Operadores lógicos

Explica el concepto de los operadores lógicos en Python en un tono informal. Después de definir
cada operador, incluye un ejemplo de código para ilustrar el uso de todos ellos. Para este fin, usa
una tabla de platos de comida rápida indicando su idoneidad para vegetarianos y veganos.��

Los operadores lógicos en Python son herramientas que nos permiten combinar y manipular
condiciones booleanas que representan afirmaciones verdaderas o falsas. Estos operadores
se utilizan principalmente con variables booleanas, que solo pueden ser True o False.

Los operadores lógicos más comúnmente utilizados en Python son and (y), or (o) y not (no).
El operador and devuelve True solo si ambos operandos son True, mientras que el operador
or devuelve True si al menos uno de los operandos es True. El operador not se utiliza para
invertir el valor booleano de su operando.

Consideremos la siguiente tabla de platos de comida rápida que indica su idoneidad para
vegetarianos y veganos:

Plato ¿Vegetariano? ¿Vegano?
Hamburguesa con queso No No
Pizza Margherita Sí No
Ensalada de jardín Sí Sí
Helado Sí No



La Torre de Control�
Enumera todas las estructuras de control en programación y proporciona una breve descripción
de cada una.��

En programación, existen varias estructuras de control que te permiten controlar el flujo
de ejecución en tu código. Estas estructuras de control se pueden clasificar en tres tipos
principales: estructuras de ramificación, estructuras de repetición y estructuras anidadas.

�. Estructuras de Ramificación (Condicionales):

I Sentencia If/Else: Ejecuta un bloque de código denotado if, si una cierta
condición es verdadera. También puede incluir una declaración opcional else
para proporcionar un bloque de código alternativo que se ejecutará si la condición
es falsa.

I Sentencia Match/case: Evalúa una expresión y la compara con varios casos,
ejecutando el bloque de código asociado con el caso coincidente.

�. Estructuras de Repetición (Bucles):

I Bucle For: Ejecuta un bloque de código un número específico de veces. Se utiliza
con frecuencia cuando se conoce de antemano el número de iteraciones.

I Bucle While: Ejecuta un bloque de código repetidamente siempre que se cumpla
una condición especificada. Es útil cuando el número de iteraciones no se conoce
de antemano.

I Bucle Do-While: Similar al bucle While, pero garantiza que el bloque de código
se ejecute al menos una vez antes de verificar el cumplimiento de la condición.

�. Estructuras Anidadas:

I Condicionales Anidados: Permite tener una sentencia if/else dentro de otra sen-
tencia if/else. Proporciona una ramificación más compleja basada en múltiples
condiciones.

I Bucles Anidados: Implica ejecutar un bucle dentro de otro bucle. Esto permite
un control más intrincado sobre tareas repetitivas, con diferentes niveles de
repetición.

Estas estructuras de control te brindan la capacidad de tomar decisiones, repetir acciones
y concebir una lógica de programa más intrincada. Al combinar estas estructuras de
manera efectiva, puedes crear programas potentes y flexibles para cumplir con diversos
requisitos.

Así que veamos más de cerca cada una de ellas.



�� LA TORRE DE CONTROL

�.� Sentencia condicional if/else

Explícame todo lo que necesito saber sobre las sentencias if/else en Python de una manera
divertida y creativa, con ejemplos didácticos.��

¡Claro! Imagina que eres un detective que resuelve casos en una ciudad llena de crimen. Tu
trabajo consiste en tomar decisiones basadas en las pistas y pruebas que recopilas. Eso es
precisamente de lo que tratan las instrucciones if/else: ¡tomar decisiones en tu código!

Aquí tienes un ejemplo didáctico: supongamos que eres un detective investigando un
crimen misterioso. Tienes un sospechoso y necesitas determinar si es culpable o inocente.
Puedes usar una instrucción if/else para ayudarte. La estructura general de esta instrucción
condicional es:

� if condicion:

� # Código a ejecutar si la condición es verdadera

� else:

� # Código a ejecutar si la condición es falsa

Entonces, codifiquemos el ejemplo propuesto:

� # Pide al usuario que ingrese su nombre

� sospechoso = input("Ingresa tu nombre: ")

�

� # Verifica si el nombre ingresado coincide con "Jack el Destripador"

� if sospechoso == "Jack el Destripador":

� # Si el nombre coincide, imprime un mensaje de arresto

� print(f"¡Estás arrestado, {sospechoso}! ¡Eres culpable!")

