

Menyelami Framework Laravel
Panduan komprehensif dan aplikatif untuk menguasai
framework Laravel.

Rahmat Awaludin

Buku ini dijual di http://leanpub.com/bukularavel

Versi ini diterbitkan pada 2016-12-14

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2014 - 2016 Rahmat Awaludin

http://leanpub.com/bukularavel
http://leanpub.com/
http://leanpub.com/manifesto

Tweet Buku Ini!
Bantulah Rahmat Awaludin dengan mewartakan buku ini via Twitter!

Tagar yang disarankan untuk buku ini adalah #bukularavel.

Temukan kata orang tentang buku ini dengan mengklik tautan ini untuk menampilkan tagar ini di
Twitter:

https://twitter.com/search?q=#bukularavel

http://twitter.com
https://twitter.com/search?q=%23bukularavel
https://twitter.com/search?q=%23bukularavel

Juga Oleh Rahmat Awaludin
Seminggu Belajar Laravel

http://leanpub.com/u/rahmatawaludin
http://leanpub.com/seminggubelajarlaravel

Untuk istriku tercinta, Irna Rahayu dan jagoan kecilku, Shidqi Abdullah Mubarak.

Contents

Konsep Dasar . 1
PHP5 Autoloader . 1
PHP5 Abstract dan Interfaces . 4

Mengakses Database . 24
Chunk, memproses banyak data dengan lebih efisien memory 24

Routing, Kendalikan Alur Aplikasi . 27
Subdomain Routing . 27

Konsep Dasar
PHP5 Autoloader

Sebagai seorang veteran di pemrograman PHP (ehm), tentu sudah sangat familiar dengan syntax
include untuk memasukkan syntax dari file lain ke file yang sedang aktif. Biasanya, syntax ini
digunakan jika kita hendak menggunakan class yang berada pada file yang lain. Perhatikan contoh
syntax berikut:

∼/Code/autoloader-oh-autoloader/Printer.php

<?php

class Printer {

public function cetakBuku($buku) {

echo "Class " . __CLASS__ . " : ";

echo "Mencetak buku $buku\n";

return "Buku $buku";

}

}

∼/Code/autoloader-oh-autoloader/Kurir.php

<?php

class Kurir {

public function kirim($file, $tujuan) {

echo "Class " . __CLASS__ . " : ";

echo "Mengirim $file ke $tujuan\n";

}

}

Konsep Dasar 2

∼/Code/autoloader-oh-autoloader/index.php

<?php

include 'Printer.php';

$printer = new Printer();

$buku = $printer->cetakBuku('Menyelami Framework Laravel');

include 'Kurir.php';

$kurir = new Kurir();

$kurir->kirim($buku, 'Bandung');

Pada syntax ini, terlihat kita memiliki dua buah class yaitu Printer dan Kurir.

Pada Class Printer, terdapat method cetakBuku() yang berfungsi menampilkan tulisan “Mencetak
Buku “ dengan nama buku yang menjadi parameter. Ketika kita mengambil method ini, kita juga
memanggil nama Class yang aktif dengan syntax echo "Class " . __CLASS__ . " : ".

Pada Class Kurir, terdapat method kirim() yang berfungsi menampilkan tulisan “Mengirim $file ke
$tujuan” dengan $file dan $tujuanmerupakan parameter dari method ini. Kita juga menampilkan
nama Class yang aktif ketika memanggil method ini.

Perhatikan file index.php.

Di baris ke-2 dan ke-6 kita menggunakan syntax include untuk memasukan file Printer.php dan
Kurir.php.

Ini merupakan cara lama agar kita dapat membuat object dari class Printer dan Kurir yang berada
di kedua file tersebut. Syntax selanjutnya adalah syntax biasa untuk membuat object Printer dan
Kurir kemudian memanggil method pada masing-masing object tersebut. Output dari syntax ini
seperti ini:

Tanpa Autoloader

Sip. Seperti yang kita lihat, syntax ini berjalan sebagaimana mestinya. Dan cara inilah yang sering
digunakan dari dulu (bahkan sampai sekarang masih dipakai di Wordpress) untuk memanggil Class
dari file yang berbeda.

Cara ini, meskipun dapat digunakan, tetapi kurang efektif. Bayangkan, jika kita memiliki
100 Class di 100 file yang berbeda, apakah mau membuat 100 statement include?

Konsep Dasar 3

Tentu tidak. Dan para pendahulu kita yang telah lebih dulu memahami PHP pun memikirkan hal
tersebut. Maka, lahirlah fitur autoloader di PHP. Dengan fitur ini, kita tidak perlu menulis include
untuk setiap file PHP yang akan di masukkan ke file.

Untukmenggunakan autoloader kita akanmenggunakan fungsi spl_autoload_register()¹. Fungsi
ini menerima parameter closure/fungsi yang memiliki sebuah parameter $class yang berisi nama
class yang akan dipanggil. Di dalam closure ini, kita melakukan include ke class yang diinginkan.

Mari kita praktekan, ubah file index.php menjadi :

∼/Code/autoloader-oh-autoloader/index.php

<?php

spl_autoload_register(function ($class) {

include $class . '.php';

});

$printer = new Printer();

$buku = $printer->cetakBuku('Menyelami Framework Laravel');

$kurir = new Kurir();

$kurir->kirim($buku, 'Bandung');

Pada perubahan ini kita menghapus dua statement include dan menambahkan syntax:

∼/Code/autoloader-oh-autoloader/index.php

<?php

spl_autoload_register(function ($class) {

include $class . '.php';

});

Yang dilakukan syntax ini adalah melakukan include setiap kali kita melakukan new Class().

