
CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Riccardo Polignieri

Capire wxPython

Ok

!

1versione

Strumenti e buone pratiche

per progettare applicazioni
GUI desktop complesse

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Riccardo Polignieri

Capire wxPython
Strumenti e buone pratiche

per progettare applicazioni GUI desktop complesse

versione 1 – maggio 2019

© 2019 - Riccardo Polignieri

Questo libro è in vendita su Leanpub: https://leanpub.com/capirewxpython

https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Indice

I Introduzione. 1

1 Introduzione. 2
1.1 Convenzioni usate nel libro. 3

2 Piano dell’opera e aggiornamenti. 4

3 Installazione e documentazione. 5
3.1 Che cosa è wxPython. 5
3.2 Phoenix e Classic. 5
3.3 Installazione. 6
3.4 Documentazione. 7

II Tutorial. 8

4 Tutorial - Parte 1. 9
4.1 Mai �darsi dei tutorial. 9
4.2 «Hello world» in wxPython. 9

4.2.1 La wx.App. 10
4.2.2 La �nestra principale. 11

5 Tutorial - Parte 2. 12
5.1 Inserire un panel nella �nestra. 12
5.2 Aggiungere qualche casella di testo. 13
5.3 Aggiungere delle etichette. 13

6 Tutorial - Parte 3. 15
6.1 Rifare il layout con i sizer. 15
6.2 Aggiungere dei pulsanti. 17
6.3 Inserire i pulsanti in un wx.BoxSizer. 17
6.4 Comporre il layout �nale. 18
6.5 In conclusione. 19

7 Tutorial - Parte 4. 20
7.1 Nuovi widget per la nostra �nestra. 20

7.1.1 wx.SpinCtrl: un widget per inserire numeri. 22

i

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

7.1.2 wx.RadioBox: o�rire una scelta tra diverse opzioni. 22
7.1.3 Un wx.TextCtrl multi-linea. 22
7.1.4 wx.CheckBox: o�rire all’utente più di una scelta. 22

8 Tutorial - Parte 5. 23
8.1 Che cosa sono gli eventi. 23
8.2 Come si intercettano gli eventi. 24

8.2.1 Eventi dei wx.Button. 24
8.2.2 Eventi dei wx.RadioBox. 25
8.2.3 Eventi di un wx.CheckBox. 25
8.2.4 Eventi di un wx.SpinCtrl. 26
8.2.5 Eventi di un wx.TextCtrl. 27

8.3 Conclusione. 27

9 Tutorial - Parte 6. 28
9.1 Accedere al contenuto di un widget. 28
9.2 Abilitare e disabilitare un widget. 29
9.3 Il colore dei widget. 29
9.4 A proposito di getter e setter. 30

10 Tutorial - Parte 7. 31

11 Tutorial - Parte 8. 34
11.1 Separare le funzionalità della �nestra. 34
11.2 Fattorizzare il panel in una classe separata. 34
11.3 Aggiungere funzionalità al panel. 36
11.4 Possiamo fare meglio? . 38

12 Tutorial - Parte 9. 39
12.1 Qualche ritocco al layout della �nestra. 39
12.2 Fare i collegamenti al database. 40

13 Tutorial - Parte 10. 42
13.1 Aggiungere un wx.ListCtrl al layout. 42
13.2 Riempire la lista con i nomi. 43
13.3 Visualizzare il nome selezionato. 44
13.4 Ripopolare la lista quando è necessario. 45
13.5 Conclusione. 45

III Fondazione di un programma wxPython. 51

14 La gerarchia delle classi di wxPython. 52
14.1 I widget. 52
14.2 Le �nestre, le �nestre di dialogo. 52
14.3 I panel. 53
14.4 Gli eventi. 53
14.5 La wx.App. 53
14.6 Altre classi e gerarchie. 54
14.7 Come questo libro documenta le funzioni. 54

15 wx.App, il motore di un programma wxPython. 56
15.1 Come lavorare con la wx.App. 56

ii

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

15.2 wx.App.MainLoop: il ciclo principale dell’applicazione. 57
15.3 Lo entry-point di un programma wxPython. 58
15.4 Creare una sotto-classe di wx.App. 58

16 La catena dei parent. 62
16.1 Dichiarare il parent. 63
16.2 Orientarsi nell’albero dei parent. 63
16.3 Le �nestre top-level e la top-window. 64

17 Gli Id in wxPython. 65
17.1 Assegnare gli Id. 65
17.2 Lavorare con gli Id. 66
17.3 Quando gli Id possono essere utili. 67

17.3.1 Stock buttons. 67
17.3.2 Finestre di dialogo con risposte prede�nite. 67
17.3.3 Validatori. 68
17.3.4 Menu. 68

18 Bitmask e �ag di stile. 69
18.1 Che cosa sono gli stili di un widget. 69
18.2 Che cos’è una bitmask. 69
18.3 Conoscere i �ag di stile di un widget. 70
18.4 Sapere quali stili sono stati applicati a un widget. 70
18.5 Cambiare gli stili dopo che il widget è stato creato. 71
18.6 Che cosa sono gli extra-style. 71

19 Finestre, dialoghi, panel: contenitori wxPython. 73
19.1 wx.Frame. 73
19.2 wx.Panel. 74

19.2.1 Tab traversing. 75
19.2.2 Usare i panel per raggruppare i widget. 76

19.3 wx.Dialog. 76
19.3.1 Uso tipico delle �nestre di dialogo. 77

20 I colori in wxPython. 79
20.1 Esprimere un colore: wx.Colour. 79
20.2 Colori prede�niti. 80

20.2.1 Database dei colori. 80
20.2.2 Costanti globali. 80
20.2.3 Colori di sistema. 80

20.3 I colori dei widget. 81
20.4 Far scegliere un colore all’utente. 81

20.4.1 Con una �nestra di dialogo. 82
20.4.2 Con una funzione globale. 83
20.4.3 Con un widget. 83

20.5 Altri strumenti per gestire i colori. 84

21 I font in wxPython. 85
21.1 Esprimere un font: wx.Font. 85

21.1.1 Un metodo alternativo di creare i font. 86
21.2 Font di sistema. 86
21.3 Attribuire un font ai widget. 87

iii

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

21.4 Far scegliere un font all’utente. 87
21.4.1 Con una �nestra di dialogo. 87
21.4.2 Con una funzione globale. 89
21.4.3 Con un widget. 89

21.5 Altri strumenti per gestire i font. 89

22 Interfacce comuni dei widget. 91
22.1 Il value di un widget. 91
22.2 La label di un widget. 91
22.3 Il name di un widget. 91
22.4 Abilitare e disabilitare. 92
22.5 Nascondere e mostrare. 92
22.6 Trovare i widget. 93
22.7 Property Python. 94

IV Elementi di uso comune. 95

23 Selettori: o�rire una scelta tra più opzioni. 96
23.1 wx.RadioButton e wx.RadioBox. 96
23.2 wx.CheckBox. 97
23.3 Widget con liste di opzioni. 98

23.3.1 wx.ListBox. 98
23.3.2 wx.CheckListBox. 98
23.3.3 wx.Choice. 99
23.3.4 wx.ComboBox. 99
23.3.5 Associare client data alle opzioni. 100

23.4 wx.Slider. 101
23.5 wx.SpinButton e wx.SpinCtrl. 101

24 I sizer - prima parte. 103
24.1 Mai usare il posizionamento assoluto. 103
24.2 Sempre usare i sizer, invece. 103
24.3 Che cosa è un sizer. 104
24.4 wx.BoxSizer: il sizer più semplice. 104
24.5 wx.Sizer.Add in dettaglio. 105

24.5.1 L’argomento proportion. 105
24.5.2 L’argomento flag. 105
24.5.3 L’argomento border. 106
24.5.4 Aggiungere uno spazio vuoto. 107

25 I sizer - seconda parte. 108
25.1 wx.GridSizer: una griglia rigida. 108
25.2 wx.FlexGridSizer: una griglia elastica. 109
25.3 wx.GridBagSizer: una griglia ancora più �essibile. 109
25.4 wx.StaticBoxSizer: un sizer per raggruppamenti logici. 110
25.5 wx.StdDialogButtonSizer: un sizer per pulsanti generici. 111
25.6 wx.WrapSizer: un sizer che sa quando andare a capo. 111
25.7 wx.SizerItem: modi�care il layout a runtime. 112

26 Le dimensioni in wxPython. 114
26.1 Impostare le dimensioni di un widget. 114

iv

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

26.2 Gli strumenti per impostare le dimensioni. 115
26.3 Fit: adattare le dimensioni. 116
26.4 Layout: ricalcolare le dimensioni. 116
26.5 wx.Window.SendSizeEvent: �ngere un ridimensionamento. 118

27 Questioni varie di stile. 120
27.1 Usare le property Python o no? . 120
27.2 Usare sempre self o no? . 120
27.3 Costruire il layout nel metodo __init__ o no? . 121
27.4 Usare super o no? . 122

V Il sistema degli eventi. 124

28 Gli eventi: le basi da sapere. 125
28.1 Gli attori coinvolti. 125

28.1.1 Che cosa è un evento? . 125
28.1.2 Che cosa è un callback? . 125
28.1.3 Che cosa è un handler? . 126
28.1.4 Che cosa è un event type? . 127
28.1.5 Che cosa è un binder? . 128

28.2 Bind: collegare eventi e callback. 129
28.2.1 Come funziona wx.PyEventBinder.Bind. 129

28.3 Quali eventi possono originarsi da un widget? . 130
28.4 Estrarre informazioni sull’evento nel callback. 131
28.5 Un esempio conclusivo. 131

29 La propagazione degli eventi. 133
29.1 La propagazione, in breve. 133
29.2 Il ciclo di vita di un evento. 134

29.2.1 Fase 0: nasce l’evento. 134
29.2.2 Fase 1: l’handler è abilitato? . 134
29.2.3 Fase 2: l’handler può gestire l’evento? . 134
29.2.4 Fase 3: l’evento dovrebbe propagarsi? . 134
29.2.5 Fase 4A: l’handler successivo (versione command event). 135
29.2.6 Fase 4B: l’handler successivo (versione non-command event). 136
29.2.7 Fase 5: la wx.App come ultimo handler. 136

29.3 Il ciclo di vita di un evento: riassunto. 137
29.4 Come funziona wx.Event.Skip. 137

29.4.1 Un esempio per wx.Event.Skip. 138

30 Collegare gli eventi. 141
30.1 Come funziona wx.EvtHandler.Bind. 141

30.1.1 Primo stile di collegamento. 142
30.1.2 Secondo stile di collegamento. 142
30.1.3 Terzo stile di collegamento. 144
30.1.4 Stili di collegamento: riassunto. 145

30.2 wx.EvtHandler.Bind e gli eventi non-command. 145
30.3 Collegare gli eventi alla wx.App. 146

30.3.1 Un esempio �nale per la propagazione degli eventi. 147

31 Eventi personalizzati. 149

v

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

31.1 Creare un evento. 149
31.1.1 De�nire un event type e un binder. 150
31.1.2 Scrivere l’evento personalizzato. 151
31.1.3 Emettere l’evento personalizzato. 152
31.1.4 wx.PostEvent: mettere l’evento in coda. 153

31.2 Un modo più rapido per creare un evento. 154
31.3 Emettere un evento di wxPython. 155

32 Tecniche per gli eventi. 157
32.1 Lambda binding e partial binding. 157
32.2 Eventi con veto. 158
32.3 Filtri. 160
32.4 Blocchi. 161
32.5 Categorie. 162

33 Handler personalizzati. 164
33.1 Creare un handler. 164
33.2 Scenari concreti per gli handler personalizzati. 166

33.2.1 Aggiungere comportamenti «plug-in». 166
33.2.2 Gestire l’ordine dei callback. 167

33.3 Altre operazioni con gli handler. 169
33.4 Esempio �nale per la propagazione degli eventi. 171

34 Pattern Publish/Subscribe. 173
34.1 Il pattern pub/sub in breve. 173
34.2 PyPubSub: una implementazione di pub/sub. 175
34.3 Un esempio di pub/sub in wxPython. 175
34.4 Messaggi pub/sub ed eventi wxPython. 177

34.4.1 Una digressione sugli eventi Qt. 178
34.5 Event Manager: a metà strada tra eventi e pub/sub. 179
34.6 In conclusione. 181

35 Eventi di chiusura. 182
35.1 La chiusura di una �nestra. 182
35.2 Mettere il veto se non si vuole chiudere. 183

35.2.1 Quando non è possibile mettere il veto. 185
35.3 Trappole legate alla chiusura. 186

35.3.1 Sapere quando un �nestra è chiusa. 187
35.3.2 Distruggere un singolo widget. 189
35.3.3 Distruzione di �nestre a cascata. 189
35.3.4 Eventi da oggetti in fase di distruzione. 190
35.3.5 Accesso a oggetti in fase di distruzione. 193

