

[image: C++20]

 C++20

 Rainer Grimm

 This book is for sale at http://leanpub.com/c20

 This version was published on 2023-09-13

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2020 - 2023 Rainer Grimm

 Table of Contents

 	
 1. C++20

 	
 1.1 The Big Four

 	
 1.1.1 Concepts

 	
 1.1.2 Modules

 	
 1.1.3 The Ranges Library

 	
 1.1.4 Coroutines

 	
 1.2 Core Language

 	
 1.2.1 Three-Way Comparison Operator

 	
 1.2.2 Designated Initialization

 	
 1.2.3 consteval and constinit

 	
 1.2.4 Template Improvements

 	
 1.2.5 Lambda Improvements

 	
 1.2.6 New Attributes

 	
 1.3 The Standard Library

 	
 1.3.1 std::span

 	
 1.3.2 Container Improvements

 	
 1.3.3 Arithmetic Utilities

 	
 1.3.4 Formatting Library

 	
 1.3.5 Calendar and Time Zones

 	
 1.4 Concurrency

 	
 1.4.1 Atomics

 	
 1.4.2 Semaphores

 	
 1.4.3 Latches and Barriers

 	
 1.4.4 Cooperative Interruption

 	
 1.4.5 std::jthread

 	
 1.4.6 Synchronized Outputstreams

 Guide

 	
 Begin Reading

1. C++20

Before I dive into the details of C++20, I want to give a quick overview of C++20’s features. This overview should serve two purposes; to give a first impression and to provide links to the relevant sections you can use to dive directly into the details. Consequently, this chapter has only code snippets but no complete programs.

My book starts with a short historical detour into the previous C++ standards. This detour provides context when comparing C++20 to previous revisions and demonstrates the importance of C++20 by providing a historical context.

 [image:]

C++20 has four outstanding features: concepts, ranges, coroutines, and modules. Each deserves its own subsection.

1.1 The Big Four

 [image:]

Each feature of the Big Four changes the way we program in modern C++. Let me start with concepts.

1.1.1 Concepts

Generic programming with templates enables it to define functions and classes which can be used with various types. As a result, it is not uncommon for you to instantiate a template with the wrong type. The result can be many pages of cryptic error messages. This problem ends with concepts. Concepts empower you to write requirements for template parameters that are checked by the compiler and revolutionize how we think about and write generic code. Here is why:

 	Requirements for template parameters become part of their public interface.

 	The overloading of functions or specializations of class templates can be based on concepts.

 	We get improved error messages because the compiler checks the defined template parameter requirements against the given template arguments.

Additionally, this is not the end of the story.

 	You can use predefined concepts or define your own.

 	The usage of auto and concepts is unified. Instead of auto, you can use a concept.

 	If a function declaration uses a concept, it automatically becomes a function template. Writing function templates is, therefore, as easy as writing a function.

The following code snippet demonstrates the definition and the use of the straightforward concept Integral:

 Definition and use of the Integral concept
template <typename T>
concept Integral = std::is_integral<T>::value;

Integral auto gcd(Integral auto a, Integral auto b) {
 if(b == 0) return a;
 else return gcd(b, a % b);
}

The Integral concept requires from its type parameter T that std::is_integral<T>::value evaluates to true. std::is_integral<T>::value is a function from the type traits library checking at compile time if T is integral. If std::is_integral<T>::value evaluates to true, all is fine; otherwise, you get a compile-time error.

The gcd algorithm determines the greatest common divisor based on the Euclidean algorithm. The code uses the so-called abbreviated function template syntax to define gcd. Here, gcd requires that its arguments and return type support the concept Integral. In other words, gcd is a function template that puts requirements on its arguments and return value. When I remove the syntactic sugar, you can see the real nature of gcd.

The semantically equivalent gcd algorithm using a requires clause.

 Use of the concept Integral in the requires clause
template<typename T>
requires Integral<T>
T gcd(T a, T b) {
 if(b == 0) return a;
 else return gcd(b, a % b);
}

The requires clause states the requirements on the type parameters of gcd.