Terlihat di baris ke-3, kita menggunakan include $class . '.php';.

Ketika code berjalan (runtime), misalnya kita memanggil new Printer(), maka syntax ini akan
berubah menjadi include Printer.php; yang akan memasukkan konten file tersebut ke code yang
sedang aktif. Itulah alasan kita membuat sebuah file untuk sebuah class. Dengan cara ini, kita tidak
perlu lagi melakukan include manual untuk tiap Class yang dibutuhkan. Keren kan?

Kalau dijalankan, outputnya akan tetap sama.

¹http://php.net/manual/en/function.spl-autoload-register.php

http://php.net/manual/en/function.spl-autoload-register.php
http://php.net/manual/en/function.spl-autoload-register.php

Konsep Dasar 4

Setelah Autoloader

Tentunya, autoloader ini dapat disesuaikan dengan kebutuhan kita. Misalnya, semua class berada
di folder class dan berakhiran .inc.php, maka syntax autoloader berubah menjadi :

Merubah autoloader

<?php

spl_autoload_register(function ($class) {

include 'class/' .$class . '.inc.php';

});

Laravel sangat aktif menggunakan Autoloader ini. Dengan memahami dasar dari Autoloader ini,
mudah-mudahan kita tidak tenggelam dalam kebingungan ketika pembahasan tentang Laravel
semakin dalam. Sip.

Source code dari latihan ini bisa didapat di https://github.com/rahmatawaludin/autoloader-
oh-autoloader²

PHP5 Abstract dan Interfaces

Memahami Abstract dan Interfaces sangat penting untuk dapat mendalami framework Laravel. Jika
pernah mempelajari mempelajari OOP di PHP, pasti telah memahami Class dan Inheritance. Jika
Class dan Inheritance adalah nasi dan sayur asem, maka Abstract dan Interfaces adalah ikan asin
dan sambelnya. Nah. :D

Abstract

Oke. Kita mulai dari Abstract. Apa itu Abstract?

Abstrak adalah tipe yang tidak dapat dipakai secara langsung. (Wikipedia)

Maksudnya, Abstract itu adalah semacam class di PHP tapi tidak bisa langsung dibuat objectnya.
Misalnya, sebuah tombol. Kita semua pasti tahu, bahwa tombol apapun pasti bisa ditekan. Hanya
saja, tiap tindakan yang terjadi ketika kita menekan tombol akan berbeda, tergantung jenis
tombolnya. Perhatikan contoh ini:

²https://github.com/rahmatawaludin/autoloader-oh-autoloader/commits/master

https://github.com/rahmatawaludin/autoloader-oh-autoloader/commits/master
https://github.com/rahmatawaludin/autoloader-oh-autoloader/commits/master
https://github.com/rahmatawaludin/autoloader-oh-autoloader/commits/master

Konsep Dasar 5

∼/Code/abstract-wal-interfaces/Tombol.php

<?php

abstract class Tombol {

abstract public function tekan();

}

∼/Code/abstract-wal-interfaces/contoh-abstract-gagal.php

<?php

include 'Tombol.php';

$tombol = new Tombol();

$tombol->tekan();

Terlihat disini, kita langsung mencoba membuat object (instantiate) dari abstract class Tombol.
Maka, akan ada error seperti ini:

Class Abstract tidak bisa langsung dibuat object

Ini menunjukkan bahwa abstract tidak bisa langsung di-instantiatemenjadi object. Untuk membuat
object, kita perlu membuat class baru yang merupakan turunan dari abstract class Tombol ini.
Perhatikan syntax ini:

∼/Code/abstract-wal-interfaces/TombolLogin.php

<?php

include "Tombol.php";

class TombolLogin extends Tombol {

}

Konsep Dasar 6

∼/Code/abstract-wal-interfaces/contoh-abstract-sukses.php

<?php

include "TombolLogin.php";

$tombol = new TombolLogin();

$tombol->tekan();

Disini kita membuat class baru bernama TombolLogin yang meng-extend abstract class Tombol.
Kalau kita jalankan :

Gagal meng-extends interface, karena ada method yang belum diimplementasikan

Uuuppss… Dia error lagi.

Ini terjadi karena, kita belum mengimplementasikan method abstract yaitu method tekan() yang
ada di abstract class Tombol. Mari kita perbaiki:

∼/Code/abstract-wal-interfaces/TombolLogin.php

<?php

include "Tombol.php";

class TombolLogin extends Tombol {

public function tekan() {

echo "Berhasil login!\n";

}

}

Kalau kita jalankan lagi:

Konsep Dasar 7

Berhasil menggunakan abstract class Tombol

Tuhh.. dia berhasil kan? :)

Ini penting. Jadi, abstract itu sangat berguna kalau kita ingin memastikan bahwa suatu method
selalu tersedia pada class, apapun implementasinya. Dalam contoh ini, kita selalu bisa memanggil
method tekan() apapun jenis tombolnya. Biar lebih paham, kita tambah lagi contohnya. Kali ini,
ceritanya kita mau bikin tombol untuk meluncurkan bom nuklir. Perlu dicatat, ini hanya contoh,
tidak ada yang bom yang diluncurkan dalam pembuatan contoh ini. Perhatikan syntax ini:

∼/Code/abstract-wal-interfaces/TombolNuklir.php
<?php

include "Tombol.php";

class TombolNuklir extends Tombol {

public function tekan() {

echo "Bom nuklir telah diluncurkan!\n";

sleep(3);

echo "Boooooommmmm!!!\n";

}

}

Untuk menjalankan tombol ini, kita tetap menggunakan method yang sama, yaitu tekan():

∼/Code/abstract-wal-interfaces/contoh-abstract-sukses-2.php
<?php

include "TombolNuklir.php";

$tombol = new TombolNuklir();

$tombol->tekan();

Kalau dijalankan..

Berhasil membuat Tombol Nuklir

Konsep Dasar 8

Boooooommmmm!!!

Oke, saya rasa sudah cukup penjelasannya. Pertanyaanya, kapan biasanya teknik abstract class ini
digunakan?

Contohnya banyak, salah satunya saya contohkan dengan dependency injection. Teknik ini memu-
dahkan kita untukmemasukkan (inject) class yang kita butuhkan pada class yang sedang digunakan.

Contoh dependency injection, misalnya seorang Pembeli harus punya kartu BNI untuk melakukan
pembayaran. Bisa kita implementasikan dengan meng-inject class BNI ke class Pembeli. Seperti ini:

∼/Code/abstract-wal-interfaces/BNI.php

<?php

class BNI {

private $saldo;

public function __construct($pin) {

// ceritanya cek PIN ke database

if ($pin == '12345') {

echo "Berhasil mengaktifkan Kartu BNI!\n";

} else {

$pesan = "PIN yang Anda masukkan salah :(";

throw new Exception($pesan);

}

}

private function catatTransaksi($jenis, $jumlah) {

echo "Mencatat transaksi $jenis sejumlah $jumlah ke Buku Tabungan.\n";

}

public function kredit($jumlah) {

$this->catatTransaksi('transfer keluar', $jumlah);

$this->saldo -= $jumlah;

}

public function deposit($jumlah) {

$this->catatTransaksi('deposit dana', $jumlah);

$this->saldo += $jumlah;

}

public function cekSaldo() {

return $this->saldo;

Konsep Dasar 9

}

}

Class BNI ini mempunyai:

• attribute $saldo yang berfungsi mencatat saldo terakhir.
• method __construct() yang berfungsi membangun object BNI, di method ini kita meng-
haruskan input PIN. Dalam prakteknya, tentu saja PIN ini disimpan di database, tapi disini
kita sederhanakan dengan menyimpannya langsung di method ini.

• method kredit() yang berfungsi untuk mengurangi jumlah saldo.
• method deposit() yang berfungsi untuk menambah jumlah saldo.
• method cekSaldo() yang berfungsi mengecek jumlah saldo terkini.

Mari kita buat class Pembeli, Class ini akan membutuhkan class BNI :

∼/Code/abstract-wal-interfaces/Pembeli-DI.php

<?php

include "BNI.php";

class Pembeli {

private $nama;

private $bni;

public function __construct($nama = "Seseorang", BNI $bni) {

$this->bni = $bni;

$this->nama = $nama;

}

public function beli($nama = "Barang", $harga = 0) {

$this->bni->kredit($harga);

echo "Berhasil melakukan pembelian $nama seharga Rp$harga.\n";

echo "Terima kasih $this->nama :)\n";

}

}

Class Pembeli ini mempunyai :

• atribut $nama untuk menyimpan nama pembeli
• atribut $bni untuk menyimpan object kartu BNI
• method beli() untuk melakukan pembelian barang
• method __construct() untuk membangun object Pembeli

Yang paling penting untuk diperhatikan disini adalah method __construct(). Di method ini kita
menginject class BNI sebagai parameternya. Kalau didemokan syntaxnya seperti ini:

Konsep Dasar 10

∼/Code/abstract-wal-interfaces/beli-pakai-bni.php

<?php

require_once "Pembeli-DI.php";

// Melakukan pembelian dengan BNI

try {

$bniKu = new BNI('12345');

$bniKu->deposit(20000000);

$rudy = new Pembeli("Rudy", $bniKu);

$rudy->beli("CD Smash - Step Forward", 80000);

echo "Saldo terakhir Rp".$bniKu->cekSaldo()."\n";

} catch (Exception $e) {

echo $e->getMessage()."\n";

}

Terlihat disini, sebelum membuat object Pembeli, kita membuat object BNI dulu. Kemudian meng-
inject object BNI itu ketika membuat object Pembeli. Jika dijalankan, hasilnya seperti berikut :

Berhasil meng-inject BNI ke Pembeli

Masalah dari dependency injection ini adalah bagaimana bila kita akan menggunakan metode
pembayaran lain? Misalnya, Paypal. Tentunya, cara mengakses paypal ini pun akan berbeda dengan
BNI, karena Paypal harus login dengan email dan password. Begitupun cara paypal melakukan
kredit dan deposit, karena paypal perlu mengirim email setiap kali terjadi transaksi.

Kalau gitu langsung di extends dari class BNI saja gimana mas?