36 I timer. 196
36.1 Come funziona wx.Timer. 196
36.2 Timer personalizzati. 198
36.3 Altri accessori. 199

36.3.1 wx.CallLater: esecuzione posticipata di un callable. 199

37 GUI non-bloccanti e thread. 201
37.1 La regola d’oro dei thread. 201

37.1.1 Postare un evento con wx.CallAfter. 202

vi

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

37.1.2 wx.IsMainThread: sapere in quale thread siamo. 203
37.2 Un esempio di uso dei thread. 203
37.3 Widget per il feedback all’utente. 205

37.3.1 Il widget wx.Gauge. 205
37.3.2 La �nestra wx.ProgressDialog. 206
37.3.3 Altri widget utili per il feedback. 209

37.4 Altre tecniche con i thread. 209
37.4.1 Trasmissione asincrona di dati con wx.lib.delayedresult. 210

38 Altre tecniche per le GUI non-bloccanti. 211
38.1 Quando è meglio bloccare la GUI. 211
38.2 GUI non-bloccanti con Yield. 212

38.2.1 Altre versioni di Yield. 213
38.3 L’evento wx.EVT_IDLE. 214

38.3.1 GUI non-bloccanti con wx.EVT_IDLE. 217
38.4 GUI non-bloccanti e timer. 218

VI Altri strumenti di uso comune. 219

39 I menu - prima parte. 220
39.1 Come creare una barra dei menu. 220
39.2 Come creare i menu. 221
39.3 Come creare le voci di menu. 221

39.3.1 Come creare un separatore. 222
39.3.2 Come creare un sotto-menu. 222

39.4 Collegare le voci di menu a eventi. 223
39.5 Voci di menu spuntabili o selezionabili. 224
39.6 Collegare insieme più voci con wx.EVT_MENU_RANGE. 225
39.7 Menu con Id prede�niti. 226
39.8 Icone nelle voci di menu. 227
39.9 Disabilitare i menu. 227
39.10Altre tecniche con i menu. 228

39.10.1Come «fattorizzare» la creazione dei menu. 228

40 I menu - seconda parte. 230
40.1 Scorciatoie da tastiera. 230

40.1.1 Come creare una scorciatoia. 230
40.1.2 Come creare un acceleratore. 230
40.1.3 Creare un acceleratore senza il menu. 231
40.1.4 Acceleratori associati a widget di�erenti. 232

40.2 Menu contestuali e popup. 233
40.2.1 Collegare prima gli eventi. 233
40.2.2 Creare e mostrare il menu. 234
40.2.3 Un menu contestuale vero e proprio. 236

40.3 Elenchi di risorse recenti con wx.FileHistory. 237

41 La barra degli strumenti e di stato. 240
41.1 Lavorare con la toolbar. 240

41.1.1 Aggiungere i tool. 240
41.1.2 Gestire gli eventi. 241
41.1.3 Un esempio per la toolbar. 242

vii

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

41.2 Lavorare con la status bar. 243
41.2.1 Eventi nella status bar. 244
41.2.2 Un esempio per la status bar. 244

VII Widget di uso non comune. 246

42 Layout con i constraints. 247
42.1 wx.IndividualLayoutConstraint e wx.LayoutConstraints. 247
42.2 Quando i constraints possono tornare utili. 249

VIII Strumenti di programmazione avanzata. 252

43 I validatori, prima parte. 253
43.1 Come scrivere un validatore. 253

43.1.1 Validazione e validazione a cascata. 254
43.1.2 Quando fallisce una validazione a cascata. 255
43.1.3 La validazione ricorsiva. 257

43.2 La validazione automatica dei dialoghi. 257
43.3 Validazione e catena degli eventi. 259
43.4 Consigli sulla validazione. 260

43.4.1 Composizione di validatori. 260
43.4.2 Validazione a cascata. 261
43.4.3 Validazione a seconda del contesto. 261
43.4.4 Problemi con i masked controls. 263
43.4.5 Problemi con i widget limitati. 263
43.4.6 Validazione ricorsiva. 263
43.4.7 In conclusione: usare i validatori? . 263

44 I validatori, seconda parte. 265
44.1 Trasferimento dati nei dialoghi con validazione automatica. 265
44.2 Trasferimento dati negli altri casi. 269
44.3 Conclusioni. 270

IX Gestire l’applicazione. 271

45 Terminare la wx.App. 272
45.1 L’arresto in condizioni normali. 272

45.1.1 Operazioni di chiusura: wx.App.OnExit. 272
45.2 Quando la wx.App non può terminare. 273
45.3 Come mantenere in vita la wx.App. 274
45.4 Altri modi per terminare la wx.App. 275
45.5 Altre situazioni di emergenza. 276

46 Gestione degli standard streams. 278
46.1 Re-indirizzamento. 278
46.2 Reindirizzamento verso una �nestra custom. 280

47 Logging - prima parte. 283
47.1 Indicazioni generali. 283
47.2 Logging con Python. 284

viii

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

47.3 Re-indirizzare il log verso la GUI. 285
47.4 Loggare da thread di�erenti. 288
47.5 In conclusione. 288

48 Logging - seconda parte. 289
48.1 Logging con wxPython. 289
48.2 Cambiare il log target. 291

48.2.1 Il target prede�nito wx.LogGui. 291
48.2.2 Il target wx.LogWindow. 293
48.2.3 Il target wx.LogTextCtrl. 293
48.2.4 Il target wx.LogStderr. 294
48.2.5 Il target wx.LogBuffer. 294
48.2.6 Sopprimere il log con wx.LogNull. 294

48.3 Scrivere un log target personalizzato. 294
48.4 Incorporare il log di wxPython nel log di Python. 295

48.4.1 Perché conviene uni�care i due log. 296
48.5 Usare wx.LogChain per scrivere su un log Python. 297
48.6 In conclusione: come loggare in wxPython. 298

49 Gestione delle eccezioni - prima parte. 299
49.1 Il problema delle eccezioni Python non catturate. 299
49.2 try/except in wxPython non funziona come ci aspettiamo. 300
49.3 Che cosa fare delle eccezioni non gestite. 302

49.3.1 Il problema. 302
49.3.2 Una soluzione accettabile. 303

50 Gestione delle eccezioni - seconda parte. 305
50.1 Gli assert wxWidgets e l’eccezione wx.wxAssertionError. 305

50.1.1 Controllare gli assert globalmente. 305
50.1.2 Come usare wx.wxAssertionError. 307

50.2 RuntimeError e il problema della distruzione dei widget. 308
50.2.1 Distruggere il proxy Python lasciando in vita l’oggetto C++. 309
50.2.2 Distruggere l’oggetto C++ lasciando in vita il proxy Python. 310

50.3 Consigli conclusivi su logging e gestione delle eccezioni. 311

51 Localizzare un programma wxPython. 313
51.1 Il supporto di wxPython per I18N. 314

51.1.1 Marcare il testo per la traduzione. 314
51.1.2 Tradurre il testo. 315
51.1.3 Fornire traduzioni speci�che. 315
51.1.4 Lavorare con le stringhe tradotte. 317
51.1.5 Traduzioni dipendenti dal locale. 318

51.2 Strumenti accessori per le lingue. 321
51.3 Il supporto di wxPython per L10N. 321

51.3.1 Testo e layout bidirezionale. 322
51.4 Il supporto di wxPython per Unicode. 324

X Appendici e indici. 326

52 Glossario. 327

ix

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Parte I

Introduzione.

1

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

1
Introduzione.

Benvenuti! Questo libro è l’evoluzione di una raccolta di Appunti wxPython che ho iniziato nel 2012.
Dopo qualche anno di interruzione, quando nel frattempo anche lo sviluppo di wxPython era sta-
gnante e il supporto a Python 3 tardava ad arrivare, mi sono �nalmente deciso a riprendere in mano
il lavoro adesso che la nuova versione di wxPython Phoenix è �nalmente uscita. Tornare a scrivere
gli Appunti si scontrava però con un problema di fondo: ormai quella documentazione era divenuta
obsoleta, piena di codice Python 2 non più aggiornato. Per questo ho rivisto a fondo tutto quello
che avevo scritto in passato, cambiando radicalmente molte parti. Ho poi aggiunto diversi capitoli
nuovi, ampliato gli indici, rifatto e testato il codice, limato i dettagli. . . �no a raggiungere uno stato
che mi sembrava «abbastanza pronto» per essere presentato!

Il bello di pubblicare in proprio e «virtualmente», senza i limiti imposti dalla casa editrice tradizionale
e dal formato cartaceo, è che nessuno ti costringe a tagliare nulla. In questo libro mi prendo la
libertà di approfondire, spiegare, esempli�care a fondo anche le parti più esotiche che un libro di carta
sarebbe costretto a lasciar cadere per comprensibili vincoli economici. Riconosco che in alcuni punti
potrei aver esagerato (ehm, i capitoli sugli eventi. . .): il fatto è che non volevo scrivere l’ennesimo
libro che si limita a «mettere in bella copia» le parti facili che potete comunque trovare su Internet,
e poi vi lascia a piedi quando le cose cominciano a farsi di�cili.

Questo libro non si rivolge a principianti assoluti di Python e della programmazione: ho fatto del mio
meglio per spiegare in modo chiaro e piano, ma dovete lo stesso sapere almeno vagamente che cosa
è una classe e come si lavora con gli oggetti in Python. Del resto wxPython è un framework com-
plesso, che richiede già qualche esperienza per essere maneggiato. In ogni caso, rispetto agli Appunti
originali, che erano più sintetici, ho diluito la spiegazione di certi passaggi più tecnici e soprattutto
ho aggiunto un tutorial introduttivo che dovrebbe sempli�care le cose anche per il principiante.

Un altro grande vantaggio della pubblicazione indipendente è che posso pubblicare il libro man
mano che viene scritto: grazie al sistema di Leanpub, chi compra il libro oggi avrà la possibilità di
scaricare gratuitamente le versioni aggiornate con i nuovi capitoli, man mano che arriveranno. . . e
ne arriveranno eccome! Considerate che in questo momento il libro è già lungo più di 300 pagine
ma non contiene che un terzo delle cose che ho in mente di scrivere.

I miei Appunti costituivano già all’epoca il manuale più completo disponibile in Italiano su wxPython.
Questo libro �n dalla sua prima versione amplia gli Appunti di un buon venti per cento, e continuerà
a crescere. Ora, dato lo stato non proprio brillantissimo dell’editoria informatica nostrana, credo che
si possa dire senza timore di smentita: non uscirà mai una guida più completa di questa in Italia. Se
considerate poi che wxPython è un framework maturo e molto stabile, questo libro non è destinato a
invecchiare tanto presto. Se siete interessati alla programmazione di interfacce gra�che con Python,
questo dovrebbe essere il libro che fa per voi.

2

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

Importante: . . . e a proposito: per favore non piratate questo libro. Questo libro non è scritto da un
miliardario e pubblicato da una multinazionale. Non è un best-seller planetario a base di draghi e
di troni. Questo libro è curato in modo artigianale e si rivolge a un pubblico di nicchia, molto di
nicchia; costa incredibilmente poco rispetto al suo volume e (se posso permettermi) al suo contenuto.
Piratare questo libro vuol dire distruggere irreparabilmente il lavoro che ci sta dietro e annullare la
possibilità di estenderlo in futuro. Per favore, compratelo e basta. Grazie di cuore.

1.1 Convenzioni usate nel libro.

Questa è una sezione «obbligatoria» in tutti i libri di informatica, ma davvero non c’è molto da dire
qui. In primo luogo, il libro è in Italiano: il codice degli esempi (nomi delle variabili, etc.) è però in
Inglese. Non è mai una buona idea scrivere il codice in qualsiasi altra lingua che non sia l’Inglese e
questo libro non vuole dare il cattivo esempio al lettore. L’unica licenza che mi sono concesso è di
mantenere in Italiano i commenti nel codice.

Il codice di questo libro non segue il code style tipico di Python (la PEP 8, per intenderci), per il sem-
plice motivo che neanche wxPython lo segue: in wxPython i nomi delle funzioni sono «CamelCase»
perché derivano dalla consuetudine C++ di wxWidgets.

I nomi delle funzioni sono sempre riportati per intero nel testo: per esempio, sempre wx.Classe.
Funzione e mai solo Funzione, anche quando sarebbe ovvio dal contesto. Questo è più verboso ma
anche più chiaro e aiuta la ricerca negli indici. Solo i capitoli del tutorial riportano i nomi in forma
abbreviata, per agevolare la lettura. Nel capitolo sulla gerarchia delle classi (pagina 54) questo criterio
è descritto in modo più approfondito.