1.1.2 Modules

Modules promise a lot:

 	Faster compile times

 	Reduce the need to define macros

 	Express the logical structure of the code

 	Make header files obsolete

 	Get rid of ugly macro workarounds

Here is the first simple math module:

 The math module
1 export module math;
2
3 export int add(int fir, int sec) {
4 return fir + sec;
5 }

The expression export module math (line 1) is the module declaration. Putting export before the function add (line 3) exports the function. Now, it can be used by a consumer of the module.

 Use of the math module
import math;

int main() {

 add(2000, 20);

}

The expression import math imports the math module and makes the exported names visible in the current scope.

1.1.3 The Ranges Library

The ranges library supports algorithms which

 	can operate directly on containers; you don’t need iterators to specify a range

 	can be evaluated lazily

 	can be composed

To make it short: The ranges library supports functional patterns.

The following example demonstrates function composition using the pipe symbol.

 Function composition with the pipe symbol
 1 int main() {
 2 std::vector<int> ints{0, 1, 2, 3, 4, 5};
 3 auto even = [](int i){ return i % 2 == 0; };
 4 auto square = [](int i) { return i * i; };
 5
 6 for (int i : ints | std::views::filter(even) |
 7 std::views::transform(square)) {
 8 std::cout << i << ' '; // 0 4 16
 9 }
10 }

Lambda expression even (line 3) is a lambda expression that returns true if an argument i is even. Lambda expression square (line 4) maps the argument i to its square. Lines 6 and 7 demonstrate function composition, which you have to read from left to right: for (int i : ints | std::views::filter(even) | std::views::transform(square)). Apply on each element of ints the even filter and map each remaining element to its square. If you are familiar with functional programming, this reads like prose.

1.1.4 Coroutines

Coroutines are generalized functions that can be suspended and resumed later while maintaining their state. Coroutines are a convenient way to write event-driven applications. Event-driven applications can be simulations, games, servers, user interfaces, or even algorithms. Coroutines are also typically used for cooperative multitasking.

C++20 does not provide concrete coroutines, but C++20 provides a framework for implementing coroutines. This framework consists of more than 20 functions, and some of which you must implement, some of which you can override. Therefore, you can tailor coroutines to your needs.

The following code snippet uses a generator to create a potentially infinite data stream. The coroutines chapter provides the implemenation of the Generator.

 A generator for an infinite data-stream
 1 Generator<int> getNext(int start = 0, int step = 1){
 2 auto value = start;
 3 while (true) {
 4 co_yield value;
 5 value += step;
 6 }
 7 }
 8
 9 int main() {
10
11 std::cout << '\n';
12
13 std::cout << "getNext():";
14 auto gen1 = getNext();
15 for (int i = 0; i <= 10; ++i) {
16 gen1.next();
17 std::cout << " " << gen1.getValue();
18 }
19
20 std::cout << "\n\n";
21
22 std::cout << "getNext(100, -10):";
23 auto gen2 = getNext(100, -10);
24 for (int i = 0; i <= 20; ++i) {
25 gen2.next();
26 std::cout << " " << gen2.getValue();
27 }
28
29 std::cout << "\n";
30
31 }

The function getNext is a coroutine because it uses the keyword co_yield. There is an infinite loop that returns the value at co_yield (line 4). A call to next (lines 16 and 25) resumes the coroutine and the following getValue call gets the value. After the getNext call returns, the coroutine pauses once again until the next call next. There is one big unknown in this example: the return value Generator<int> of the getNext function. This is where the complication begins, which I describe in full depth in the coroutines section.

 [image: An infinite data-generator]
 An infinite data-generator

1.2 Core Language

 [image:]

1.2.1 Three-Way Comparison Operator

The three-way comparison operator <=>, or spaceship operator, determines, for two values A and B, whether A < B, A == B, or A > B.