Memang, sekiranya implementasinya akan sama, kita cukup meng-extends class Paypal dari BNI.
Namun, karena implementasi dari method kredit() dan deposit() ini bisa berbeda, maka fitur
pembayaran ini cocok untuk di-abstraksi. Dengan abstraksi pula, akan lebih memudahkan jika akan
ada implementasi jenis pembayaran yang baru, misalnya BitCoin.

Kita bisa membuat abstraksi dengan membuat class abstract yang berisi method apa saja yang harus
ada di Class tersebut yang akan digunakan di class Pembeli. Tahapannya dimulai dari class Pembeli,
ubah menjadi :

Konsep Dasar 11

∼/Code/abstract-wal-interfaces/Pembeli.php

<?php

class Pembeli {

private $nama;

private $payment;

public function __construct($nama = "Seseorang", PaymentMethod $payment) {

$this->nama = $nama;

$this->payment = $payment;

}

public function beli($nama = "Barang", $harga = 0) {

if ($this->payment->cekSaldo() < $harga) {

echo "Uang tidak cukup\n";

} else {

$this->payment->kredit($harga);

echo "Terima kasih $this->nama :)\n";

echo "Berhasil melakukan pembelian $nama seharga Rp".number_format($\

harga).".\n";

}

}

}

Perubahan terbesar dari class Pembeli adalah kita mengubah atribut $bni menjadi $payment dan
mengubah mengabstraksi class BNI menjadi PaymentMethod.

Terlihat disini, class PaymentMethod perlu menambahkan beberapa method:

• cekSaldo() untuk mengecek saldo terakhir
• kredit() untuk mengambil sejumlah uang
• deposit() untuk mengisi sejumlah uang

Untukmemudahkan pengecekan, kita akanmenambahmethod cekNamaPembayaran() yang berfungsi
menampilkan nama Class yang digunakan untuk melakukan pembayaran. Mari kita buat abstract
class PaymentMethod :

Konsep Dasar 12

∼/Code/abstract-wal-interfaces/PaymentMethod.php

<?php

abstract class PaymentMethod {

public function cekNamaPembayaran() {

return "Anda melakukan pembayaran dengan ".get_class($this)."\n";

}

abstract public function kredit($jumlah);

abstract public function deposit($jumlah);

abstract public function cekSaldo();

}

Selanjutnya, ubah class BNI agar mengekstends PaymentMethod. Untuk memudahkan contoh, kita
ubah nama classnya menjadi DebitBNI:

∼/Code/abstract-wal-interfaces/DebitBNI.php

<?php

require_once "PaymentMethod.php";

class DebitBNI extends PaymentMethod {

private $saldo;

public function __construct($pin) {

// ceritanya cek PIN ke database

if ($pin == '12345') {

echo "Berhasil mengaktifkan Kartu Debit!\n";

} else {

$pesan = "PIN yang Anda masukkan salah :(";

throw new Exception($pesan);

}

}

private function catatTransaksi($jenis, $jumlah) {

echo "Mencatat transaksi $jenis sejumlah $jumlah ke Buku Tabungan.\n";

}

public function kredit($jumlah) {

$this->catatTransaksi('transfer keluar', $jumlah);

$this->saldo -= $jumlah;

}

public function deposit($jumlah) {

$this->catatTransaksi('deposit dana', $jumlah);

Konsep Dasar 13

$this->saldo += $jumlah;

}

public function cekSaldo() {

return $this->saldo;

}

}

Mari kita buat demo untuk metode pembayaran ini:

∼/Code/abstract-wal-interfaces/beli-pakai-debitbni.php

<?php

require_once "DebitBNI.php";

require_once "Pembeli.php";

// Melakukan pembelian dengan DebitBNI

try {

$paymentMethod = new DebitBNI("12345");

$paymentMethod->deposit(20000000);

$rahmat = new Pembeli("Morgan", $paymentMethod);

$rahmat->beli("Sepatu Dance", 250000);

echo "Saldo terakhir Rp".number_format($paymentMethod->cekSaldo())."\n";

echo $paymentMethod->cekNamaPembayaran();

} catch (Exception $e) {

echo $e->getMessage()."\n";

}

Jika dijalankan, hasilnya akan seperti ini :

Membuat DebitBNI dengan abstract PaymentMethod

Konsep Dasar 14

Di baris terakhir output terlihat kita menggunakan implementasi PaymentMethod dengan class
DebitBNI.

Untuk implementasi Paypal, kita buat seperti ini:

∼/Code/abstract-wal-interfaces/Paypal.php

<?php

require_once 'PaymentMethod.php';

class Paypal extends PaymentMethod {

private $balance;

public function __construct($email, $password) {

// Ceritanya ini akses ke database

if ($email == "morgan@gmail.com" & $password == "12345") {

$this->email = $email;

echo "Berhasil login ke Paypal!\n";

} else {

$pesan = "User ada user dengan username/password tersebut :(";

throw new Exception($pesan);

}

}

private function kirimNotifikasi($pesan = "Informasi penting") {

echo "Mengirim email notifikasi $pesan ke $this->email \n";

}

public function kredit($jumlah) {

$this->kirimNotifikasi('pengeluaran dana');

$this->balance -= $jumlah;

}

public function deposit($jumlah) {

$this->kirimNotifikasi('penerimaan dana');

$this->balance += $jumlah;

}

public function cekSaldo() {

return $this->balance;

}

}

Terlihat disini, class Paypal ini mengimplementasikan semua method dari class abstract Payment-
Method, ini diharuskan. Karena, sebagaimana saya jelaskan di pembahasan sebelumnya, class yang

Konsep Dasar 15

meng-ekstends abstract class harus mengimplementasikan semua abstract methodnya. Jika tidak,
aplikasi akan error.