In genere gli esempi di codice sono eseguibili: per brevità omettono solo la dichiarazione import
wx iniziale e la clausola abituale

if __name__ == '__main__':
app = wx.App(False)
MainFrame(None).Show()
app.MainLoop()

che funziona da entry-point: potete aggiungere queste righe al codice degli esempi per renderli fun-
zionanti. Una spiegazione più dettagliata del signi�cato di questa clausola verrà data (pagina 58) nel
capitolo dedicato alla wx.App.

wxClassic: Questo libro è stato scritto per la nuova versione del framework (wxPython Phoenix) e
Python 3. Per chi avesse già esperienza con le vecchie versioni che supportavano Python 2 (dette oggi
«wxPython Classic»), o per chi magari è impegnato a migrare una vecchia applicazione, le di�erenze
più importanti sono riportate in riquadri come questo.

1.1. Convenzioni usate nel libro. 3

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

2
Piano dell’opera e aggiornamenti.

Questo libro è un work in progress: periodicamente saranno pubblicate nuove versioni con aggiunte
e variazioni.

versione 1, maggio 2019

• Introduzione, Piano dell’opera, Installazione e documentazione

• Tutorial in 10 parti

• Fondazione di un programma wxPython: La gerarchia delle classi di wxPython; wx.App, il
motore di un programma wxPython; La catena dei «parent»; Gli Id in wxPython; Bitmask e
�ag di stile; Finestre, dialoghi, panel: contenitori wxPython; I colori in wxPython; I font in
wxPython; Interfacce comuni dei widget

• Elementi di uso comune: Selettori, o�rire una scelta tra più opzioni; I sizer - prima parte; I
sizer - seconda parte; Le dimensioni in wxPython; Questioni varie di stile

• Il sistema degli eventi: Gli eventi, le basi da sapere; La propagazione degli eventi; Collegare
gli eventi; Eventi personalizzati; Tecniche per gli eventi; Handler personalizzati; Pattern Pu-
blish/Subscribe; Eventi di chiusura; I timer; GUI non-bloccanti e thread; Altre tecniche per
le GUI non-bloccanti

• Altri strumenti di uso comune: I menu - prima parte; I menu - seconda parte; La barra degli
strumenti e di stato

• Widget di uso non comune: Layout con i contraints

• Strumenti di programmazione avanzata: I validatori - prima parte; I validatori - seconda
parte

• Gestire l’applicazione: Terminare la wx.App; Gestione degli standard streams; Logging - pri-
ma parte; Logging - seconda parte; Gestione delle eccezioni - prima parte; Gestione delle
eccezioni - seconda parte; Localizzare un programma wxPython

4

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

3
Installazione e documentazione.

3.1 Che cosa è wxPython.

wxPython (https://www.wxpython.org) è un framework per la costruzione di GUI (programmi con
interfaccia utente gra�ca) in Python. Si tratta di un porting di wxWidgets (https://wxwidgets.org), un
framework C++ molto popolare e consolidato (la prima versione risale al 1992). Per la precisione,
wxPython non è una riscrittura ma un wrapper di wxWidgets: ovvero un layer di codice Python che
istanzia e manipola gli oggetti C++ sottostanti di wxWidgets. Non c’è bisogno di conoscere C++ (o
peggio, di scrivere codice C++) per usare wxPython: tuttavia è utile sapere che wxPython «segue da
vicino» wxWidgets e ne mappa fedelmente le API.

A sua volta wxWidgets si rivolge alle primitive gra�che della piattaforma ospitante per presentare
all’utente un’interfaccia dall’aspetto «nativo». Questo vuol dire che, quando per esempio istanziamo
un wx.TextCtrl per disegnare una normale casella di testo, wxPython delega il compito all’oggetto
wxWidgets sottostante wxTextCtrl che a sua volta crea il widget nativo Windows, oppure quello
GTK, oppure quello Cocoa, a seconda che il programma sia eseguito su Windows, Linux, MacOs.

Il vantaggio di questa impostazione è che l’utente vedrà la GUI del nostro programma con l’aspetto
e le consuetudini a cui è abituato dal suo sistema operativo. Storicamente questo è stato un punto di
forza per wxWidgets/wxPython soprattutto in ambiente Windows, dove è più sentita l’importanza
di realizzare GUI dall’aspetto nativo. Lo svantaggio è che, per quanto wxWidgets faccia miracoli per
presentare un «minimo comun denominatore» omogeneo tra le varie piattaforme, piccole di�erenze
tra le diverse implementazioni si trovano sempre.

3.2 Phoenix e Classic.

Prima di vedere come è possibile ottenere e installare una versione «moderna» di wxPython,
riassumiamo la situazione attuale dello sviluppo di questo framework.

La versione storica di wxPython è oggi chiamata «wxPython Classic», e corrisponde alle serie 2.x e
3.x (la di�erenza è minima e riguarda la versione di wxWidgets sottostante). wxPython Classic non
supporta Python 3, e non è più attivamente sviluppato.

La serie attuale (4.x) viene chiamata «wxPython Phoenix» e supporta sia Python 2.7 sia Python 3
(dalla 3.4 in poi).

Oggi non ha più praticamente nessun senso installare ancora wxPython Classic: per i nuovi pro-
getti è praticamente obbligatorio usare Phoenix, tanto più che Phoenix supporta anche Python 2.7.
D’altra parte le vecchie applicazioni basate su wxPython Classic andrebbero migrate quanto prima a

5

https://www.wxpython.org
https://wxwidgets.org

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

Phoenix, se non altro perché dovrebbero migrare a Python 3 (che Classic non supporta). Ricordiamo
infatti che Python 2 non sarà più supportato dalla Python Software Foundation a partire dalla �ne
del 2019. In pratica quindi ha ancora senso procurarsi una vecchia versione di wxPython Classic
solo se occorre mantenere vecchie applicazioni senza migrarle, consapevoli però del fatto che saranno
basate su software (Python 2 e wxPython Classic) non più aggiornati, neppure per gli aspetti relativi
alla sicurezza. Inutile dire che sarebbe meglio non fare niente del genere.

3.3 Installazione.

Fino a qualche anno fa l’installazione di wxPython (Classic) era problematica: il pacchetto era troppo
ingombrante per essere distribuito normalmente su PyPI (https://pypi.org/), la repository u�ciale
delle librerie Python. Erano quindi disponibili diversi installer precompilati per le varie piattaforme,
scaricabili dal sito di wxPython.

Oggi il limite di «peso» per i pacchetti è stato rimosso, e anche wxPython è �nalmente disponibile
su PyPI (https://pypi.org/project/wxPython/) e pertanto installabile con Pip come qualsiasi altro
pacchetto Python:

pip install wxPython

Attualmente sono disponibili wheel precompilate per Mac e Windows, per Python 2.7 e 3.4+.
È naturalmente possibile, e anzi consigliabile, installare wxPython in un virtual environment op-
pure, in futuro, includerlo nella directory __pypackages__ di un progetto, quando la PEP 582
(https://www.python.org/dev/peps/pep-0582/) verrà accettata.

Dopo aver installato wxPython, conviene eseguire dalla shell la utility wxdemo che scarica la Demo
di wxPython e la installa separatamente. Successivamente è possibile invocare wxdemo come un
launcher della Demo così installata.

Analogamente, è possibile eseguire wxdocs per scaricare e poi aprire nel browser una versione o�ine
della documentazione di wxPython.

Una risorsa alternativa per scaricare wxPython è il download diretto dal sito u�ciale
(https://extras.wxpython.org/wxPython4/extras/): qui si possono trovare inoltre le versioni prece-
denti di wxPython Phoenix, la Demo, la documentazione e soprattutto le versioni precompilate per
le più note distribuzioni Linux (non disponibili su PyPI).

In�ne è possibile scaricare le snapshot-builts da una pagina separata del sito u�ciale
(https://wxpython.org/Phoenix/snapshot-builds/): si tratta di built automatici che vengo-
no compilati quando il codice di wxPython è modi�cato nella sua repository su GitHub
(https://github.com/wxWidgets/Phoenix). Dal momento che le release u�ciali possono tarda-
re, talvolta può essere utile installare invece una snapshot-built più recente, quando siamo certi che
porta la risoluzione di un baco altrimenti bloccante per la nostra applicazione. Ovviamente queste
built non sono da considerarsi de�nitive, ed è sempre meglio sostituirle con la release successiva non
appena questa è disponibile.

wxClassic: Le vecchie versioni di wxPython Classic sono ancora disponibili su Sour-
ceForge (https://sourceforge.net/projects/wxpython/�les/wxPython/), comprese la Demo e la
documentazione.

3.3. Installazione. 6

https://pypi.org/
https://pypi.org/project/wxPython/
https://pypi.org/project/wxPython/
https://www.python.org/dev/peps/pep-0582/
https://extras.wxpython.org/wxPython4/extras/
https://wxpython.org/Phoenix/snapshot-builds/
https://github.com/wxWidgets/Phoenix
https://sourceforge.net/projects/wxpython/files/wxPython/
https://sourceforge.net/projects/wxpython/files/wxPython/

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

3.4 Documentazione.

La documentazione di wxPython, che in passato era molto frammentaria e lacunosa, è
migliorata decisamente con Phoenix: adesso tutte le API sono documentate in una in-
terfaccia gradevole e di facile consultazione. La documentazione è disponibile online
(https://wxpython.org/Phoenix/docs/html/) ma, come abbiamo visto, è più facile scaricarla con
wxdocs e consultarla localmente.

Accanto alla documentazione delle API è utile avere anche la Demo: si tratta di un programma che
raccoglie decine di esempi di ciò che si può fare con wxPython, organizzati in una interfaccia molto
facile da sfogliare. Ogni pagina della Demo è una dimostrazione «live» di un widget o un aspetto della
programmazione wxPython: si può ispezionare il codice di esempio, eventualmente modi�carlo e
vedere interattivamente il risultato.

Per quanto e�cace, la Demo non è esente da difetti: non tutto è documentato; gli esempi sono stati
scritti in periodi e da persone diverse e talvolta si vede che il codice usa strumenti e consuetudini
che nel frattempo sono stati migliorati o rimpiazzati; talvolta il codice è iper-sempli�cato, talvolta è
sintetico e oscuro nel tentativo di condensare in poche righe molte possibilità e feature di�erenti. In
ogni caso la Demo resta sempre la prima fermata obbligatoria per esplorare le in�nite possibilità di
wxPython.

In�ne, resta sempre disponibile la documentazione di wxWidgets (https://docs.wxwidgets.org), ov-
vero il framework C++ sottostante. Una volta era praticamente obbligatorio sapervisi orientare per
colmare le lacune nella documentazione di wxPython; oggi può essere tranquillamente ignorata
almeno per le esigenze più comuni.

Il Wiki di wxPython (https://wiki.wxpython.org/) è attualmente in uno stato molto frammentario:
la quasi totalità delle pagine è ancora pensata per wxPython Classic, e anzi molte informazioni sono
vecchie anche rispetto alle ultime release di Classic. Tuttavia, a sfogliarlo con pazienza, si possono
trovare molte autentiche gemme. Come ultima risorsa è sempre possibile rivolgere una domanda
sul forum dedicato wxPython-users (https://groups.google.com/forum/#!forum/wxpython-users)
oppure wxPython-dev (https://groups.google.com/forum/#!forum/wxpython-dev).

3.4. Documentazione. 7

https://wxpython.org/Phoenix/docs/html/
https://docs.wxwidgets.org
https://wiki.wxpython.org/
https://groups.google.com/forum/#!forum/wxpython-users
https://groups.google.com/forum/#!forum/wxpython-dev

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

23
Selettori: offrire una scelta tra più opzioni.

In questo capitolo passiamo in rassegna una serie di widget di uso comune che risolvono con ap-
procci diversi lo stesso compito: presentare all’utente una ristretta lista di opzioni e permettergli di
sceglierne una o più di una.

Il generale questi widget accettano un argomento choices del costruttore: una lista di stringhe che
raccoglie le opzioni da presentare. Hanno quindi alcuni metodi getter e setter per lavorare con l’ele-
mento selezionato (alcuni ammettono la selezione multipla), ed emettono degli eventi tipici quando
l’utente cambia la selezione. Per alcuni widget è anche possibile modi�care a runtime l’elenco delle
opzioni. In questo capitolo descriviamo solo le caratteristiche più importanti: rimandiamo come
sempre alla documentazione per approfondimenti.

Si tenga conto che questi widget sono concepiti per presentare liste semplici (una sola colonna) e
possibilmente corte. Se c’è bisogno di strumenti più complessi, allora wx.ListCtrl è probabilmente
la soluzione adatta.

23.1 wx.RadioButton e wx.RadioBox.

La classe wx.RadioButton rappresenta la più semplice delle opzioni possibili: un pulsante «radio»
che può essere solo «On» oppure «O�». Il costruttore accetta un parametro opzionale label che
associa un’etichetta esplicativa al pulsante.