By declaring the three-way comparison operator default, the compiler will attempt to generate a consistent relational operator for the class. In this case, you get all six comparison operators: ==, !=, <, <=, >, and >=.

 Auto-generating the three-way comparison operator
struct MyInt {
 int value;
 MyInt(int value): value{value} { }
 auto operator<=>(const MyInt&) const = default;
};

The compiler-generated operator <=> performs a lexicographical comparison, starting with the base classes and taking into account all the non-static data members in their declaration order. Here is a quite sophisticated example from the Microsoft blog: Simplify Your Code with Rocket Science: C++ 20’s Spaceship Operator.

1.2.2 Designated Initialization

 Spaceship operator for derived classes
struct Basics {
 int i;
 char c;
 float f;
 double d;
 auto operator<=>(const Basics&) const = default;
};

struct Arrays {
 int ai[1];
 char ac[2];
 float af[3];
 double ad[2][2];
 auto operator<=>(const Arrays&) const = default;
};

struct Bases : Basics, Arrays {
 auto operator<=>(const Bases&) const = default;
};

int main() {
 constexpr Bases a = { { 0, 'c', 1.f, 1. },
 { { 1 }, { 'a', 'b' }, { 1.f, 2.f, 3.f }, { { 1., 2. }, { 3., 4. } } } };
 constexpr Bases b = { { 0, 'c', 1.f, 1. },
 { { 1 }, { 'a', 'b' }, { 1.f, 2.f, 3.f }, { { 1., 2. }, { 3., 4. } } } };
 static_assert(a == b);
 static_assert(!(a != b));
 static_assert(!(a < b));
 static_assert(a <= b);
 static_assert(!(a > b));
 static_assert(a >= b);
}

I assume the most complicated stuff in this code snippet is not the spaceship operator but the initialization of Base using aggregate initialization. Aggregate initialization essentially means that you can directly initialize the members of class types (class, struct, or union) if all members are public. In this case, you can use a braced initialization list, as in the example.

Before I discuss designated initialization, let me show more about aggregate initialization. Here is a straightforward example.

 Aggregate initialization
struct Point2D{
 int x;
 int y;
};

class Point3D{
public:
 int x;
 int y;
 int z;
};

int main(){

 std::cout << "\n";

 Point2D point2D {1, 2};
 Point3D point3D {1, 2, 3};

 std::cout << "point2D: " << point2D.x << " " << point2D.y << "\n";
 std::cout << "point3D: " << point3D.x << " "
 << point3D.y << " " << point3D.z << "\n";

 std::cout << '\n';

}

This is the output of the program:

 [image: Aggregate initialization]
 Aggregate initialization

The aggregate initialization is quite error-prone, because you can swap the constructor arguments without realizing it. Explicit is better than implicit. Let’s see what that means. Take a look at how designated initializers from C99, now part of the C++ standard, intervene.

 Designated initialization
 1 struct Point2D{
 2 int x;
 3 int y;
 4 };
 5
 6 class Point3D{
 7 public:
 8 int x;
 9 int y;
10 int z;
11 };
12
13 int main(){
14
15 Point2D point2D {.x = 1, .y = 2};
16 // Point2D point2d {.y = 2, .x = 1}; // error
17 Point3D point3D {.x = 1, .y = 2, .z = 2};
18 // Point3D point3D {.x = 1, .z = 2} // {1, 0, 2}
19
20
21 std::cout << "point2D: " << point2D.x << " " << point2D.y << "\n";
22 std::cout << "point3D: " << point3D.x << " " << point3D.y << " " << point3D.z
23 << "\n";
24
25 }

The arguments for the instances of Point2 and Point3D are explicitly named. The output of the program is identical to the output of the previous one. The commented-out lines 16 and 18 are quite interesting. Line 16 would give an error because the order of the designators does not match the declaration order of the data members. As for line 18, the designator for y is missing. In this case, y is initialized to 0, such as when using braced initialization list {1, 0, 3}.