Perbedaan lain di class Paypal adalah :

• Untuk membuat object harus menggunakan email dan password yang kita hardcode di
method __construct(). Tentunya, di kenyataannya kita akan mengecek ini ke database.

• atribut $balance digunakan untuk menyimpan dana.
• Setiap kali ada transaksi uang masuk atau keluar, memanggil method kirimNotifikasi()

yang disimulasikan akan mengirim email.

Demo dari metode pembayaran ini :

∼/Code/abstract-wal-interfaces/beli-pakai-paypal.php

<?php

require_once "Paypal.php";

require_once "Pembeli.php";

// Melakukan pembelian dengan paypal

try {

$paymentMethod = new Paypal("morgan@gmail.com", "12345");

$paymentMethod->deposit(12000000);

$pembeli = new Pembeli("Morgan", $paymentMethod);

$pembeli->beli("Poster Smash Full Color", 100000);

echo "Saldo terakhir Rp".number_format($paymentMethod->cekSaldo())."\n";

echo $paymentMethod->cekNamaPembayaran();

} catch (Exception $e) {

echo $e->getMessage()."\n";

}

Outputnya akan menjadi :

Konsep Dasar 16

Membuat Paypal dengan abstract PaymentMethod

Jika diperhatikan, method pada class $paymentMethod yang kita gunakan disini, sama dengan
method yang kita pakai di demo dengan pembayaran DebitBNI. Inilah kekuatan dari abstract class.
Kita bisa melakukan standarisasi nama method, apapun bentuk implementasinya.

Nah.. udah ah. Segini aja dulu. Silahkan istirahat, ambil snack dan minumannya ya..

Interfaces

Interface hampir mirip dengan abstract class. Dimana kita harus membuat method yang ada di
Interface pada class yang mengimplementasikan interfaces tersebut. Perbedaannya adalah sebuah
class hanya bisameng-extends satu abstract class, tapi bisamengimplementasikan banyak interfaces.
Kira-kira seperti ini ilustrasinya:

Ilustrasi Abstract dan Interfaces

Misalnya, ada class Kucing, dia meng-extends abstract class HewanMamalia. Nah, dia juga bisa
mengimplementasikan interface Sayap, jadi dia bisa punya method terbang(). Atau ditambah lagi
dengan implementasi interface Insang, jadi dia bisa punya method menyelam() (kebayang ngga
kucing yang bisa terbang dan bisa menyelam? :v). Tapi, kucing ini tidak bisa meng-extends abstract
class HewanMelata. Karena, dia hanya boleh meng-extends satu abstract class (dalam contoh ini
HewanMamalia). Sip.

Apa manfaat Interface?

Konsep Dasar 17

Banyak. Salah satunya, Interface biasanya digunakan untuk kita melakukan komunikasi antar
object yang tidak saling berhubungan. Contoh, misalnya kita ingin membuat sebuah Class untuk
membandingkan statistik berbagai akun di media sosial, kita sebut saja SocialGraph. Class ini
punya fungsi compareLike yang bisa membandingkan membandingkan jumlah Like di berbagai
akun media sosial. Versi pertama dari SocialGraph, hanya bisa membandingkan jumlah like antar
akun Facebook.

∼/Code/abstract-wal-interfaces/SocialGraph.php

<?php

class SocialGraph {

public static function compareLike(Facebook $fb1, Facebook $fb2) {

if ($fb1->totalLike() > $fb2->totalLike()) {

echo "Status " .$fb1->user() . " Lebih populer dari " . $fb2->user()\

. "\n";

} elseif ($fb1->totalLike() < $fb2->totalLike()) {

echo "Status " .$fb2->user() . " Lebih populer dari " . $fb1->user()\

. "\n";

} else {

echo "Status kedua user sama-sama populer";

}

}

}

Yang perlu diperhatikan disini adalah kita menggunakan type hinting object class Facebook pada
method compareLike. Ini digunakan agar script menampilkan error jika user tidak memberikan
parameter berupa object Facebook.

Kita juga menggunakan method totalLike() untuk membandingkan popularitas antar status
Facebook. Dengan class Facebook :

∼/Code/abstract-wal-interfaces/Facebook.php

<?php

class Facebook {

private $status;

private $user;

private $like = 0;

public function __construct($user, $status) {

$this->user = $user;

$this->status = $status;

}

public function status() {

return $this->status;

Konsep Dasar 18

}

public function user() {

return $this->user;

}

public function like() {

$this->like++;

}

public function totalLike() {

return $this->like;

}

}

Demokan dengan syntax ini :

∼/Code/abstract-wal-interfaces/demo-socialgraph.php

<?php

include "Facebook.php";

include "SocialGraph.php";

$fbTukul = new Facebook("Tukul Arwana", "Kembali ke laptop!");

$fbTukul->like();

$fbTukul->like();

$fbJokowi = new Facebook("Joko Widodo", "Aku rapopo..");

$fbJokowi->like();