Un wx.RadioButton da solo non serve a nulla, e resterà sempre nello stato «On»: quando occorre
presentare una sola opzione, lo strumento giusto è wx.CheckBox come vedremo tra poco. È possi-
bile invece raggruppare diversi wx.RadioButton per o�rire all’utente una scelta (esclusiva) tra più
opzioni. Per fare questo, passiamo lo stile wx.RB_GROUP al primo pulsante del gruppo, e nessuno
stile ai pulsanti successivi. Il gruppo termina quando non ci sono più pulsanti, oppure quando un
pulsante ha di nuovo lo stile wx.RB_GROUP, che indica l’inizio di un nuovo gruppo.

Le interfacce wx.<Window>.Get|SetValue accettano e restituiscono un valore booleano per indicare
lo stato del pulsante. Possiamo usare il setter solo per impostare il valore a True: questo disattiverà
contemporaneamente gli altri pulsanti del gruppo.

L’evento wx.EVT_RADIOBUTTON viene emesso quando l’utente agisce sul pulsante. Non è un pro-
blema collegare tutti i pulsanti del gruppo (o addirittura quelli di diversi gruppi) a un solo callback:
l’azione dell’utente può avere solo l’e�etto di attivare un pulsante, e pertanto ci basta recuperare il
riferimento all’oggetto che ha emesso l’evento, e quindi la sua etichetta:

96

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

class MainFrame(wx.Frame):
def __init__(self, *args, **kwargs):

wx.Frame.__init__(self, *args, **kwargs)
p = wx.Panel(self)
r1 = wx.RadioButton(p, -1, '1', style=wx.RB_GROUP, pos=(10, 30))
r2 = wx.RadioButton(p, -1, '2', pos=(10, 50))
r3 = wx.RadioButton(p, -1, '3', pos=(10, 70))
inizia un secondo gruppo
r4 = wx.RadioButton(p, -1, 'A', style=wx.RB_GROUP, pos=(10, 90))
r5 = wx.RadioButton(p, -1, 'B', pos=(10, 110))
r6 = wx.RadioButton(p, -1, 'C', pos=(10, 130))
for rb in (r1, r2, r3, r4, r5, r6):

rb.Bind(wx.EVT_RADIOBUTTON, self.on_radio)

def on_radio(self, evt):
print(evt.GetEventObject().GetLabel())

La classe wx.RadioBox sempli�ca il processo di creare gruppi di pulsanti: passiamo al parametro
choices del costruttore una lista di opzioni, e wxPython crea per noi un pulsante per ciascuna di
queste. L’unico svantaggio è che non possiamo decidere il layout esatto del gruppo. Possiamo dare
solo alcune indicazioni generali attraverso gli stili:

• wx.RA_HORIZONTAL e wx.RA_VERTICAL allineano i pulsanti in riga oppure in colonna;

• se le opzioni sono troppo numerose e desideriamo raggrupparle in un formato tabellare, pas-
siamo al costruttore anche il parametro majorDimension per indicare il numero massimo di
righe o colonne che vogliamo, e lo stile wx.RA_SPECIFY_ROWS o wx.RA_SPECIFY_COLS per
dire se majorDimension si riferisce alle righe o alle colonne.

Per esempio:

raggruppa le opzioni in 2 righe, da 5 e 4 elementi ciascuna
rb = wx.RadioBox(parent, choices=list('123456789'),

majorDimension=2, style=wx.RA_SPECIFY_ROWS)

Usiamo wx.RadioBox.GetSelection per sapere l’indice dell’elemento selezionato, mentre
wx.RadioBox.GetString ci restituisce l’etichetta:

selected = radio_box.GetString(radio_box.GetSelection())

L’evento caratteristico di un wx.RadioBox è wx.EVT_RADIOBOX.

23.2 wx.CheckBox.

Questa classe rappresenta la consueta «casella con la spunta» che può avere tipicamente due stati,
«On» e «O�». In Windows è possibile creare una casella a tre stati (di solito usata per includere uno
stato sconosciuto, non applicabile, etc.). Un wx.CheckBox è sempre isolato: non esiste il concetto di
gruppo di opzioni come per i wx.RadioButton. Possiamo certamente allineare diversi wx.CheckBox
e considerarli parte di un unico gruppo logico ai �ni della nostra applicazione, ma wxPython li tratta
comunque come elementi separati.

L’uso di un wx.CheckBox è molto semplice. Passiamo un parametro label al costruttore per asso-
ciare alla casella un’etichetta esplicativa, ed eventualmente lo stile wx.CHK_3STATE per creare una ca-
sella a tre stati. Aggiungiamo lo stile wx.CHK_ALLOW_3RD_STATE_FOR_USER se vogliamo permettere
all’utente di selezionare anche lo stato «incerto».

23.2. wx.CheckBox. 97

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

Le normali interfacce wx.<Window>.Get|SetValue funzionano solo per la casella a due stati. Occor-
re usare wx.CheckBox.Get|Set3StateValue per quella a tre stati. In�ne, wx.CheckBox.IsChecked
è un alias più leggibile per il getter.

L’evento tipico emesso è wx.EVT_CHECKBOX. Nel callback possiamo interrogare wx.Event.
IsChecked per conoscere lo stato della casella che ha originato l’evento.

23.3 Widget con liste di opzioni.

Presentiamo adesso alcuni widget che elencano le opzioni come una lista cliccabile. Sono tutti
presenti nella demo, alla quale rimandiamo per vederli in azione.

Questi widget derivano come gli altri da wx.Control, ma anche dalla classe mixin wx.
ItemContainer che conferisce la capacità di presentare e gestire liste di valori, anche modi�candole
a runtime:

• wx.ItemContainer.Append aggiunge uno o più elementi in coda alla lista;

• wx.ItemContainer.Set(items) rimpiazza il contenuto di una lista con dei nuovi elementi;

• wx.ItemContainer.Insert(item, pos) inserisce un nuovo elemento nel punto voluto (ma
possiamo passargli anche una lista di elementi);

• wx.ItemContainer.Delete(n) elimina lo n-esimo elemento;

• wx.ItemContainer.Clear svuota completamente la lista;

• wx.ItemContainer.GetItems restituisce gli elementi della lista.

• wx.ItemContainer.GetSelection restituiscono l’indice dell’elemento selezionato;

• wx.ItemContainer.GetString(index) permette di risalire alla stringa di testo;

• wx.ItemContainer.SetSelection(index) seleziona una voce.

23.3.1 wx.ListBox.

Il più semplice di questa famiglia di widget è wx.ListBox, che incolonna la lista in un semplice
rettangolo: quando le opzioni diventano troppe, aggiunge una barra di scorrimento verticale. Oltre
al consueto argomento choices, possiamo passare al costruttore una serie di stili, i più notevoli dei
quali sono wx.LB_MULTIPLE e wx.LB_EXTENDED che creano una lista a selezione multipla (il primo
stile permette di selezionare solo con il mouse, il secondo con mouse e tastiera).

Questo widget emette due eventi tipici: wx.EVT_LISTBOX quando l’utente fa clic su un elemento, e
wx.EVT_LISTBOX_DCLICK quando fa doppio clic.

L’interfaccia è estremamente semplice: in pratica oltre agli strumenti ereditati da wx.
ItemContainer bisogna considerare solo le interfacce wx.ListBox.Get|SetSelections che
lavorano sulle liste a selezione multipla.

23.3.2 wx.CheckListBox.

Una versione più complessa dello stesso widget è wx.CheckListBox: in questo caso a ciascuna voce
della lista è associata una casella cliccabile wx.CheckBox. Di conseguenza le voci si possono non
solo selezionare, ma anche «spuntare». Questo widget è una sotto-classe di wx.ListBox, e quindi
ne eredita stili e metodi. In teoria è quindi possibile creare un wx.CheckListBox a scelta multipla:
in pratica però sarebbe solo disorientante per l’utente, e conviene limitarsi alla selezione singola. Un
wx.CheckListBox a selezione singola equivale in sostanza a un wx.ListBox multiplo più sicuro: la

23.3. Widget con liste di opzioni. 98

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

selezione avviene spuntando la casella, e l’utente non corre il rischio di perderla per un clic fuori
posto.

L’interfaccia di wx.CheckListBox aggiunge alcuni metodi dedicati a gestire le voci spuntate: wx.
CheckListBox.Get|SetCheckedStrings accettano e restituiscono un elenco di voci della lista
(non indici, quindi); wx.CheckListBox.Get|SetCheckedItems fanno lo stesso ma lavorano con
gli indici; IsChecked(index) controlla se una voce è spuntata. L’evento caratteristico emesso è
wx.EVT_CHECKLISTBOX.

23.3.3 wx.Choice.

Questo widget è il classico elenco drop-down che siamo abituati a vedere ovunque: in pratica, è un
wx.ListBox a scelta singola, che mostra solo la voce selezionata in quel momento.

L’interfaccia è identica a quella di un normale wx.ListBox, tranne che per l’impossibilità di renderlo
a scelta multipla. Il widget emette un evento caratteristico wx.EVT_CHOICE

23.3.4 wx.ComboBox.

Questo widget combina insieme un wx.Choice e una casella di testo wx.TextCtrl: in pratica l’utente
può selezionare una voce della lista, oppure inserire lui stesso una stringa di testo. L’aspetto del
wx.ComboBox non è omogeneo per tutte le piattaforme: in Windows è possibile passare lo stile wx.
CB_SIMPLE al costruttore per utilizzare un normale wx.ListBox invece della lista drop-down. Esiste
anche uno stile wx.CB_READONLY che non permette all’utente di inserire delle voci nuove, forzando
il widget a comportarsi in sostanza come un wx.Choice con una casella di testo. Rimandiamo alla
documentazione per i dettagli delle varie implementazioni.

Un wx.ComboBox emette il suo evento caratteristico wx.EVT_COMBOBOX quando l’utente e�ettua
una scelta, ma emette anche gli eventi di una casella di testo: wx.EVT_TEXT ed eventualmente
wx.EVT_TEXT_ENTER (se abbiamo inizializzato il widget con lo stile wx.TE_PROCESS_ENTER).

L’interfaccia di wx.ComboBox è naturalmente simile a quella di un wx.ListBox, con l’aggiunta di
metodi tipici dei wx.TextCtrl come wx.<Window>.Get|SetValue.

Nell’esempio che segue mostriamo un wx.ComboBox che aggiunge automaticamente valori alla lista
quando l’utente dà <invio>. Anche per variare rispetto allo schema che abbiamo usato �nora, scri-
viamo qui una sotto-classe specializzata di wx.ComboBox dove gestiamo la meccanica «interna» della
lista, ovvero il meccanismo di popolamento che si innesca in seguito a un wx.EVT_TEXT_ENTER. Il
comportamento da tenere in seguito a una selezione (wx.EVT_COMBOBOX), d’altra parte, è più appro-
priato che sia deciso all’interno della �nestra che ospita il nostro widget, e quindi lo lasciamo fuori
dalla sotto-classe.

class MyCombo(wx.ComboBox):
def __init__(self, *args, **kwargs):

kwargs['style'] = wx.CB_DROPDOWN|wx.TE_PROCESS_ENTER|wx.CB_SORT ¶
wx.ComboBox.__init__(self, *args, **kwargs)
self.Bind(wx.EVT_TEXT_ENTER, self.on_enter)

def on_enter(self, evt):
txt = self.GetValue().strip() ·
if txt and txt not in self.GetItems():

self.Append(txt)
self.SetValue('') ·

class MainFrame(wx.Frame):
def __init__(self, *args, **kwargs):

(continua...)

23.3. Widget con liste di opzioni. 99

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

(...segue)

wx.Frame.__init__(self, *args, **kwargs)
panel = wx.Panel(self)
self.cb = MyCombo(panel, choices=['foo', 'bar', 'baz'],

pos=(10, 10), size=(150, -1)) ¸
self.cb.Bind(wx.EVT_COMBOBOX, self.on_combo)

def on_combo(self, evt):
print(self.cb.GetString(self.cb.GetSelection()))

Per prima cosa, una piccola ineleganza: nella nostra sotto-classe, per fare prima, forziamo il pa-
rametro style dietro le quinte (¶), mantenendo in apparenza la stessa signature di wx.ComboBox.
Questo è cattivo design OOP, beninteso. Bisognerebbe scrivere una API speci�ca per MyCombo, e
documentarla.

Per il resto, il codice si spiega quasi da sé. Il nostro widget ha lo stile wx.TE_PROCESS_ENTER (¶),
senza il quale non potrebbe processare l’evento relativo al tasto <invio>. Gli diamo anche lo stile
wx.CB_SORT per fargli ordinare automaticamente le nuove voci. Si noti anche l’utilizzo dei consueti
metodi wx.<Window>.Get|SetValue (·) che manipolano la casella di testo interna al wx.ComboBox.
In�ne, un dettaglio: la larghezza naturale di un wx.ComboBox è quella della sua voce interna più lun-
ga. Abbiamo dovuto speci�care il parametro size del costruttore (¸) per renderlo più maneggevole:
150 pixel di larghezza, altezza di default (-1). Naturalmente, se avessimo usato i sizer (pagina 103)
invece del posizionamento assoluto, il problema si sarebbe risolto da solo.