� else:

� # Si el nombre no coincide, imprime un mensaje de inocencia

�� print(f"¡Puedes irte tranquilo, {sospechoso}! ¡Eres inocente!")

- Ejecuta paso a paso este código en PythonTutor: https://tinyurl.com/ykdth9bd

Aquí tienes dos ejecuciones diferentes de este programa:

Ingresa tu nombre: Sherlock Holmes

¡Puedes irte tranquilo, Sherlock Holmes! ¡Eres inocente!

Ingresa tu nombre: Jack el Destripador

¡Estás arrestado, Jack el Destripador! ¡Eres culpable!

Además, también puedes usar instrucciones if/elif/else para manejar más de dos escena-
rios diferentes. Estos escenarios pueden definirse combinando varias condiciones mediante

https://tinyurl.com/ykdth9bd


Zona de Contenedores�
Explica qué es una estructura de contenedor, luego enumera todas las estructuras de contenedor
disponibles en Python y proporciona una breve descripción para cada una, utilizando analogías
de la vida real y un tono amigable.��

Una estructura de contenedor en Python es una estructura de datos capaz de contener
múltiples valores u objetos, organizados bajo un solo nombre. Permite organizar y alma-
cenar datos de manera estructurada. Cada estructura de contenedor tiene sus propias
características únicas y es adecuada para diferentes propósitos.

�. Listas: Piensa en una bolsa de compras donde puedes poner varios artículos. Es una
colección ordenada de elementos que pueden ser de diferentes tipos.

�. Tuplas: Imagina un sobre sellado que contiene múltiples piezas de información.
Una tupla es similar a una lista, pero es inmutable, lo que significa que no puede
modificarse una vez creada.

�. Conjuntos: Visualiza un cajón lleno de elementos únicos. Un conjunto es una colección
desordenada de elementos únicos.

�. Cadenas de caracteres: Considera una cadena como una oración o una secuencia de
caracteres. Es un contenedor inmutable que contiene una colección de símbolos.

�. Diccionarios: Imagina un diccionario en la vida real donde se almacenan palabras y
sus definiciones. Un diccionario es una estructura de datos de pares clave-valor.

Estas estructuras de contenedores brindan flexibilidad para organizar y manipular datos
según tus necesidades específicas. Al elegir la estructura de contenedor adecuada, puedes
almacenar y procesar datos de manera eficiente en tus programas de Python.

De manera que, demos un vistazo más de cerca a cada una de ellas.

�.� Listas

Explica todo lo que necesito saber sobre listas en Python de una manera divertida y creativa,
usando ejemplos lúdicos.��

¡Claro! ¡Vamos a embarcarnos en una aventura divertida en el mundo de las listas de
Python! Imagina que eres un mago con una mochila mágica que puede contener todo tipo
de objetos fantásticos. En Python, las listas son como tu mochila mágica, donde puedes
guardar, agregar, eliminar y recuperar elementos a tu conveniencia.



��� ZONA DE CONTENEDORES

�Súper� También mencionaste que los diccionarios nos permiten explorar relaciones y cone-
xiones complejas entre los elementos dentro del diccionario. �Qué significa eso� �Pueden los
diccionarios ayudarme a determinar relaciones como “los enemigos de mis aliados son mis
enemigos”, “los aliados de mis aliados son mis amigos”, “los héroes con el mismo superpoder
que el mío son mis amigos” o “mostrar una tabla de superhéroes ordenados por año de estreno”�
Por favor, proporciona algunos ejemplos.��

¡Claro que si! Aquí tienes cuatro ejemplos de cómo se pueden cruzar y relacionar datos
utilizando diccionarios.

I Ejemplo �: Los enemigos de mis aliados son mis enemigos.

� # Construye un diccionario para almacenar enemigos extendidos

� aliados_enemigos = {}

� for heroe, detalles in superheroes.items():

� aliados = detalles["aliados"]

� enemigos = detalles["enemigos"]

� for aliado in [heroe] + aliados:

� # Comprueba si el héroe aún no está presente en aliados_enemigos

� if heroe not in aliados_enemigos:

� aliados_enemigos[heroe] = []

�� # Comprueba si el aliado existe en el diccionario superheroes

�� if aliado in superheroes:

�� # Ampliar la lista de enemigos del héroe con los enemigos del aliado

�� aliados_enemigos[heroe].extend(superheroes[aliado]["enemigos"])

��

�� # Imprime los enemigos originales

�� print(’-’*80)