$fbJokowi->like();

$fbJokowi->like();

$socialGraph = new SocialGraph();

$socialGraph->compareLike($fbTukul, $fbJokowi);

Terlihat disini, status Tukul mendapat 2 like, sedangkan status Jokowi mendapat 3 like. Jika
dijalankan:

SocialGraph membandingkan popularitas status facebook

Oke, SocialGraph versi 1 sudah berjalan. Aplikasi kita terus berkembang, kini kita akan mensupport
akun Twitter. Misalnya dengan class Twitter seperti berikut:

Konsep Dasar 19

∼/Code/abstract-wal-interfaces/Twitter.php

<?php

class Twitter {

private $tweet;

private $user;

private $favorite;

public function __construct($user, $tweet) {

$this->user = $user;

$this->tweet = $tweet;

}

public function tweet() {

return $this->tweet;

}

public function user() {

return $this->user;

}

public function favorite() {

$this->favorite++;

}

public function totalFavorite() {

return $this->favorite;

}

}

Disinilah masalahnya muncul, cara menentukan jumlah like di twitter ternyata berbeda. Karena,
twitter tidak mengenal istilah like, yang dikenal di twitter adalah favorite. Jika kita coba bandingkan
popularitas akun facebook dengan twitter, pasti tidak akan bisa. Misalnya dengan syntax :

∼/Code/abstract-wal-interfaces/demo-socialgraph.php

<?php

include "Facebook.php";

include "Twitter.php";

include "SocialGraph.php";

$fbTukul = new Facebook("Tukul Arwana", "Kembali ke laptop!");

$fbTukul->like();

$fbTukul->like();

$twJokowi = new Twitter("Joko Widodo", "Aku rapopo..");

$twJokowi->favorite();

$twJokowi->favorite();

Konsep Dasar 20

$twJokowi->favorite();

$socialGraph = new SocialGraph();

$socialGraph->compareLike($fbTukul, $twJokowi);

Akan muncul error

Tidak bisa membandingkan jumlah like facebook dengan favorite twitter

Ini terjadi karena method compareLike() hanya menerima input berupa object Facebook. Ada
beberapa cara untuk menyelesaikannya:

1. Gunakan method yang berbeda untuk membandingkan facebook dan twitter misalnya
compareFacebookTwitter(Facebook $fb, Twitter tw). Tapi akan muncul masalah baru,
bagaimana jika membandingkan Twitter dengan Twitter apa perlu dibuat method baru
compareTwitterTwitter()? Dan bagaimana jika membandingkan Twitter ke Facebook apa
dibuat compareTwiterFacebook()? Solusi ini tidak akan digunakan.

2. Gunakan parent class yang sama, misalnya Social untuk class Facebook dan Twitter. Dan
ubah paramter method compareTo menjadi Social. Solusi ini mesti akan berhasil sekarang,
akan merepotkan jika kita akan mengimplementasikan fitur compareLike ini pada object lain,
misalnya Artikel di web, Video di Youtube, dll. Solusi ini tidak akan digunakan.

3. Buat interface Likeable untuk menunjukkan object yang bisa di Like. Solusi ini yang akan
kita gunakan.

Mari kita buat interfacenya :

Konsep Dasar 21

∼/Code/abstract-wal-interfaces/Likeable.php

<?php

interface Likeable {

public function platform();

public function user();

public function totalLike();

public function like();

}

Disini, kita mendefinisikan beberapa method yang harus di buat pada Class yang mengimplemen-
tasikan Likeable yaitu platform(), user(), totalLike() dan like().

Mari kita implementasikan Likeable di class Facebook :

∼/Code/abstract-wal-interfaces/Facebook.php

<?php

include_once "Likeable.php";

class Facebook implements Likeable {

....

public function platform() {

return "Facebook";

}

}

Dan di class Twitter :

∼/Code/abstract-wal-interfaces/Twitter.php

<?php

include_once "Likeable.php";

class Twitter implements Likeable {

....

public function like() {

$this->favorite();

}

public function totalLike() {

return $this->totalFavorite();

}

public function platform() {

return "Twitter";

}

}

Konsep Dasar 22

Kita ubah juga method compareLike di class SocialGraph agar parameter nya menjadi interface
Likeable :

∼/Code/abstract-wal-interfaces/SocialGraph.php

<?php

class SocialGraph {

public static function compareLike(Likeable $social1, Likeable $social2) {

if ($social1->totalLike() > $social2->totalLike()) {

echo $social1->platform() . " ". $social1->user();

echo " Lebih populer dari " . $social2->platform() . " ";

echo $social2->user() . "\n";

} elseif ($social1->totalLike() < $social2->totalLike()) {

echo $social2->platform() . " ". $social2->user();

echo " Lebih populer dari " . $social1->platform() . " ";

echo $social1->user() . "\n";

} else {

echo "Kedua user sama-sama populer.\n";

}

}

}

Sehingga, kalau kita jalankan lagi demonya :

Berhasil membandingkan favorite di Twitter dan like di Facebook

Berhasil kan?

Dengan cara ini kita berhasil membandingkan (mengkomunikasikan) jumlah like di facebook dan
jumlah favorite di Twitter. Jika kedepannya kita akan mendukung media yang lain, misalnya video
di Youtube, maka class VideoYoutube tersebut tinggal mengimplementasikan interface Likeable.