23.3.5 Associare client data alle opzioni.

I widget «a lista» che abbiamo presentato �n qui sono concepiti per mostrare all’utente una serie
di opzioni relativamente corta e statica. Se abbiamo bisogno di mostrare liste più complesse, wx.
ListCtrl o�re molta più �essibilità.

Tuttavia anche questi widget o�rono un minimo supporto per la logica MCV: mantenere la View
(ovvero, i dati presentati) separata da un Model sottostante (i dati veri). La classe wx.ItemContainer,
da cui derivano, implementa il concetto di client data da associare agli elementi della lista. In pratica
si tratta di un oggetto arbitrario che il widget non mostrerà mai all’utente, ma che può contenere
qualsiasi ulteriore informazione sulla speci�ca voce di un elenco.

L’interfaccia per usare i client data è semplice, ed è comune a tutti i widget appena visti:

• wx.ItemContainer.Append(item, clientData) ha un secondo argomento opzionale
clietData che ci consente di speci�care i dati «nascosti» di un elemento, al momento di
inserirlo nella lista;

• in modo analogo funziona wx.ItemContainer.Insert(item, pos, clientData);

• wx.ItemContainer.GetClientData(n) recupera il client data dello n-esimo elemento;

• wx.ItemContainer.SetClientData(n, data) assegna un client data allo n-esimo elemento.

Possiamo usare i client data per conservare qualsiasi riferimento vogliamo al Model sottostante, se
ne abbiamo uno: per esempio, l’id univoco di una riga di database. In questo modo possiamo
disaccoppiare i dati veri dal modo, variabile, in cui i dati sono presentati.

Consideriamo per esempio un wx.ListBox che elenca una serie di nomi, che supponiamo siano
estratti da un database: mentre noi presentiamo all’utente solo il nome, memorizziamo tuttavia l’Id
della riga del database nel client data associato. In questo modo, quando l’utente seleziona un nome,
noi recuperiamo facilmente l’Id e possiamo usarlo per ulteriori richieste al database (per esempio
per vedere i «dettagli del contatto» etc.):

23.3. Widget con liste di opzioni. 100

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

per es. in seguito a una query "SELECT id, name FROM names..."
all_names = ((12, 'Giorgio'), (7, 'Paola'), (25, 'Giuseppe'), ...)

class MainFrame(wx.Frame):
def __init__(self, *args, **kwargs):

wx.Frame.__init__(self, *args, **kwargs)
self.namelist = wx.ListBox(self)
for id, name in all_names:

self.namelist.Append(name, id)
self.namelist.Bind(wx.EVT_LISTBOX, self.on_select)

def on_select(self, event):
id = self.namelist.GetClientData(event.GetSelection())
o direttamente: id = event.GetClientData()

23.4 wx.Slider.

Questa classe rappresenta un comune slider, e o�re all’utente la scelta tra un range di valori nume-
rici consecutivi. Il suo utilizzo è molto semplice: il costruttore accetta gli argomenti minValue e
maxValue per determinare l’intervallo di azione, e value per impostare il valore iniziale. Le comuni
operazioni wx.<Window>.Get|SetValue, che accettano e restituiscono numeri interi possono essere
utilizzate per leggere e impostare il valore del widget. Per esempio,

slider = wx.Slider(parent, minValue=-10, maxValue=10, value=0,
style=wx.SL_HORIZONTAL)

disegna uno slider orizzontale con valori compresi tra 10 e -10.

Gli stili disponibili sono diversi, e invitiamo a leggere l’elenco completo nella documentazione. I
due più comuni sono wx.SL_HORIZONTAL e wx.SL_VERTICAL che determinano l’orientamento dello
slider. L’evento caratteristico è wx.EVT_SLIDER, che viene emesso ogni volta il valore del widget
cambia.

23.5 wx.SpinButton e wx.SpinCtrl.

Concludiamo questo capitolo con due widget che, a di�erenza dei precedenti, non presentano una
lista di opzioni ma permettono di selezionare un numero intero compreso in un intervallo. In questo
sono più simili a wx.Slider, con la di�erenza che occupano meno spazio e sono più adatti quando
il range è molto grande.

La classe wx.SpinButton rappresenta la versione più semplice, e disegna semplicemente due piccoli
pulsanti a forma di freccia, senza nessuna indicazione visibile del valore numerico attuale. È adatto
in pratica solo come elemento di un layout più articolato, dove altri widget si incaricano di restituire
all’utente un e�etto visibile della sua azione sui pulsanti.

Un wx.SpinCtrl aggiunge alle due frecce un wx.TextCtrl «sincronizzato» per visualizzare il valore.
L’utente può anche immettere un numero direttamente nella casella di testo: i valori non validi sono
respinti automaticamente. Nella pratica, un wx.SpinCtrl viene spesso usato con la funzione di una
normale casella di testo per valori numerici: anche se i pulsanti sono piuttosto scomodi e l’utente
non li usa quasi mai, il vantaggio è comunque che wx.SpinCtrl o�re una pre-validazione dei valori
immessi. Non è possibile inserire qualcosa di diverso da un numero, e bisogna rispettare l’intervallo
pre�ssato. Naturalmente wxPython dispone di strumenti più ra�nati (come i masked controls) per
questi compiti: ma un wx.SpinCtrl è facile da usare.

23.4. wx.Slider. 101

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

In modo simile a uno slider il costruttore di wx.SpinCtrl accetta i parametri min, max e initial
per determinare l’intervallo e il valore iniziale. Si noti però che il costruttore di wx.SpinButton
non accetta questi parametri: è comunque possibile, per entrambi i widget, usare le interfacce wx.
<Window>.SetMax, wx.<Window>.SetMin e wx.<Window>.SetValue per controllare l’intervallo di
azione. Se non impostiamo nessun limite, un wx.SpinButton è libero di �uttuare lungo il range
degli interi con segno disponibile sulla piattaforma.

Un wx.SpinButton dispone di alcuni stili, tra cui wx.SP_HORIZONTAL e wx.SP_VERTICAL per de-
terminarne l’orientamento. Il wx.SpinCtrl supporta anche alcuni stili di wx.TextCtrl, tra cui
wx.TE_PROCESS_ENTER che gli permette di essere sensibile alla pressione del tasto <invio>.

Gli eventi caratteristici emessi sono wx.EVT_SPIN e wx.EVT_SPINCTRL.

23.5. wx.SpinButton e wx.SpinCtrl. 102

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

43
I validatori, prima parte.

La validazione dei dati, ovvero garantire che i dati immessi dall’utente siano conformi alle regole del
dominio applicativo del nostro programma, è un processo delicato: wxPython ci viene incontro con
uno strumento apposito, la classe wx.Validator che ha due funzionalità complementari:

• convalidare i dati;

• trasferire i dati dentro e fuori da una �nestra di dialogo.

Possiamo usare i validatori anche solo per una di queste due funzioni o per entrambe, a nostro piace-
re. Dedichiamo questo capitolo a spiegare la funzione di validazione, e il successivo al trasferimento
dei dati.

wxClassic: In wxPython Classic la classe da usare era wx.PyValidator, che in Phoenix è ormai
deprecata insieme alle molte classi «Py» che un tempo o�rivano funzionalità in più.

43.1 Come scrivere un validatore.

Occorre semplicemente sotto-classare wx.Validator. Ecco un esempio da manuale: questo è un
validatore che si può applicare a una casella di testo, e che garantisce che l’utente non la lasci vuota:

class NotEmptyValidator(wx.Validator):
def Clone(self): return NotEmptyValidator() ¶

def Validate(self, ctl):
win = self.GetWindow() ¹
val = win.GetValue().strip()
if val == '':

return False ·
else:

return True ¸

La prima riga è boilerplate necessario (¶). wx.Validator.Clone deve esserci necessariamente, e de-
ve restituire una istanza dello stesso validatore. La parte interessante è wx.Validator.Validate:
sovrascriviamo questo metodo per fare la nostra validazione: dobbiamo restituire True (·) se la va-
lidazione ha successo, False (¸) altrimenti. Dall’interno del validatore è possibile risalire a un’istan-
za del widget che stiamo validando, chiamando wx.Validator.GetWindow (¹). In e�etti il secondo,
necessario, parametro di wx.Validator.Validate punta al parent del widget associato.

253

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

Il costruttore di un validatore, di norma, non vuole nessun parametro. Tuttavia niente impedisce
di passare parametri extra alle sotto-classi. Per esempio, questo validatore garantisce che il valore
immesso non sia in una bad-list di parole proibite:

class NotInBadListValidator(wx.Validator):
def __init__(self, badlist):

wx.Validator.__init__(self)
self._badlist=badlist

def Clone(self): return NotInBadListValidator(self._badlist) ¶

def Validate(self, ctl):
win = self.GetWindow()
val = win.GetValue().strip()
return val not in self._badlist

Non dimentichiamoci di riportare i parametri correttamente anche in wx.Validator.Clone (¶):
anche il boiledplate richiede qualche attenzione.

43.1.1 Validazione e validazione a cascata.

Una volta scritto, il validatore si applica al widget che intendiamo validare, al momento della sua crea-
zione, passandolo direttamente al costruttore (come parametro validator). Ovviamente possiamo
usare diverse istanze dello stesso validatore per validare più widget. Ecco un esempio:

class YourNamePanel(wx.Panel):
def __init__(self, *args, **kwargs):

wx.Panel.__init__(self, *args, **kwargs)
self.first_name = wx.TextCtrl(self,

validator=NotEmptyValidator()) ¶
self.family_name = wx.TextCtrl(self,

validator=NotEmptyValidator()) ·

s = wx.FlexGridSizer(2, 2, 5, 5)
s.AddGrowableCol(1)
s.Add(wx.StaticText(self, -1, 'nome:'),

0, wx.ALIGN_CENTER_VERTICAL)
s.Add(self.first_name, 1, wx.EXPAND)
s.Add(wx.StaticText(self, -1, 'cognome:'),

0, wx.ALIGN_CENTER_VERTICAL)
s.Add(self.family_name, 1, wx.EXPAND)
self.SetSizer(s)
s.Fit(self)

class MainFrame(wx.Frame):
def __init__(self, *args, **kwargs):

wx.Frame.__init__(self, *args, **kwargs)
p = wx.Panel(self)
self.your_name = YourNamePanel(p)
validate = wx.Button(p, -1, 'valida')
validate.Bind(wx.EVT_BUTTON, self.on_validate)

s = wx.BoxSizer(wx.VERTICAL)
s.Add(self.your_name, 1, wx.EXPAND)
s.Add(validate, 0, wx.EXPAND|wx.ALL, 5)
p.SetSizer(s)

(continua...)

43.1. Come scrivere un validatore. 254

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

(...segue)

def on_validate(self, event):
ret = self.your_name.Validate()
if ret == False:

wx.MessageBox('Non valido')

Come si vede (¶ e ·), due caselle di testo sono collegate al nostro validatore. Possiamo testare anche
l’altro che abbiamo scritto: basta cambiare la riga ¶ con qualcosa come:

invalid_names = ('Foo', 'Bar', 'Baz')
self.first_name = wx.TextCtrl(self,

validator=NotInBadListValidator(invalid_names))

Una volta che un widget ha un validatore assegnato, è possibile validarne il contenuto chiamando
manualmente wx.Window.Validate su di esso. Questo metodo chiama a sua volta wx.Validator.
Validate sul validatore associato al widget, che esegue la validazione. Tuttavia ci sono delle scorcia-
toie possibili. Notiamo infatti che nel nostro esempio abbiamo incorporato le caselle di testo in un
panel: questo in parte perché è buona pratica raggruppare le funzionalità della GUI in piccoli «mat-
toni» coerenti, come abbiamo già detto (pagina 76). In questo caso speci�co però il panel ci torna utile
soprattutto per dimostrare la validazione «a cascata»: quando chiamiamo wx.Window.Validate sul
panel, in e�etti vengono validati tutti i widget �gli del panel (purché abbiano un validatore associato,
naturalmente). wx.Window.Validate chiamato sul panel restituisce True solo se tutti i �gli passano
la validazione, False altrimenti.

Possiamo assegnare un validatore a un widget anche dopo che è stato creato, chiamando wx.Window.
SetValidator. Questo talvolta si rende necessario perché alcuni widget non prevedono il parametro
validator nel costruttore (occorre sempre controllare la documentazione in merito). Se chiamiamo
wx.Window.SetValidator su un widget che ha già un validatore, ogni volta l’ultimo sostituisce il
precedente.