�� print(f"{’Enemigos Originales’:^80}")

�� print(’-’*80)

�� for heroe, detalles in superheroes.items():

�� print(f"{heroe:^10} -> {detalles[’enemigos’]}")

��

�� # Imprime los enemigos extendidos

�� print(’-’*80)

�� print(f"{’Los Enemigos de Mis Aliados Son Mis Enemigos’:^80}")

�� print(’-’*80)

�� for aliado, enemigos in aliados_enemigos.items():

�� print(f"{aliado:^10} -> {enemigos}")

��

- Ejecuta paso a paso este código en PythonTutor: https://tinyurl.com/yckcbr4k

https://tinyurl.com/yckcbr4k


Soluciones Modulares�
�.� Modularización y reusabilidad

Explica brevemente el concepto de modularización y reusabilidad, así como por qué son útiles
en proyectos de programación. Luego, utilizando analogías del mundo real, explica los diversos
enfoques para implementar estas ideas de manera clara y amigable.��

La reusabilidad y la modularización son como técnicas avanzadas en el desarrollo de
software, especialmente para proyectos grandes y complejos. Vienen con una serie de
beneficios que facilitan la vida de los programadores.

Cuando escribes código reutilizable, no tienes que empezar desde cero cada vez. Puedes
ahorrar mucho tiempo y esfuerzo utilizando soluciones existentes en lugar de reinventar
la rueda. Y con la modularización, descompones tu código en piezas más pequeñas y
manejables. Es como tener piezas de un rompecabezas que encajan perfectamente. Esto
hace que sea más fácil de entender, mantener y corregir errores que surjan. Además, puedes
reutilizar esas piezas modulares en diferentes partes de tu proyecto.

Así que, cuando se trata de abordar esos proyectos más grandes, adoptar la reusabilidad y
la modularización es clave. Te ayuda a trabajar de manera más inteligente, colaborar sin
problemas y mantener tu código robusto a largo plazo. En Python, tienes un montón de
técnicas y prácticas interesantes para poner en marcha estas ideas:

�. Funciones: Las funciones son como herramientas especializadas en una cocina.
Encapsulan tareas específicas y pueden reutilizarse en diferentes recetas. De manera
similar, en la programación, las funciones encapsulan operaciones específicas para
solucionar tareas puntuales y detalladas. Al utilizar funciones, los programadores
pueden escribir código modular que puede reutilizarse fácilmente, lo que facilita el
manejo de proyectos más grandes y complejos.

�. Clases y Programación Orientada a Objetos (POO): Las clases en POO son como
trabajadores especializados en una organización. Cada trabajador tiene un rol y expe-
riencia específicos. De manera similar, las clases encapsulan datos y comportamientos
en objetos, promoviendo la especialización del código. Al aprovechar las clases y
objetos, los programadores pueden crear un código modular y escalable, lo que
facilita el manejo de la complejidad en proyectos más grandes.

�. Módulos y Paquetes: Los módulos y paquetes son como cajas de herramientas
con compartimentos etiquetados para diferentes herramientas. Proporcionan una
forma de organizar y empaquetar funciones y clases relacionadas, promoviendo la
reutilización del código. Al usar módulos y paquetes, los programadores pueden



��� SOLUCIONES MODULARES

Al llamar a la función obtener_fecha_hora_notificacion() varias veces en un bucle,
puedes simular la recepción de notificaciones en diferentes momentos, reutilizando
efectivamente el código sin necesidad de repetir las mismas líneas de código. De
nuevo, así se promueve la reutilización del código, eliminando redundancias y
garantizando un código más eficiente y conciso.

=== Obtener notificación ===

Nueva notificación recibida a las: 23/jul/2023 02:59:47

Nueva notificación recibida a las: 23/jul/2023 02:59:55

Nueva notificación recibida a las: 23/jul/2023 03:00:01

- Ejecuta paso a paso este código en PythonTutor: https://tinyurl.com/ye29dv4m

I Valores de Retorno: A continuación, se presentan algunos ejemplos para ilustrar este
concepto.