Jika saya ambil kesimpulan, ketika kita menggunakan abstract class kita fokus pada siapa Class
ini (instance of). Sedangkan, ketika kita menggunakan interface kita fokus pada apa yang bisa
dilakukan Class ini (capable of).

Dengan menggunakan interface, kita dapat menyeragamkan API (method like())untuk aplikasi
kita, meskipun jenis implementasinya beragam (facebook, twitter, youtube, dll).

Konsep Dasar 23

Interfaces sangat membantu dalammembangun aplikasi skala besar. Penjelasan saya ini merupakan
contoh sederhana penggunaan interface di lapangan, masih banyak contoh lainnya.

Laravel menggunakan banyak interfaces dalam bentuk contract untuk berbagai fiturnya. Sehingga
memungkinkan kita untuk merubah implementasinya sesuai kehendak kita. Contoh penggunaan
sederhananya seperti ini:

• Mau merubah implementasi view dari Blade ke Twig? Bisa.
• Mau merubah penyimpanan Cache ke MongoDB? Bisa.
• Mau merubah implementasi Queue ke driver lain? Bisa.
• dll.

Dan semua perubahan itu bisa dilakukan hanya dengan merubah implementasi contract (interfaces)
yang berhubungan. Serius, Keren.

Tentunya tidak akan cukup kalau saya jelaskan contract di Laravel pada bab ini. Oleh karena itu,
pembahasan lebih lanjut tentang contract akan kita bahas pada bab Arsitektur Laravel.

Source code dari latihan ini bisa didapat di https://github.com/rahmatawaludin/abstract-
wal-interfaces³

³https://github.com/rahmatawaludin/abstract-wal-interfaces

https://github.com/rahmatawaludin/abstract-wal-interfaces
https://github.com/rahmatawaludin/abstract-wal-interfaces
https://github.com/rahmatawaludin/abstract-wal-interfaces

Mengakses Database
Chunk, memproses banyak data dengan lebih efisien
memory

Menggunakan chunk sangat bermanfaat ketika kita akan memproses banyak baris dalam database.
Penggunaan akan meminimalkan penggunaan memory dalam eksekusi script yang kita buat. Untuk
menunjukkan manfaatnya, mari kita buat 10.000 data pada table products dengan membuat seeder
SampleChunkSeeder dengan isi:

database/seeds/SampleChunkSeeder.php
use Faker\Factory as Faker;

use Illuminate\Database\Seeder;

class SampleChunkSeeder extends Seeder {

public function run()

{

$faker = Faker::create();

$products = ["Accord", "Civic", "City", "CR-V", "Jazz", "Freed", "Mobili\

o"];

$descriptions = ["Tipe manual", "Tipe Otomatis"];

for ($i=0; $i < 10000; $i++) {

DB::insert('insert into products (name, description, price, stock) v\

alues (:name, :description, :price, :stock)', [

'name' => $products[rand(0,6)] . ' ' . $faker->firstNameMale,

'description' => $descriptions[rand(0,1)],

'price' => rand(100,800) * 1000000,

'stock' => rand(2,40)

]);

}

$this->command->info('Berhasil 10.000 menambah mobil!');

}

}

Setelah dibuat, mari kita jalankan seeder ini hingga muncul tulisan Berhasil menambah 10.000
mobil!.

Mengakses Database 25

vagrant@homestead:~/Code/sample-database$ php artisan db:seed --class "SampleChu\

nkSeeder"

Berhasil menambah 10.000 mobil!

Untuk mengetes penggunaan chunk, kita akan membuat route untuk menampilkan product yang
memiliki stock lebih dari 20. Kita akan menggunakan 2 route, pertama tanpa chunk dan kedua
dengan chunk, kemudian kita bandingkan penggunaan memory keduanya dengan fungsi memory_-
get_usage() di PHP. Mari kita buat route pertama:

app/Http/routes.php

....

Route::get('/list-stock', function() {

$begin = memory_get_usage();

foreach (DB::table('products')->get() as $product) {

if ($product->stock > 20) {

echo $product->name . ' : ' . $product->stock . '
';

}

}

echo 'Total memory usage : ' . (memory_get_usage() - $begin);

});

Kita buat juga route kedua dengan chunk:

app/Http/routes.php

....

Route::get('/list-stock-chunk', function() {

$begin = memory_get_usage();

DB::table('products')->chunk(100, function($products)

{

foreach ($products as $product)

{

if ($product->stock > 20) {

echo $product->name . ' : ' . $product->stock . '
';

}

}

});

echo 'Total memory usage : ' . (memory_get_usage() - $begin);

});

Kini, kita dapatmembandingkan penggunaanmemory keduanya denganmengunjungi /list-stock
dan /list-stock-chunk.

Mengakses Database 26

Tanpa Chunk

Dengan Chunk

Terlihat disini, tanpa menggunakan chunk memory yang digunakan sebanyak 1195024 byte atau
hampir 1 Mb. Sementara, menggunakan chunkmemory yang digunakan sebanyak 210744 byte atau
sekitar 200 Kb.Wow!.

Penggunaan chunk ini sangat disarankan ketika kita berinteraksi dengan banyak data. Tentunya,
jika kita menggunakan lebih banyak data, akan sangat terlihat penghematan memory yang kita
lakukan.