43.1.2 Quando fallisce una validazione a cascata.

Nel caso di validazione a cascata, abbiamo però un problema aggiuntivo: il processo di validazione si
ferma non appena uno dei test fallisce, ma il valore restituito False non ci dice nulla di quale widget
esattamente non ha superato la validazione.

Quando è necessario dare all’utente questa informazione, occorre far sì che sia il validatore stes-
so a occuparsene, invece del codice chiamante (che riceve solo il False di ritorno). Per esempio,
possiamo riscrivere il nostro NotEmptyValidator in questo modo:

class NotEmptyValidator(wx.Validator):
def Clone(self): return NotEmptyValidator()

def Validate(self, ctl):
win = self.GetWindow()
val = win.GetValue().strip()
if val == '':

wx.MessageBox('Bisogna inserire del testo')
return False

else:
return True

43.1. Come scrivere un validatore. 255

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

Questo però non è ancora su�ciente: se più caselle di testo hanno lo stesso validatore, talvolta si vuole
sapere esattamente quale non funziona. Possiamo fare in molti modi, per esempio modi�cando
anche il colore del widget incriminato:

class NotEmptyValidator(wx.Validator):
def Clone(self): return NotEmptyValidator()

def Validate(self, ctl):
win = self.GetWindow()
val = win.GetValue().strip()
if val == '':

win.SetBackgroundColour(wx.YELLOW)
win.Refresh() # necessario!
wx.MessageBox('Bisogna inserire del testo')
return False

else:
assicuriamoci di impostare il colore normale
col = wx.SystemSettings.GetColour(wx.SYS_COLOUR_WINDOW)
win.SetBackgroundColour(col)
win.Refresh()
return True

Un’altra soluzione potrebbe essere recuperare il name del widget, con una tecnica che già conosciamo
(pagina 91):

class NotEmptyValidator(wx.Validator):
def Clone(self): return NotEmptyValidator()

def Validate(self, ctl):
win = self.GetWindow()
val = win.GetValue().strip()
if val == '':

msg = '%s : manca del testo!' % win.GetName()
wx.MessageBox(msg)
return False

else:
return True

Naturalmente questo sistema funziona solo se noi abbiamo in precedenza assegnato un parametro
name signi�cativo a ogni widget a cui associamo il validatore. Nel nostro esempio sarebbe:

self.first_name = wx.TextCtrl(self, name='Nome',
validator=NotEmptyValidator())

self.family_name = wx.TextCtrl(self, name='Cognome',
validator=NotEmptyValidator())

Il parametro name del costruttore di un widget non è di solito molto utile. In Python si possono
passare gli oggetti stessi come parametri, e questo rende super�uo contrassegnare ciascun widget
con un identi�cativo statico da passare in giro tra le varie funzioni; lo stesso discorso vale per gli
Id (pagina 65). Questo però è uno dei casi in cui invece le API wx.Window.Get|SetName possono
tornare utili per aggiungere un «nickname» piacevole al widget da presentare all’utente in caso di
necessità.

43.1. Come scrivere un validatore. 256

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

43.1.3 La validazione ricorsiva.

La validazione a cascata si limita ai soli �gli diretti, ma è possibile fare in modo che venga appli-
cata ricorsivamente anche ai �gli dei �gli, e così via. Per fare questo occorre settare lo stile wx.
WX_EX_VALIDATE_RECURSIVELY. Questo è un extra-style (pagina 71), e quindi va settato dopo la
creazione, usando il metodo wx.Window.SetExtraStyle.

Facciamo degli esperimenti con il codice che abbiamo già scritto: per prima cosa, invece di validare
il panel, proviamo a validare direttamente il frame:

class MainFrame(wx.Frame):
...

def on_validate(self, event):
ret = self.Validate() # era: ret = self.your_name.Validate()
if ret == False:

wx.MessageBox('Non valido')

Come previsto, la validazione non avviene. La catena dei parent (pagina 62) in e�etti è lunga: do-
po il frame c’è il panel contenitore (quello che nel nostro codice chiamiamo p), quindi l’istanza di
YourNamePanel, e �nalmente le caselle di testo che vogliamo validare.

Tuttavia, proviamo adesso ad aggiungere l’extra-style:

class MainFrame(wx.Frame):
def __init__(self, *args, **kwargs):

wx.Frame.__init__(self, *args, **kwargs)
self.SetExtraStyle(wx.WS_EX_VALIDATE_RECURSIVELY)
...

Ecco che la validazione avviene di nuovo.

43.2 La validazione automatica dei dialoghi.

Fin qui ci siamo limitati a chiamare wx.Window.Validate manualmente per e�ettuare la validazio-
ne. L’unico automatismo possibile è che, chiamandolo su un panel, si possono validare a cascata tutti
i �gli diretti (ed eventualmente anche i nipoti etc., usando la validazione ricorsiva).

Le �nestre di dialogo (pagina 76), tuttavia, hanno una marcia in più. È possibile validare automatica-
mente un dialogo, quando è dotato di un pulsante con Id prede�nito (pagina 67) wx.ID_OK. In questo
caso, quando l’utente fa clic sul pulsante wx.ID_OK, il dialogo chiama automaticamente wx.Window.
Validate su se stesso, prima di chiudersi. Se i widget contenuti nel dialogo hanno dei validatori
assegnati, questi entreranno in funzione.

Riscriviamo l’esempio che abbiamo seguito �nora, trasportato in un dialogo con validazione
automatica:

class NotEmptyValidator(wx.Validator):
def Clone(self): return NotEmptyValidator()
def TransferToWindow(self): return True ¶
def TransferFromWindow(self): return True ¶

def Validate(self, ctl):
win = self.GetWindow()
val = win.GetValue().strip()
if val == '':

(continua...)

43.2. La validazione automatica dei dialoghi. 257

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

(...segue)

msg = '%s : manca del testo!' % win.GetName()
wx.MessageBox(msg)
return False

else:
return True

class NameDialog(wx.Dialog):
def __init__(self, *args, **kwargs):

wx.Dialog.__init__(self, *args, **kwargs)
self.first_name = wx.TextCtrl(self, name='Nome',

validator=NotEmptyValidator())
self.family_name = wx.TextCtrl(self, name='Cognome',

validator=NotEmptyValidator())
validate = wx.Button(self, wx.ID_OK, 'valida') ·
cancel = wx.Button(self, wx.ID_CANCEL, 'annulla') ·

s = wx.FlexGridSizer(2, 2, 5, 5)
s.AddGrowableCol(1)
s.Add(wx.StaticText(self, -1, 'nome:'),

0, wx.ALIGN_CENTER_VERTICAL)
s.Add(self.first_name, 1, wx.EXPAND)
s.Add(wx.StaticText(self, -1, 'cognome:'),

0, wx.ALIGN_CENTER_VERTICAL)
s.Add(self.family_name, 1, wx.EXPAND)

s1 = wx.BoxSizer()
s1.Add(validate, 1, wx.EXPAND|wx.ALL, 5)
s1.Add(cancel, 1, wx.EXPAND|wx.ALL, 5)

s2 = wx.BoxSizer(wx.VERTICAL)
s2.Add(s, 1, wx.EXPAND|wx.ALL, 5)
s2.Add(s1, 0, wx.EXPAND)
self.SetSizer(s2)
s2.Fit(self)

class MainFrame(wx.Frame):
def __init__(self, *args, **kwargs):

wx.Frame.__init__(self, *args, **kwargs)
b = wx.Button(self, -1, 'mostra dialogo', pos=(10, 10))
b.Bind(wx.EVT_BUTTON, self.on_clic)

def on_clic(self, event):
with NameDialog(self) as dlg:

if dlg.ShowModal() == wx.ID_OK: ¸
print('clic su OK, validazione automatica')

else: ¹
print('clic su Annulla, nessuna validazione')

In primo luogo, notiamo che purtroppo il boilerplate necessario per il validatore è aumentato un po”:
adesso occorre anche sovrascrivere «a vuoto» i metodi wx.Validator.TransferFrom|ToWindow
(¶) di cui non abbiamo nessun bisogno al momento, visto che servono per il trasferimento dei dati
(lo vedremo nel prossimo capitolo). Purtroppo però quando si tratta di validare una �nestra di dialo-
go, wxPython se li aspetta in ogni caso, e si lamenta se non li trova. Il panel YourNamePanel è andato
via, e i widget da validare sono stati inseriti direttamente nel dialogo NameDialog: sappiamo infat-
ti che un wx.Dialog ha già un suo panel incorporato (pagina 76). Questo è un dettaglio importante:

43.2. La validazione automatica dei dialoghi. 258

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

ricordiamo infatti che la validazione automatica avverrà «a cascata» partendo dalla �nestra di dialogo
(ovvero chiamando wx.Window.Validate su questa), e quindi si arresterà ai widget del panel incor-
porato. Se il nostro layout prevede dei sotto-panel che contengono i widget da validare, ricordiamo
di settare l’extra-style wx.WX_EX_VALIDATE_RECURSIVELY sulla �nestra, per raggiungerli con la va-
lidazione ricorsiva. Abbiamo aggiunto in�ne un frame top-level MainFrame solo per esempli�care il
modo di chiamare il dialogo e distruggerlo (automaticamente grazie all’uso del context manager).

Fatte queste premesse, passiamo alle cose più interessanti. Come abbiamo già visto parlando degli Id
(pagina 67), i due pulsanti «Ok» e «Annulla» (·) sanno già che cosa fare, senza bisogno di collegarli a
un evento. Entrambi tentano di chiudere il dialogo, ma quello contrassegnato con wx.ID_OK, prima,
esegue la validazione automatica. Tutti i widget nel dialogo vengono validati e se la validazione fallisce
il dialogo non si chiude. Questo vuol dire che, �nché la validazione non ha successo o l’utente non
preme «Annulla», il codice chiamante (il callback on_clic) resta bloccato. Ecco un esempio chiaro
in cui non c’è modo di a�dare al codice chiamante il compito di informare l’utente sul risultato della
validazione: sono i validatori stessi a doverlo fare, e che quindi devono avere il codice necessario per
questo compito.

Il codice chiamante prosegue la sua corsa quando la validazione ha successo, il dialogo si chiude e
wx.Dialog.ShowModal restituisce il codice corrispondente al pulsante premuto. Se adesso il codice
è wx.ID_OK (¸), si può stare sicuri che i dati sono validi. Se il codice è wx.ID_CANCEL (¹), allora la
validazione non è avvenuta e i dati non sono sicuri: in questo caso è ovviamente inutile recuperarli
dal dialogo. Questo è un dettaglio importante: la validazione avviene solo in caso di wx.ID_OK. Se
si desidera che i widget siano validati sempre, qualunque pulsante sia stato premuto, allora bisogna
tornare alla validazione manuale: collegare i pulsanti a un evento, e chiamare wx.Window.Validate
nel callback relativo.

43.3 Validazione e catena degli eventi.

Abbiamo fatto cenno di sfuggita nel capitolo sugli handler (pagina 169) che la validazione interviene
in un momento ben preciso della linea di propagazione dell’evento: il comportamento di default che
wxPython produce nel metodo wx.EvtHandler.TryAfter. È possibile inserire un handler perso-
nalizzato nella catena degli eventi e sovrascrivere wx.EvtHandler.TryAfter per intervenire al mo-
mento preciso in cui avviene la validazione. Ecco un esempio minimo che si limita a tener traccia
dei vari passaggi:

class NotEmptyValidator(wx.Validator):
def Clone(self): return NotEmptyValidator()
def TransferToWindow(self): return True
def TransferFromWindow(self): return True

def Validate(self, ctl):
win = self.GetWindow()
val = win.GetValue().strip()
if val == '':

print('nel validatore: validazione fallita')
return False

else:
print('nel validatore: validazione riuscita')
return True

class MyHandler(wx.EvtHandler):
def TryAfter(self, evt):

if evt.GetEventType() == wx.wxEVT_BUTTON:
print('in EvtHandler.TryAfter, prima del gestore wxPython')

(continua...)

43.3. Validazione e catena degli eventi. 259

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

(...segue)

qui avviene la validazione
ret = wx.EvtHandler.TryAfter(self, evt)
print('in EvtHandler.TryAfter, dopo il gestore wxPython')
return ret

else:
return wx.EvtHandler.TryAfter(self, evt)

class TestDialog(wx.Dialog):
def __init__(self, *args, **kwargs):

wx.Dialog.__init__(self, *args, **kwargs)
self.txt = wx.TextCtrl(self, pos=(10, 10),

validator=NotEmptyValidator())
self.validate = wx.Button(self, wx.ID_OK, 'valida', pos=(10, 50))
self.validate.PushEventHandler(MyHandler())
self.Bind(wx.EVT_WINDOW_DESTROY, self.on_destroy)

def on_destroy(self, event):
self.validate.PopEventHandler()
event.Skip()

class MainFrame(wx.Frame):
def __init__(self, *args, **kwargs):

wx.Frame.__init__(self, *args, **kwargs)
b = wx.Button(self, -1, 'mostra dialogo', pos=(10, 10))
b.Bind(wx.EVT_BUTTON, self.on_clic)

def on_clic(self, event):
dlg = TestDialog(self)
dlg.ShowModal()
dlg.Destroy()

43.4 Consigli sulla validazione.

Terminiamo questo primo capitolo sui validatori con alcune ri�essioni e consigli sulle tecniche più
comuni.