1.2.3 consteval and constinit

The new consteval specifier added in C++20 creates an immediate function. For an immediate function, each invocation of the function must produce a compile-time constant expression. An immediate function is implicitly a constexpr function but not necessarily the other way around.

 An immediate function
consteval int sqr(int n) {
 return n*n;
}
constexpr int r = sqr(100); // OK

int x = 100;
int r2 = sqr(x); // Error

The final assignment gives an error because x is not a constant expression and, therefore, sqr(x) cannot be performed at compile time.

constinit ensures that the variable with static storage duration or thread storage duration is initialized at compile time. Static storage duration means that the object is allocated when the program begins and is deallocated when the program ends. Thread storage duration means that the object’s lifetime is bound to the lifetime of the thread.

constinit ensures for this kind of variable (static storage duration or thread storage duration) that they are initialized at compile time. constinit does not imply constness.

1.2.4 Template Improvements

C++20 offers various improvements to programming with templates. A generic constructor is a catch-all constructor because you can invoke it with any type.

 An implicit and explicit generic constructor
struct Implicit {
 template <typename T>
 Implicit(T t) {
 std::cout << t << '\n';
 }
};

struct Explicit {
 template <typename T>
 explicit Explicit(T t) {
 std::cout << t << '\n';
 }
};

Explicit exp1 = "implicit"; // Error
Explicit exp2{"explicit"};

The generic constructor of the class Implicit is way too generic. By putting the keyword explicit in front of the constructor, as for Explicit, the constructor becomes explicit. This means that implicit conversions are not valid anymore.

1.2.5 Lambda Improvements

Lambdas get many improvements in C++20. They can have template parameters and can be used in unevaluated contexts, and stateless lambdas can also be default-constructed and copy-assigned. Furthermore, the compiler can now detect when you implicitly copy the this pointer, which means a significant cause of undefined behavior with lambdas is gone.

If you want to define a lambda that accepts only a std::vector, template parameters for lambdas enable this:

 Template parameters for lambdas
auto foo = []<typename T>(std::vector<T> const& vec) {
 // do vector-specific stuff
 };

1.2.6 New Attributes

C++20 has new attributes, including [[likely]] and [[unlikely]]. Both attributes allow us to give the optimizer a hint, specifying which path of execution is more or less likely.

 The attribute [[likely]]
for(size_t i=0; i < v.size(); ++i){
 if (v[i] < 0) [[likely]] sum -= sqrt(-v[i]);
 else sum += sqrt(v[i]);
}

1.3 The Standard Library

 [image:]

1.3.1 std::span

A std::span represents an object that can refer to a contiguous sequence of objects. A std::span, sometimes also called a view, is never an owner. This view can be a C-array, a std::array, a pointer with a size, or a std::vector. A typical implementation of a std::span needs a pointer to its first element and a size. The main reason for having a std::span is that a plain array will decay to a pointer if passed to a function; therefore, its size is lost. std::span automatically deduces the size of an array, a std::array, or a std::vector. If you use a pointer to initialize a std::span, you have to provide the size in the constructor.

 std::span as function argument
void copy_n(const int* src, int* des, int n){}

void copy(std::span<const int> src, std::span<int> des){}

int main(){

 int arr1[] = {1, 2, 3};
 int arr2[] = {3, 4, 5};

 copy_n(arr1, arr2, 3);
 copy(arr1, arr2);

}

Compared to the function copy_n, copy doesn’t need the number of elements. Hence, a common cause of errors is gone with std::span<T>.

1.3.2 Container Improvements

C++20 has many improvements regarding containers of the Standard Template Library. First of all, std::vector and std::string have constexpr constructors and can, therefore, be used at compile time. All standard library containers support consistent container erasure, and the associative containers support a contains member function. Additionally, std::string allows checking for a prefix or suffix.

1.3.3 Arithmetic Utilities

The comparison of signed and unsigned integers is a subtle cause of unexpected behavior and, therefore, of bugs. Thanks to the new safe comparison functions for integers, std::cmp_*, a subtle source of bugs is gone.