� # Ejemplo 1: Obtener Información del Usuario

� def obtener_informacion_usuario():

� # Simula la obtención de información del usuario desde una plataforma de redes

sociales

� nombre = "Harry Potter"

� edad = 17

� return nombre, edad

�

� # Ejemplo 2: Obtener Foto de Perfil

� def obtener_foto_perfil():

�� # Simula la obtención de la foto de perfil del usuario

�� url_foto = "https://twitter.com/Official_HPWiki/photo"

�� return url_foto

��

�� # Ejemplo 3: Obtener Cantidad de Amigos

�� def obtener_cantidad_amigos():

�� # Simula la obtención del número de amigos en la red del usuario

�� amigos = ["Hermione", "Ron", "Neville", "Luna"]

�� return len(amigos)

��

�� # Función Principal

�� def main():

�� # Obtener datos del perfil del usuario

�� nombre, edad = obtener_informacion_usuario()

�� url_foto = obtener_foto_perfil()

�� cantidad_amigos = obtener_cantidad_amigos()

��

https://tinyurl.com/ye29dv4m


Lista de los ��� Prompts

�. “ChatGPT: Tu Entrenador de Python. Aprende los Fundamentos en ��� Prompts” es el título de un libro
que estoy escribiendo para enseñar los fundamentos de Python. Proporciona una versión preliminar de un
prólogo atractivo y provocador. Enfatiza el impacto que la IA, y los modelos de lenguaje en particular, están
teniendo en muchas áreas, incluida la programación, y cómo se espera que aprovechen las habilidades y la
productividad de los programadores para crear aplicaciones poderosas en un futuro cercano, mencionando
de pasada que los problemas relacionados con el contenido falso y la generación de información errónea
que se han detectado en estos modelos de lenguaje se alivian en el área de la programación porque el
código generado se puede validar simplemente ejecutándolo. También comenta que el contenido generado
inicialmente ha sido cuidadosamente revisado y enriquecido basado en mi experiencia educativa.

�. Explica con un tono colorido que el propósito de este libro es introducir a un principiante en el mundo de la
programación, en particular en el lenguaje Python, y ayudarlo a aprender los conceptos básicos con ejemplos,
explicaciones y retroalimentación, al igual que un profesor guía a un estudiante en su viaje de aprendizaje.
Solo que aquí, ese profesor es ChatGPT. Enfatiza las nuevas posibilidades y ventajas de utilizar desarrollos
modernos en IA para ayudar en el proceso de aprendizaje y desarrollo de programadores.

�. Proporciona una descripción ingeniosa del lenguaje de programación Python que sea adecuada para un
estudiante universitario de primer año. Haga algunas notas sobre la historia del lenguaje y su versión actual,
especula sobre su futuro y sugiere enlaces útiles a organizaciones o sitios web donde el lector pueda obtener
más información técnica.

�. Escribe una breve nota sobre Monty Python.

�. Describe brevemente las diferencias clave entre las versiones Python �.x y Python �.x. Destaca las ventajas de
la versión más reciente.

�. Crea un esquema del ciclo estándar de desarrollo de programas, utilizando el paquete LaTeX smartdiagram
con el tipo de diagrama circular.

�. Explica a un lector universitario de primer año el ciclo estándar de desarrollo de programas, incluyendo los
pasos de escribir (codificar), ejecutar, probar y corregir (depurar). Hazlo con una lista con viñetas.

�. Aclara que Python es un lenguaje de programación interpretado; explica cómo difiere de un lenguaje
compilado (ventajas y desventajas). Menciona que hay una variedad de IDEs disponibles, pero en este libro,
en lugar de lidiar con problemas de instalación de software, utilizaremos entornos listos para usar que
satisfacen las necesidades de este libro, para que podamos centrarnos en conceptos y algoritmos. Se utilizarán
Jupiter Notebooks, Colaboratory, PythonTutor y ChatGPT como herramientas. Haz una lista con viñetas de
estas herramientas, incluyendo una breve descripción, el sitio web y los pasos necesarios para abrir una
cuenta si se requiere.

�. Describe detalladamente cómo crear un nuevo cuaderno Jupyter en Google Colab.

��. Explica los dos tipos de celdas en Jupyter Notebook.

��. Explica en detalle cómo usar PythonTutor.