Untukmemudahkan latihan selanjutnya, silahkan jalankan kembali php artisan migrate:refresh

--seed untuk me-reset kondisi database.

Routing, Kendalikan Alur Aplikasi
Subdomain Routing

Jika kita menggunakan aplikasi misalnya Slack, biasanya setelah signup kita memiliki domain
sendiri misalnya malescast.slack.com, bukularavel.slack.com, dsb. Di Laravel, kita dapat mem-
buat fitur dengan menggunakan Subdomain Routing. Syntax dasarnya seperti berikut:

Subdomain routing

Route::group(['domain' => '{account}.myapp.com'], function()

{

Route::get('user/{id}', function($account, $id)

{

//

});

});

Misalnya, kita hendak membuat website fakebook.dev dan bisa menerima subdomain dengan
username.

• Jika kita mengakses joni.fakebook.dev maka akan menampilkan halaman akun Joni
• Jika kita mengakses joni.fakebook.dev/profile maka akan menampilkan profile Joni
• Jika kita mengakses joni.fakebook.dev/status/1 maka akan menampilkan status Joni
dengan id 1

Mari kita buat untuk case pertama, menampilkan halaman akun. Untuk membuatnya silahkan
persiapkan aplikasi laravel di homestead dengan domain ke fakebook.dev. Kemudian, tambahkan
route berikut:

Routing, Kendalikan Alur Aplikasi 28

t

....

Route::group(['domain' => '{username}.fakebook.dev'], function()

{

Route::get('/', function($username) {

return 'Anda mengunjungi akun ' . $username;

});

});

Disini, kita menggunakan username sebagai nama dari subdomain. Pada route ‘/’ (root) kita
menampilkan teks informasi akun siapa yang sedang dikunjungi.

Karena di host lokal tidak diizinkan membuat wildcard subdomain, kita perlu menambah domain
untuk tiap user secara manual. Mari kita buat untuk user joni dan kiki. Tambahkan baris berikut
di file host (sesuaikan IP dengan IP homestead):

/etc/hosts atau C:WindowsSystem32Drivers\etc\hosts

1 192.168.10.10 kiki.fakebook.dev

2 192.168.10.10 joni.fakebook.dev

3

Wildcard Subdomin
Untuk Linux dan OSX, selain menggunakan cara manual, kita juga dapat menggunakan
dnsmasq⁴. Silahkan baca tutorial untuk OSX⁵ atau Ubuntu⁶.

Di server produksi, untuk membuat wildcard subdomain ini dengan cara membuat A
Record baru. Isi name dengan *.domainkita.com, address dengan IP server dan TTL 1
hour. Tunggu 1 jam, wildcard subdomain kitapun akan berjalan.

Setelah siap, mari kita cek:

⁴http://www.thekelleys.org.uk/dnsmasq/doc.html
⁵https://vinkla.com/posts/setup-wildcard-dns-on-mac-os-x/
⁶https://help.ubuntu.com/community/Dnsmasq

http://www.thekelleys.org.uk/dnsmasq/doc.html
https://vinkla.com/posts/setup-wildcard-dns-on-mac-os-x/
https://help.ubuntu.com/community/Dnsmasq
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://vinkla.com/posts/setup-wildcard-dns-on-mac-os-x/
https://help.ubuntu.com/community/Dnsmasq

Routing, Kendalikan Alur Aplikasi 29

Mengunjungi Akun Joni

Mengunjungi Akun Kiki

Sip. Mari kita lanjut ke case kedua, menampilkan profile. Untuk memudahkan, mari kita simpan se-
mua data user dalam array. Kemudian, kita passing array ini ke closure di route untuk menampilkan
profile. Sehingga file route berubah menjadi:

app/Http/routes.php

1

2 Route::group(['domain' => '{username}.fakebook.dev'], function()

3 {

4

5 $data_user = [

6 'joni' => [

7 'profile' => 'Seorang programmer imut.',

8 'status' => ['Gue keren!', 'Gue keren bgt!', 'Top dah!']

9],

10 'kiki' => [

11 'profile' => 'Seorang programmer cute.',

12 'status' => ['Mantap!', 'Hari ini luar biasa!', 'Cemungut ea..']

13]

Routing, Kendalikan Alur Aplikasi 30

14];

15

16 Route::get('profile', function($username) use ($data_user)

17 {

18 return $data_user[$username]['profile'];

19 });

20 });

Mari kita coba kunjungi profile Joni:

Mengunjungi Profile Joni

Untuk case ketiga, menampilkan status, kita juga akan menggunakan array yang telah dibuat tadi.
Tambahkan route berikut:

app/Http/routes.php

1

2 Route::group(['domain' => '{username}.fakebook.dev'], function()

3 {

4

5 Route::get('status/{id}', function($username, $id) use ($data_user)

6 {

7 return $username . ' menulis : ' . $data_user[$username]['status'][$id];

8 });

9 });

Mari kita coba mengecek status Kiki:

Routing, Kendalikan Alur Aplikasi 31

Mengecek Status Kiki

Mengecek Status Kiki

Sip.

	Daftar Isi
	Konsep Dasar
	PHP5 Autoloader
	PHP5 Abstract dan Interfaces

	Mengakses Database
	Chunk, memproses banyak data dengan lebih efisien memory

	Routing, Kendalikan Alur Aplikasi
	Subdomain Routing