 Safe comparison of integers
int x = -3;
unsigned int y = 7;

if (x < y) std::cout << "expected";
else std::cout << "not expected"; // not expected

if (std::cmp_less(x, y)) std::cout << "expected"; // expected
else std::cout << "not expected";

Additionally, C++20 includes mathematical constants, including [image: e], [image: \pi], or [image: \phi] in the namespace std::numbers.

The new bit manipulation enables accessing individual bits and bit sequences and reinterpreting them.

 Accessing individual bits and bit sequences
std::uint8_t num= 0b10110010;

std::cout << std::has_single_bit(num) << '\n'; // false
std::cout << std::bit_width(unsigned(5)) << '\n'; // 3
std::cout << std::bitset<8>(std::rotl(num, 2)) << '\n'; // 11001010
std::cout << std::bitset<8>(std::rotr(num, 2)) << '\n'; // 10101100

1.3.4 Formatting Library

The new formatting library provides a safe and extensible alternative to the printf functions. It’s intended to complement the existing I/O streams and reuse some of its infrastructure, such as overloaded insertion operators for user-defined types.

std::string message = std::format("The answer is {}.", 42);

std::format uses Python’s syntax for formatting. The following examples show a few typical use cases:

 	Format and use positional arguments

 std::string s = std::format("I'd rather be {1} than {0}.", "right", "happy");
 // s == "I'd rather be happy than right."

 	Convert an integer to a string in a safe way

 memory_buffer buf;
 std::format_to(buf, "{}", 42); // replaces itoa(42, buffer, 10)
 std::format_to(buf, "{:x}", 42); // replaces itoa(42, buffer, 16)

 	Format user-defined types

1.3.5 Calendar and Time Zones

The chrono library from C++11 is extended with calendar and time-zone functionality. The calendar consists of types representing a year, a month, a day of the week, and an n-th weekday of a month. These elementary types can be combined into complex types such as year_month, year_month_day, year_month_day_last, year_month_weekday, and year_month_weekday_last. The operator “/” is overloaded for the convenient specification of time points. Additionally, we get new literals: d for a day and y for a year.

Time points can be displayed in various time zones. Due to the extended chrono library, the following use cases are now trivial to implement:

 	representing dates in specific formats

 	get the last day of a month

 	get the number of days between two dates

 	printing the current time in various time zones

The following program presents the local time in different time zones.

 The local time in various time zones
using namespace std::chrono;

auto time = floor<milliseconds>(system_clock::now());
auto localTime = zoned_time<milliseconds>(current_zone(), time);
auto berlinTime = zoned_time<milliseconds>("Europe/Berlin", time);
auto newYorkTime = zoned_time<milliseconds>("America/New_York", time);
auto tokyoTime = zoned_time<milliseconds>("Asia/Tokyo", time);

std::cout << time << '\n'; // 2020-05-23 19:07:20.290
std::cout << localTime << '\n'; // 2020-05-23 21:07:20.290 CEST
std::cout << berlinTime << '\n'; // 2020-05-23 21:07:20.290 CEST
std::cout << newYorkTime << '\n'; // 2020-05-23 15:07:20.290 EDT
std::cout << tokyoTime << '\n'; // 2020-05-24 04:07:20.290 JST

1.4 Concurrency

 [image:]

1.4.1 Atomics

The class template std::atomic_ref applies atomic operations to the referenced non-atomic object. Concurrent writing and reading of the referenced object can take place, therefore, with no data race. The lifetime of the referenced object must exceed the lifetime of the std::atomic_ref. Accessing a subobject of the referenced object with std::atomic_ref is not thread-safe.