43.4.1 Composizione di validatori.

A prima vista i validatori sembrano oggetti limitati: per esempio, non possono essere combinati
tra loro per eseguire diversi test su un unico widget. Non è possibile chiamare diversi validatori uno
dopo l’altro sullo stesso widget. Così ogni validatore dovrebbe avere nel suo metodo wx.Validator.
Validate tutti i test che servono per un dato widget in una data circostanza. Questo limita il riutilizzo
del validatore per diversi widget in condizioni di�erenti.

In realtà questa «limitazione» dipende di solito da un utilizzo errato dei validatori. L’errore è pensare
che questi siano il posto in cui scrivere e�ettivamente i test di validazione. Dovrebbero essere invece
solo il punto di raccordo �nale tra la nostra suite di test di validazione e il widget che dobbiamo
validare. Il codice e�ettivamente contenuto in wx.Validator.Validate dovrebbe essere breve e
avere solo quanto basta a gestire i dati in partenza e le risposte in arrivo. Per esempio qualcosa
come:

def Validate(self, ctl):
val = self.GetWindow().GetValue()

(continua...)

43.4. Consigli sulla validazione. 260

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

(...segue)

if all([test_1(val), test_2(val), test_3(val)]):
return True

else:
informo l'utente che la validazione è fallita
return False

Così è possibile scrivere separatamente i vari test_1, test_2, etc. in modo «atomico» e generale,
e poi combinarli tra loro nel validatore a seconda dei casi (anche l’ordine di esecuzione si può natu-
ralmente controllare). Nella peggiore delle ipotesi si dovrà scrivere un breve validatore per ciascun
widget da validare: ogni validatore rappresenta una catena di test da eseguire.

In teoria si può andare anche oltre e scrivere un validatore general purpose con un numero variabile
di test passati come parametri:

class GroupTestValidator(wx.Validator):
def __init__(self, *tests):

wx.Validator.__init__(self)
self._tests = tests

def Clone(self): return GroupTestValidator(self._tests)

def Validate(self, ctl):
val = self.GetWindow().GetValue()
if all([test(val) for test in self._tests]):

return True
else:

return False

che poi può essere assegnato a diversi widget con diversi parametri:

text_1 = wx.TextCtrl(..., validator=GroupTestValidator(test_1, test_2))
text_2 = wx.TextCtrl(..., validator=GroupTestValidator(test_1, test_3, test_4))

Naturalmente non bisogna esagerare: un singolo validatore «dinamico» non può certo bastare per
tutte le esigenze della nostra applicazione.

43.4.2 Validazione a cascata.

Sulla validazione a cascata, bisogna dire che da un lato è comoda, dall’altro introduce dei limiti. Pri-
ma di tutto, la validazione si ferma al primo widget che fallisce, ma ciò impedisce all’utente di sapere
se ci sono altri errori dopo il primo. È frustrante correggere un errore, premere di nuovo «invio», e
scoprire che c’era un errore anche nel campo successivo. Se vogliamo che tutti i widget siano validati
comunque, non c’è niente da fare: occorre rinunciare alla validazione a cascata e validare a mano
tutti i widget. Fortunatamente in Python tutto diventa più semplice:

failed = []
for widget in (self.nome, self.cognome):

if not widget.Validate():
failed.append(widget)

poi presento la lista degli errori, etc. etc.

43.4.3 Validazione a seconda del contesto.

Un altro limite dei validatori è che sono concepiti principalmente per validare un widget senza tenere
conto del contesto (per esempio, del valore di altri widget). Beninteso, il «contesto» può essere

43.4. Consigli sulla validazione. 261

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

calcolato e passato al validatore come argomento aggiuntivo:

class ContextValidator(wx.Validator):
def Clone(self): return ContextValidator()

def Validate(self, ctl, context):
val = self.GetWindow().GetValue()
if all([test_1(val, context), test_2(val, context), ...]):

...

e quindi, nel codice chiamante:
context = something() # per esempio, il valore di un altro widget
retcode = widget.Validate(context)

Questo ovviamente rende impossibile ogni tipo di validazione automatica, ma abbiamo visto che
con Python in genere non è un problema.

Ma c’è di più: sempre grazie alla �essibilità di Python, possiamo anche far calcolare il contesto
dinamicamente al validatore stesso. Possiamo spingerci a cose non proprio ortodosse come questo
esempio, dove un validatore ammette che una casella di testo sia vuota solo se un’altra è piena:

class AlternateEmptyValidator(wx.Validator):
def __init__(self, context_getter):

wx.Validator.__init__(self)
un callable per ottenere il contesto
self.context_getter = context_getter

def Clone(self): return AlternateEmptyValidator(self.context_getter)

def Validate(self, ctl):
val = self.GetWindow().GetValue()
context_val = self.context_getter()
if context_val == val == '':

return False
return True

Questo validatore accetta come parametro un callable da chiamare all’occorrenza per ottenere il con-
testo di cui ha bisogno. Nel nostro caso, per esempio, il callable sarà il metodo GetValue di un altro
widget. Occorre avere l’accortezza di non usarlo così, naturalmente:

text_1 = wx.TextCtrl(..., validator=AlternateEmptyValidator(text_2.GetValue))
text_2 = wx.TextCtrl(..., validator=AlternateEmptyValidator(text_1.GetValue))

perché al momento di assegnare il validatore a text_1, text_2 non esiste ancora, e quindi neppure
text_2.GetValue! Tuttavia, può essere usato senza problemi in questo modo:

text_1 = wx.TextCtrl(...)
text_2 = wx.TextCtrl(...)
text_1.SetValidator(AlternateEmptyValidator(text_2.GetValue))
text_2.SetValidator(AlternateEmptyValidator(text_1.GetValue))

La cosa importante è che, grazie a Python, passiamo direttamente il callable GetValue come
argomento del validatore, lasciando a questi il compito di chiamarlo quando necessario.

43.4. Consigli sulla validazione. 262

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

43.4.4 Problemi con i masked controls.

I validatori non giocano bene con i masked controls: una famiglia di widget disponibili nel sub-package
wx.lib.masked, dotati di un loro sistema di validazione interno, separato. Quando un masked control
non è valido, produce un suo comportamento di default (per esempio si colora di giallo): ma siccome
non ha un validatore vero e proprio attaccato, è di�cile integrare questo suo comportamento in un
processo di validazione a cascata, per esempio.

43.4.5 Problemi con i widget limitati.

Una situazione analoga è quella che capita con i numerosi widget che, in wxPython, hanno la pos-
sibilità di limitare automaticamente i valori immessi. Per esempio, un wx.SpinCtrl può impostare
un massimo e un minimo. Un wx.ListBox o un wx.ComboBox si caricano con una lista di valori tra
cui scegliere, e così via. In questi casi la validazione, in un certo senso, è preventiva: l’utente non
può che inserire dati validi.

Non è detto che i validatori siano completamente fuori gioco in questo caso. Possiamo lasciare che
sia un validatore a caricare i dati in un wx.ComboBox, o impostare i limiti di un wx.SpinCtrl: è la
funzione di trasferimento dati che vedremo nel prossimo capitolo. In ogni caso, non è sempre facile
gestire con disinvoltura questo doppio canale di validazione, per cui certi widget sono controllati «a
priori» e altri «a posteriori».

43.4.6 Validazione ricorsiva.

Ancora qualche parola sulla validazione ricorsiva. In linea di principio sarebbe meglio non esagerare,
specialmente se applicata alle �nestre top-level che raggruppano (in vari panel) diverse macro-aree
della nostra applicazione. Quando chiamiamo wx.Window.Validate sulla �nestra perché vogliamo
validare un certo settore, contemporaneamente validiamo anche tutti gli altri. Nella migliore delle
ipotesi è una perdita di tempo; nella peggiore è un guaio, se in quel momento gli altri settori sono
in uno stato provvisoriamente inconsistente.

La cosa migliore è a�darsi al principio «ogni area, un panel» e validare i singoli panel, facendo a�-
damento sul fatto che i loro �gli diretti saranno i widget che davvero ci serve validare. Occasional-
mente, quando uno di questi panel-area ha una gerarchia più complessa (contiene altri panel, che
contengono i widget), allora possiamo settare wx.WX_EX_VALIDATE_RECURSIVELY solo per questi.

43.4.7 In conclusione: usare i validatori?

I validatori sono strumenti utili, ma può essere di�cile farli funzionare in modo armonico. Da
un lato, la loro praticità risalta soprattutto quando sono accoppiati alle �nestre di dialogo, con il
meccanismo della validazione a cascata e automatica. Basta fare clic su wx.ID_OK, e si ottiene gratis
la validazione di tutto quanto (e il trasferimento dei dati da e verso il dialogo, come vedremo). D’altra
parte però con un ciclo for in Python, anche la validazione manuale è molto agevole e consente
inoltre di personalizzare più accuratamente che cosa e quando validare. Inoltre, sempre grazie a
Python, è possibile scrivere validatori più generali e dinamici.

Anche dopo aver imparato a usare bene i validatori, potrebbe restare comunque un vago code smell,
come si dice in gergo. Il fatto è che i validatori sono uno dei componenti di wxPython che operano
nella zona grigia che, nella terminologia MCV, sta tra la View e il Controller della nostra applicazione.
Il disagio è anzi destinato ad aumentare quando, nel prossimo capitolo, useremo i validatori per
trasferire dati tra la View e il Model. Così wxPython, che idealmente dovrebbe servire a scrivere
solo il codice della View, in realtà scon�na in territori che forse avremmo voluto tenere più separati.
D’altra parte non è l’unico componente «di con�ne» che wxPython mette a disposizione: la scelta se
usarli resta nelle nostre mani.

43.4. Consigli sulla validazione. 263

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

In ultima analisi, i validatori sono uno strumento che wxPython ci propone per a�rontare un pro-
blema. Vanno senz’altro bene per i casi più semplici, e possono essere usati con successo anche
in scenari più di�cili: ma se non riusciamo ad armonizzarli nel nostro framework di validazione
complessivo, possiamo tranquillamente rinunciarvi.

43.4. Consigli sulla validazione. 264

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

49
Gestione delle eccezioni - prima parte.

A�rontiamo in questo e nel prossimo capitolo il problema complesso della gestione delle eccezioni
in un programma wxPython, che come vedremo è in qualche modo interconnesso con le osserva-
zioni sul logging che abbiamo fatto nei due capitoli precedenti. Potreste pensare che le eccezioni in
wxPython funzionano come in Python, ma come vedremo le cose non stanno proprio così. Un pro-
gramma wxPython è sempre il risultato dell’interazione di codice Python e codice C++ sottostante:
e anche le coppie meglio assortite talvolta non vanno d’accordo.

Nel caso speci�co della gestione delle eccezioni, ci sono tre aree problematiche:

1) le eccezioni Python non sono completamente libere di propagarsi in un programma
wxPython: ne derivano alcune trappole insidiose che bisogna saper evitare;

2) non esiste un meccanismo di traduzione tra eccezioni C++ ed eccezioni Python. . .

3) . . .ma servirebbe comunque solo �no a un certo punto, perché wxWidgets non usa le eccezioni
C++ per segnalare condizioni di errore. wxWidgets fa uso di varie formule di assert e/o di
allarmi emessi con il suo sistema di log interno. Esiste un meccanismo di traduzione degli assert
C++ in eccezioni Python, e come abbiamo visto nel capitolo precedente si possono escogitare
soluzioni per gestire meglio le scritture di log. Ma in entrambi i casi ci sono dei limiti.

A�rontiamo in questo capitolo il problema delle eccezioni Python. Il prossimo capitolo sarà dedicato
all’analisi delle condizioni di errore che possono originarsi dal codice C++ di wxWidgets.

49.1 Il problema delle eccezioni Python non catturate.

Non è di�cile accorgersi che in wxPython le eccezioni si comportano in modo anomalo. Un’ecce-
zione non intercettata, in un normale programma Python, si propaga �no in cima allo stack senza
trovare nessun except disposto a gestirla, �nché il gestore di default non termina il programma in-
viando il traceback dell’eccezione allo standard error (e quindi, tipicamente, alla shell che ha invocato
lo script).

In wxPython d’altra parte, un’eccezione non controllata non termina il programma:

class MainFrame(wx.Frame):
def __init__(self, *args, **kwargs):

wx.Frame.__init__(self, *args, **kwargs)
b = wx.Button(self, -1, 'clic')
b.Bind(wx.EVT_BUTTON, lambda evt: 1/0) # ops!