ʸ˦˧˔�˚˨̿˔�˛˔�˦˜˗ˢ�˖˨˜˗˔˗ˢ˦˔ˠ˘ˡ˧˘
˗˜˦˘̓˔˗˔�ˣ˔˥˔�˔ˬ˨˗˔˥˧˘�˔�ˡ˔˩˘˚˔˥

˟ˢ˦�˖ˢˡ˖˘ˣ˧ˢ˦�˕̳˦˜˖ˢ˦�˗˘�˟˔
ˣ˥ˢ˚˥˔ˠ˔˖˜ͅˡ�˘ˡ�˃ˬ˧˛ˢˡ�˖ˢˡ

˙˔˖˜˟˜˗˔˗ʟ�˨˦˔ˡ˗ˢ�ʶ˛˔˧ʺ˃ˇ�˖ˢˠˢ�˧˨
˖ˢˡ˙˜˔˕˟˘�˘ˡ˧˥˘ˡ˔˗ˢ˥ʡ�

�
ʶ˛˔˧ʺ˃ˇ�˘˦�˨ˡ�ˣˢ˧˘ˡ˧˘�ˠˢ˗˘˟ˢ�˗˘
˟˘ˡ˚˨˔˝˘�˖˔ˣ˔˭�˗˘�˔ˬ˨˗˔˥˧˘�˔�

�˥˘˦ˢ˟˩˘˥��ˣ˥˘˚˨ˡ˧˔˦�ˢ�˗˨˗˔˦�ˤ˨˘
˦˨˥˝˔ˡ�ˠ˜˘ˡ˧˥˔˦�˔ˣ˥˘ˡ˗˘˦�˃ˬ˧˛ˢˡʡ

ˇ˘�ˣ˥ˢˣˢ˥˖˜ˢˡ˔˥̳�˘˝˘ˠˣ˟ˢ˦ʟ
˘˫ˣ˟˜˖˔˖˜ˢˡ˘˦�ˬ�˥˘˧˥ˢ˔˟˜ˠ˘ˡ˧˔˖˜ͅˡʟ
˛˔˖˜˘ˡ˗ˢ�ˤ˨˘�˧˨�˘˫ˣ˘˥˜˘ˡ˖˜˔�˗˘
˔ˣ˥˘ˡ˗˜˭˔˝˘�˦˘˔�˜ˡ˧˘˥˔˖˧˜˩˔�ˬ

˘˦˧˜ˠ˨˟˔ˡ˧˘ʡ


	ChatGPT: Tu Entrenador de Python
	Prefacio
	Índice general
	Introducción
	¿Es este el libro adecuado para ti?
	Acerca de Python
	El ciclo de programación
	Las herramientas
	Uso de Colab
	Uso de PythonTutor
	ChatGPT como entrenador de programación
	Uso de ChatGPT
	Plantilla de prompts para ChatGPT

	Un Vistazo a lo Esencial
	¡Hola, mundo!

	¡Hola, mundo!
	Cadenas de caracteres y formato de cadenas

	Cadenas de caracteres y formato de cadenas
	¡Manos a la obra!

	¡Manos a la obra!
	Datos y Variables en Acción
	Tipos de datos

	Tipos de datos
	Entrada/salida básica

	Entrada/salida básica
	Un compañero de programación

	Un compañero de programación
	¡Manos a la obra!

	¡Manos a la obra!
	La Sala de Operaciones
	Operadores aritméticos

	Operadores aritméticos
	Operadores de comparación

	Operadores de comparación
	Operadores lógicos

	Operadores lógicos
	Operadores a nivel de bit

	Operadores a nivel de bit
	Operadores de asignación

	Operadores de asignación
	Operadores de identidad

	Operadores de identidad
	Operadores de pertenencia

	Operadores de pertenencia
	Operador de exponenciación

	Operador de exponenciación
	Operadores matemáticos avanzados

	Operadores matemáticos avanzados
	¡Manos a la obra!

	¡Manos a la obra!
	La Torre de Control
	Sentencia condicional if/else

	Sentencia condicional if/else
	Sentencia match/case

	Sentencia match/case
	Sentencia de bucle for

	Sentencia de bucle for
	Sentencia de bucle while

	Sentencia de bucle while
	Estructuras de control anidadas

	Estructuras de control anidadas
	¡Manos a la obra!

	¡Manos a la obra!
	Zona de Contenedores
	Listas

	Listas
	Tuplas

	Tuplas
	Conjuntos

	Conjuntos
	Cadenas de caracteres

	Cadenas de caracteres
	Diccionarios

	Diccionarios
	¡Manos a la obra!

	¡Manos a la obra!
	Soluciones Modulares
	Modularización y reusabilidad

	Modularización y reusabilidad
	Funciones

	Funciones
	Clases y objetos

	Clases y objetos
	¡Manos a la obra!

	¡Manos a la obra!
	Acto Final
	¿Qué sigue a continuación?

	¿Qué sigue a continuación?
	Lecturas sugeridas

	Lecturas sugeridas
	Lista de los 100 prompts