According to std::atomic, std::atomic_ref can be specialized and supports specializations for the built-in data types.

struct Counter {
 int a;
 int b;
};

Counter counter;

std::atomic_ref<Counter> cnt(counter);

With C++20, we get two atomic smart pointers that are partial specializations of std::atomic: there are std::atomic<std::shared_ptr<T>> and std::atomic<std::weak_ptr<T>>. Both atomic smart pointers guarantee that not only the control block, as in the case of std::shared_ptr, is thread-safe, but also the associated object.

std::atomic gets more extensions. C++20 provides specializations for atomic floating-point types. This is quite convenient when you have a concurrently incremented floating-point type.

A value of type std::atomic_flag is a kind of atomic boolean. It has a cleared and set state. For simplicity reasons, I call the clear state false and the set state true. The clear() member function enables you to set its value to false. With the test_and_set() member function, you can set the value to true and get the previous value. There is no member function to ask for the current value. This will change with C++20 because std::atomic_flag has a test() method.

Furthermore, std::atomic_flag can be used for thread synchronization via the member functions notify_one(), notify_all(), and wait(). With C++20, notifying and waiting are available on all partial and full specializations of std::atomic and std::atomic_ref. Specializations are available for bools, integrals, floats, and pointers.

1.4.2 Semaphores

Semaphores are a synchronization mechanism used to control concurrent access to a shared resource. A counting semaphore, such as the one which was added in C++20, is a special semaphore whose initial counter is bigger than zero. The counter is initialized in the constructor. Acquiring the semaphore decreases the counter, and releasing the semaphore increases the counter. If a thread tries to acquire the semaphore when the counter is zero, the thread blocks until another thread increments the counter by releasing the semaphore.

1.4.3 Latches and Barriers

Latches and barriers are straightforward thread synchronization mechanisms that enable some threads to block until a counter becomes zero. What are the differences between these two mechanisms to synchronize threads? You can use a std::latch only once, but you can use a std::barrier more than once. A std::latch is useful for managing one task by multiple threads; a std::barrier is useful for managing repeated tasks by multiple threads. Furthermore, a std::barrier can adjust the counter in each iteration.

The following is based on a code snippet from proposal N4204. I fixed a few typos and reformatted it.

 Thread-synchronization with a std::latch
 1 void DoWork(threadpool* pool) {
 2
 3 std::latch completion_latch(NTASKS);
 4 for (int i = 0; i < NTASKS; ++i) {
 5 pool->add_task([&] {
 6 // perform work
 7 ...
 8 completion_latch.count_down();
 9 });
10 }
11 // Block until work is done
12 completion_latch.wait();
13 }

The counter of the std::latch completion_latch is set to NTASKS (line 3). The thread pool executes NTASKS jobs (lines 4 - 10). At the end of each job, the counter is decremented (line 8). The thread running function DoWork blocks in line 12 until all tasks are done.

1.4.4 Cooperative Interruption

Thanks to std::stop_token, a std::jthread can be interrupted cooperatively.

 Interrupting a std::jthread
 1 int main() {
 2
 3 std::cout << '\n';
 4
 5 std::jthread nonInterruptible([]{
 6 int counter{0};
 7 while (counter < 10){
 8 std::this_thread::sleep_for(0.2s);
 9 std::cerr << "nonInterruptible: " << counter << '\n';
10 ++counter;
11 }
12 });
13
14 std::jthread interruptible([](std::stop_token stoken){
15 int counter{0};
16 while (counter < 10){
17 std::this_thread::sleep_for(0.2s);
18 if (stoken.stop_requested()) return;
19 std::cerr << "interruptible: " << counter << '\n';
20 ++counter;
21 }
22 });
23
24 std::this_thread::sleep_for(1s);
25
26 std::cerr << '\n';
27 std::cerr << "Main thread interrupts both jthreads" << std:: endl;
28 nonInterruptible.request_stop();
29 interruptible.request_stop();
30
31 std::cout << '\n';
32
33 }

The main program starts two threads, nonInterruptible and interruptible (lines 5 and 14). Only thread interruptible gets a std::stop_token, which it uses in line 18 to check if it is interrupted. The lambda immediately returns in case of an interruption. The call to interruptible.request_stop() triggers the cancellation of the thread. Calling nonInterruptible.request_stop() has no effect.