299

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

In questo esempio, ogni volta che clicchiamo sul pulsante si innesca una ZeroDivisionError
non gestita. Il traceback relativo compare in e�etti nello standard error (nella shell, quindi) ma
l’applicazione wxPython resta perfettamente funzionante.

Per capire questo bizzarro comportamento occorre tenere presente che, durante il ciclo di vita di
un’applicazione wxPython, il controllo dell’esecuzione passa di continuo da «strati» di codice Python
a «strati» di codice wxWidgets (C++). Per esempio, quando l’utente fa clic su un pulsante innesca
come sappiamo il complesso meccanismo dell’emissione di un evento e della ricerca di un gestore:
questa fase è controllata da wxWidgets (C++). Quando un handler per l’evento è stato trovato, viene
eseguito il callback relativo: questo in genere è codice che abbiamo scritto noi (Python). Quando il
callback è stato eseguito, il controllo ritorna a wx.App.MainLoop: questo è di nuovo codice C++. E
così via.

Ora, ecco il problema: una eccezione Python non può propagarsi oltre lo «strato» Python in cui
viene emessa. Non è possibile propagare un’eccezione Python attraverso il codice C++. Questo è un
problema di cui gli sviluppatori wxPython sono ben consapevoli: in teoria dovrebbe essere possibile
tradurre al volo una eccezione Python nella sua controparte C++ e viceversa, in modo da permettere
la propagazione libera tra i vari strati. In pratica però non è a�atto banale implementare questo
meccanismo: sono stati fatti dei tentativi, ma non si è mai approdati a nulla di de�nitivo.

E quindi? Che cosa succede quando l’eccezione Python si propaga �no al «con�ne» dello stra-
to in cui è stata generata, senza trovare nessun blocco try/except disposto a prendersene cu-
ra? Succede una cosa brutta ma inevitabile: il codice C++ immediatamente successivo rileva
che c’è una condizione di errore, chiama PyErr_Print per scriverlo nello standard error, e re-
setta l’errore. Quindi l’eccezione termina lì e non ha modo di propagarsi �no a raggiungere il
punto in cui l’interprete Python farebbe arrestare il programma. Noi possiamo vedere ugual-
mente il traceback nella shell o dovunque lo abbiamo re-indirizzato, come abbiamo visto (pagi-
na 278): ma questo solo perché è stato scritto lì da PyErr_Print, una delle API C di Python
(https://docs.python.org/3/c-api/exceptions.html#c.PyErr_Print).

In�ne, va detto che esiste un caso interessante in cui questo comportamento non si applica. Se
l’eccezione Python non controllata avviene prima ancora di aver chiamato wx.App.MainLoop, allora
e�ettivamente il programma si interromperà «come al solito»: questo perché, prima di entrare nel
main loop di wxPython, è ancora Python ad avere il controllo dell’applicazione. Di solito ci sono due
posti in cui un’eccezione Python può veri�carsi prima di entrare nel main loop: in wx.App.OnInit
e nello __init__ della �nestra principale dell’applicazione.

49.2 try/except in wxPython non funziona come ci aspettiamo.

Occorre essere consapevoli che il diverso comportamento delle eccezioni in wxPython può con-
durre a situazioni insolite per un programmatore Python. In Python «puro» possiamo intercettare
un’eccezione anche molto lontano dal punto in cui si è generata:

>>> def disastro():
... return 1/0 # ops!
...
>>> def produci_un_disastro():
... return disastro()
...
>>> def prepara_un_disastro():
... return produci_un_disastro()
...
>>> def salva_la_giornata():
... try:

(continua...)

49.2. try/except in wxPython non funziona come ci aspettiamo. 300

https://docs.python.org/3/c-api/exceptions.html#c.PyErr_Print

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

(...segue)

... return prepara_un_disastro()

... except ZeroDivisionError:

... return "salvo per miracolo!"

...
>>> salva_la_giornata()
'salvo per miracolo!'

Questa non è una buona pratica di programmazione: ma si può comunque fare. In wxPy-
thon, invece, intercettare un’eccezione lontano dal punto di origine potrebbe non riuscire come ci
aspettiamo:

class MainFrame(wx.Frame):
def __init__(self, *args, **kwargs):

wx.Frame.__init__(self, *args, **kwargs)
p = wx.Panel(self)
b = wx.Button(p, -1, 'clic', pos=(10, 10))
b.Bind(wx.EVT_BUTTON, self.on_clic)
self.Bind(wx.EVT_SIZE, self.on_size) ¶

def on_clic(self, event):
print('Nel callback del pulsante...')
try:

self.SendSizeEvent() ¸
except ZeroDivisionError:

print('presa al volo!')

def on_size(self, event):
print('Nel callback di EVT_SIZE...')
event.Skip()
1/0 # ops! ·

Qui abbiamo collegato (¶) wx.EVT_SIZE a un callback che produce una eccezione Python non ge-
stita (·). Possiamo aspettarci, tutte le volte che ridimensioniamo la �nestra, di veder comparire il
traceback nella shell. La �nestra però si ridimensiona correttamente: a wxWidgets non interessa il
nostro codice problematico: �ntanto che chiamiamo wx.Event.Skip, l’handler di default dell’evento
continuerà a fare il suo mestiere. Per la precisione, un primo wx.EVT_SIZE viene emesso automa-
ticamente già al momento di creare la �nestra: quindi dovremmo vedere un traceback nella shell
proprio come prima cosa.

Quando però facciamo clic sul pulsante, ci aspettiamo una cosa diversa. Nel callback del pulsante noi
generiamo manualmente un wx.EVT_SIZE (¸): quindi il callback difettoso verrà di nuovo eseguito,
eccezione compresa. Questa volta però ci siamo premuniti, e abbiamo incluso la chiamata che genera
il wx.EVT_SIZE in un blocco try/except. Dunque, ciò che vedremo questa volta sarà il messaggio
«presa al volo!» nella shell, vero?

Purtroppo no. Il problema è che, tra lo strato di codice Python che innesca l’eccezione e lo strato
di codice Python pronto a intercettarla, c’è di mezzo un consistente strato di codice C++ che si
occupa del dispatch del wx.EVT_SIZE. E attraverso questo strato la nostra eccezione non passa. Il
risultato è che, quando il wx.EVT_SIZE si genera in seguito al clic sul pulsante, il ramo except che
abbiamo predisposto non sarà mai raggiunto dall’eccezione, a e noi non resterà che vedere comunque
il traceback nella shell.

Non esiste una soluzione generale di questo problema. La cosa migliore è attenersi al noto principio
di buon senso: le eccezioni dovrebbero essere intercettate il più vicino possibile al punto di emis-

49.2. try/except in wxPython non funziona come ci aspettiamo. 301

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

sione. In Python è una buona pratica di programmazione, ma in wxPython è un principio guida da
seguire con il massimo scrupolo.

49.3 Che cosa fare delle eccezioni non gestite.

Abbiamo visto che le eccezioni Python possono essere più di�cili da intercettare in un programma
wxPython, e abbiamo visto che le eccezioni non gestite non terminano prematuramente il program-
ma. Questo però ci lascia con una domanda: come dovremmo comportarci con queste eccezioni non
intercettate?

49.3.1 Il problema.

Prima di tutto, non dovrebbe esserci bisogno di dirlo: in un programma con interfaccia gra�ca,
pensato per l’utente �nale, le eccezioni non gestite sono bachi. Non dovrebbero esserci. Se capitano
in fase di sviluppo, nessun problema: si tiene d’occhio lo standard error nella shell, si legge lo stacktrace,
si corregge il baco.

Tuttavia, sappiamo che i bachi vengono fuori anche (o soprattutto!) quando ormai il programma è
«in produzione». È a questo punto che wxPython ci fa rischiare di più. In un normale programma
Python, un baco signi�ca che l’eccezione non gestita ferma il programma. L’utente non sarà felice e
forse l’uscita anomala lascerà i dati e qualche risorsa esterna in uno stato inconsistente. Almeno però
il problema è immediatamente visibile e il programma si arresta senza che il danno abbia modo di
propagarsi.

In un programma wxPython, d’altra parte, l’utente �nale non vede lo standard error e non ha modo
di accorgersi di nulla. Ecco uno scenario �n troppo comune (in pseudo-codice):

class Anagrafica(wx.Frame):
def __init__(...):

...
ok.Bind(wx.EVT_BUTTON, self.salva_dati)

def salva_dati(self, event):
dati = self._raccogli_dati()
try:

database.persisti(dati)
except database.QualcosaNonVa:

wx.MsgBox('Qualcosa non va')
return

wx.MsgBox('Dati salvati, tutto a posto')
self.Close()

Quando l’utente fa clic sul pulsante «Salva», noi invochiamo una routine per salvare i dati nel databa-
se (database.persisti potrebbe far riferimento a un ORM, o comunque a un layer separato in una
logica MCV). La nostra routine innesca un’eccezione custom in caso di problemi, e noi correttamente
la intercettiamo nel callback. Dunque, se qualcosa non va, l’utente vede un messaggio allarmante.
Se invece tutto va bene, l’utente viene rassicurato e la �nestra si chiude. Questo pattern in sé non ha
niente di sbagliato. Ma se c’è un baco nel layer di gestione del database, database.persisti inne-
sca un’eccezione che non abbiamo previsto: siccome non la intercettiamo, tutto sembra andare per il
verso giusto (si ricordi, wxPython non ferma il programma). Ma in realtà i dati non sono stati salvati.
Prima che l’utente abbia modo di accorgersi del problema, l’errore potrebbe ripetersi più volte; i dati
sbagliati saranno usati per ulteriori elaborazioni; e il baco originario potrebbe essere molto di�cile
da individuare.

Ora, in Python un approccio come questo viene giustamente considerato una cattiva pratica:

49.3. Che cosa fare delle eccezioni non gestite. 302

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

try:
main()

except: # un "bare except" per ogni possibile imprevisto
...

Tuttavia possiamo chiederci se in wxPython non sia l’unico modo per risolvere il problema delle
«eccezioni invisibili». Ci piacerebbe poter scrivere qualcosa come:

if __name__ == '__main__':
questo non funziona davvero!
try:

app = wx.App(False)
MainFrame(None).Show()
app.MainLoop()

except:
wx.MessageBox('Qualcosa non va!!')
wx.Exit()

Purtroppo, come si può facilmente intuire, questo non funziona. A partire da quando invochiamo
wx.App.MainLoop ci sono troppi strati di codice C++ perché una eccezione Python imprevista possa
�nire nella rete del bare except che abbiamo messo al livello più alto.

49.3.2 Una soluzione accettabile.

Una soluzione accettabile è invece usare sys.excepthook dalla libreria standard di Python
(https://docs.python.org/3/library/sys.html#sys.excepthook):

def my_excepthook (extype, value, tback):
wx.MessageBox('Questo non va proprio bene!', 'errore')
non dimentichiamo di loggare... qualcosa come:
logger.error('disastro fatale', exc_info=(extype, value, tback))
wx.Exit()

class MainFrame(wx.Frame):
def __init__(self, *args, **kwargs):

wx.Frame.__init__(self, *args, **kwargs)
p = wx.Panel(self)
b = wx.Button(p, -1, 'clic', pos=(10, 10))
b.Bind(wx.EVT_BUTTON, lambda evt: 1/0) # ops!

if __name__ == '__main__':
import sys
sys.excepthook = my_excepthook
app = wx.App(False)
MainFrame(None).Show()
app.MainLoop()

Nel nostro except hook personalizzato possiamo inserire una logica arbitrariamente complessa. Per
esempio, sarebbe perfettamente sicuro interagire con l’interfaccia gra�ca (aprire e chiudere �nestre,
postare eventi nella coda, etc.): la nostra eccezione Python non impedisce al framework C++ sot-
tostante di continuare a funzionare, come sappiamo. Tuttavia, proprio perché stiamo a�rontando
un’eccezione imprevista (un baco) conviene limitarsi al minimo indispensabile: avvertire l’utente che
il programma sta per chiudersi; fare il rollback di eventuali transazioni in corso; loggare il traceback
dell’eccezione che altrimenti andrebbe perduto; in�ne, chiudere l’applicazione nel modo che riteniamo
migliore (pagina 272).

49.3. Che cosa fare delle eccezioni non gestite. 303

https://docs.python.org/3/library/sys.html#sys.excepthook

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

CAMPIONE DEL LIBRO PER VALUTAZIONE - https://leanpub.com/capirewxpython

Capire wxPython

Possiamo inserire il nostro except hook direttamente nel blocco if __name__=="__main__", come
nel nostro esempio. In alternativa, un buon momento è come sempre wx.App.OnInit.

49.3. Che cosa fare delle eccezioni non gestite. 304