 [image: Cooperative interruption of a thread]
 Cooperative interruption of a thread

1.4.5 std::jthread

std::jthread stands for joining thread. std::jthread extends std::thread by automatically joining the started thread. std::jthread can also be interrupted.

std::jthread is added to the C++20 standard because of the non-intuitive behavior of std::thread. If a std::thread is still joinable, std::terminate is called in its destructor. A thread thr is joinable if neither thr.join() nor thr.detach() was called.

 Thread thr is still joinable
int main() {

 std::cout << '\n';

 std::cout << std::boolalpha;
 std::thread thr{[]{ std::cout << "Joinable std::thread" << '\n'; }};
 std::cout << "thr.joinable(): " << thr.joinable() << '\n';

 std::cout << '\n';

}

 [image: `std::terminate` with a still joinable thread]
 std::terminate with a still joinable thread

Both executions of the program terminate. In the second run, the thread thr has enough time to display its message: “Joinable std::thread”.

In the modified example, I use std::jthread from the C++20 standard.

 Thread thr joins automatically
int main() {

 std::cout << '\n';

 std::cout << std::boolalpha;
 std::jthread thr{[]{ std::cout << "Joinable std::jthread" << '\n'; }};
 std::cout << "thr.joinable(): " << thr.joinable() << '\n';

 std::cout << '\n';

}

Now, thread thr automatically joins in its destructor if necessary.

 [image: Thread `thr` joins automatically]
 Thread thr joins automatically

1.4.6 Synchronized Outputstreams

With C++20, we get synchronized outputstreams. What happens when more threads write concurrently to std::cout without synchronization?

 Unsynchronized writing to std::cout
void sayHello(std::string name) {
 std::cout << "Hello from " << name << '\n';
}

int main() {

 std::cout << "\n";

 std::jthread t1(sayHello, "t1");
 std::jthread t2(sayHello, "t2");
 std::jthread t3(sayHello, "t3");
 std::jthread t4(sayHello, "t4");
 std::jthread t5(sayHello, "t5");
 std::jthread t6(sayHello, "t6");
 std::jthread t7(sayHello, "t7");
 std::jthread t8(sayHello, "t8");
 std::jthread t9(sayHello, "t9");
 std::jthread t10(sayHello, "t10");

 std::cout << '\n';

}

You may get a mess.

 [image: Unsynchronized writing to `std::cout`]
 Unsynchronized writing to std::cout

Switching from std::cout in the function sayHello to std::osyncstream(std::cout) turns the mess into harmony.

 Synchronized writing to std::cout
void sayHello(std::string name) {
 std::osyncstream(std::cout) << "Hello from " << name << '\n';
}

 [image: Synchronized writing to `std::cout`]
 Synchronized writing to std::cout

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub_bug.png

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_comments.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_question-circle.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/overview----cooperativeInterruption.png
imand Prompt,

C:\Users\seminar>interruptJthread. exe

nonInterruptible: @
interruptible: @
nonInterruptible: 1
interruptible: 1
nonInterruptible: 2
interruptible: 2
nonInterruptible: 3
interruptible: 3

Main thread interrupts both jthreads

nonInterruptible:
nonInterruptible:
nonInterruptible:
nonInterruptible:
nonInterruptible:
nonInterruptible:

R RNV

:\Users\seminar>

OEBPS/images/overview----threadJoinable.png
File Edit View Bookmarks Settings Help
rainer@linux:~> threadJoinable

thr.jotnable(): true

terminate called without an active exception
Aborted (core dumped)
ratner@linux:~> threadJoinable

thr.jotnable(): true

terminate called without an active exception
Joinable std::thread

Aborted (core dumped)

ratner@linux:~> i

L] rainer : bash

>

<

OEBPS/images/overview----jthreadJoinable.png
File Edit View Bookmarks Settings Help
rainer@linux:~> jthreadJoinable

thr.jotnable(): true
Joinable std::jthread

ratner@linux:~> i

L] rainer : bash

>

<

OEBPS/images/timeline----TimelineCpp20TheCoreLanguage.png
The Big Four

Concepts
Modules
Ranges library
Corottines

C++20

Core Language

Three-way comparison operator
Designated intialization
consteval and constinit
Template improvements
Lambda improvements

New attributes

Library

std: :span
Container improvements
Adithmetic utilties
Calendar and time zone
Formatting library

Concurrency

Atomics

Semaphores

Latches and barriers
Cooperative interruption
std::jthread

OEBPS/images/overview----aggregateInitialization.png
[EX x64 Native Tools Command Prompt for VS 2019

C:\Users\rainer>aggregateInitialization.exe

point2D: 1 2
point3D: 1 2 3

C:\Users\rainer>

OEBPS/images/timeline----TimelineCpp20Library.png
The Big Four

Concepts
Modules
Ranges library
Corottines

C++20

Core Language

Three-way comparison operator
Designated intialization
consteval and constinit
Template improvements
Lambda improvements

New attributes

std
Container improvements
Adithmetic utilties
Calendar and time zone
Formatting library

Concurrency

Atomics

Semaphores

Latches and barriers
Cooperative interruption
std::jthread

OEBPS/images/timeline----TimelineCpp20Concurrency.png
The Big Four

Concepts
Modules
Ranges library
Corottines

C++20

Core Language

Three-way comparison operator
Designated intialization
consteval and constinit
Template improvements
Lambda improvements

New attributes

Library

std: :span
Container improvements
Adithmetic utilties
Calendar and time zone
Formatting library

Concurrency

Atomics

Semaphores

Latches and barriers
Cooperative interruption
std::jthread

OEBPS/images/timeline----TimelineCpp20.png
The Big Four

Concepts
Modules
Ranges library
Corottines

C++20

Core Language

Three-way comparison operator
Designated intialization
consteval and constinit
Template improvements
Lambda improvements

New attributes

Library

st

span
Container improvements
Adithmetic utilties
Calendar and time zone
Formatting library

Concurrency

Atomics

Semaphores

Latches and barriers
Cooperative interruption
std::jthread

OEBPS/images/timeline----TimelineCpp20BigFour.png
C++20

The Big Four Core Language Library Concurrency
Concepts = Three-way comparison operator . std::span = Atomics
Modules = Designated initialization = Container improvements = Semaphores
Ranges library * consteval and constinit = Avithmetic utilities = Latches and barriers
Coroutines * Template improvements = Calendar and time zone = Cooperative interruption
= Lambda improvements = Formatting library * stdi:jthread
. New attributes

OEBPS/images/overview----infiniteDataStream.PNG
getNext(): 01 2 345 6 7 8 9 10

getNext (100,

-10) :

100 90 80 70 60 50 40 30 20 10

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
C++20

Get the Details

spaceship
templates
atomic_ref
stop source
calendarvolatlleformat
threadlikely -Constexpr

routines
CO n Ce ptSIatcheS

o“% \g' unlgslyd Ietlallzaﬁlo%t
C / m charg_

spanra n g e S{\me 700©

<\® “atomics 5ddres>

03 b das
NO_—"hodiscard
stop callback
semaphores
consteval

Rainer
Grimm

ModernesCpp.com

OEBPS/images/leanpub_equation_2.png

OEBPS/images/leanpub_equation_1.png

OEBPS/images/leanpub_equation_0.png

OEBPS/images/overview----unsynchronizedOutput.png
Hello

Hello
Hello
Hello
Hello
Hello
Hello
Hello

from

from
from
from
from
from
from
from

Hello from tit2

t7
t8
t9
3
ta4
t5
Hello from t10t6

OEBPS/images/overview----synchronizedOutput.png
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

from
from
from
from
from
from
from
from
from
from

tl
t2
3
ta4
t5
t6
t7
t8
t9
tie

