

[image: Building Shiny Apps]

 Building Shiny Apps

 Web development for R users

 Pablo Maldonado

 This book is for sale at http://leanpub.com/buildingshinyapps

 This version was published on 2018-03-14

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2016 - 2018 Pablo Maldonado

 Table of Contents

 	
 Introduction

 	
 Chapter 1: R and dplyr at a glance

 	
 What is R?

 	
 What is dplyr?

 	
 R in a nutshell

 	
 Types

 	
 Coercion

 	
 Special values in R

 	
 Data Frames

 	
 dplyr: A grammar for data manipulation

 	
 Chapter 2: ggplot2

 	
 Grammar of graphics

 	
 Diving deeper into the grammar of graphics

 Guide

 	
 Begin Reading

Introduction

The purpose of this book is to help you to develop Shiny apps with zero to little knowledge of R. Shiny is a web framework, developed by RStudio Inc., which allows to quickly build prototypes and in many cases even production versions of data-driven applications.

We live on the information age, and that’s a curse and a blessing. When I started my own journey into Shiny, I felt a bit overwhelmed by the documentation, both because of its abundance but also by its depth. Yes, the documentation is definitely excellent, and the team in RStudio are really supportive to the user community, but I’ve always felt that it was a bit too much for beginners. I personally find that the documentation is written for techically-minded people, however, it is really a great tool for business users as well.

During my consulting experience at a global organization, I saw that many of my colleagues were eager to learn, and, quite capable. When I showed them the essential parts of the documentation to get the work done, they could easily get started on their own and answer their own questions.

My intention is not to rewrite the documentation. What I am offering you is the essential parts of it to help you get started, the curated documentation, if you wish. These are the parts I learned through trial, error and experimentation with my colleagues (sorry guys).

The structure of the book is as follows: We’ll do a quick introduction to R and the package dplyr (version 0.5.0) for data wrangling. We will not cover this in detail, as more advanced users may rely on the excellent documentation provided by Hadley Wickham, Chief Scientist of the RStudio foundation, and dplyr’s creator. Then we’ll follow with ggplot2, an excellent plotting package (also from Hadley Wickham) that seamlessly integrates with dplyr. From here, thanks to the support for ggplot from plot.ly, there’s just one more step to beautiful plots. On Chapter 3, we will cover the main features of Shiny and guide you through an example. Chapter 4 is about building dashboards using the shinydashboard package. Finally, in Chapter 5, we will cover maps using the Leaflet package. The book is example-guided and expects that the reader will put some effort to it.

Source codes and datasets for the exercises are available through Github or on request.

Chapter 1: R and dplyr at a glance

What is R?

The R language was created by researchers Ross Ihaka and Robert Gentleman in 1991 in the Department of Statistics, University of Auckland, New Zealand. It is derived from the S language, originally developed in the 1950’s in Bell Labs by John Chambers and his team.

R is one of the most used tools by data scientists. It is free (both as in “free beer” and “free person”) statistical package, although there exist commercial versions with support for additional features. R is relatively easy to learn and has lots of packages for advanced statistical computations.

One of the main disadvantages against Python, R’s main competitor in the data science landscape, is that objects in general need to reside in physical memory. This is slowly becoming less of a problem, since both the R core team and external package developers have implemented features to get around with this problem.

What is dplyr?

As self-described in its documentation, dplyr is

 “A fast, consistent tool for working with data frame like objects, both in memory and out of memory”.

It was created by Hadley Wickham (Rice University/RStudio), and is part of a suite of very useful packages for data manipulation in R, such as ggplot2, which will be covered as well.

I will assume that you have installed R and RStudio in your system and that they are correctly running.

R in a nutshell

Let us jump straight into R syntax and some useful commands.

Basic Syntax

In R, the assignment operator is <-

x <- 1
print(x)

You can use =, but <- is preferred by the R community, and there are some differences. In fact, Google forbids its use in the [R Style guide] (https://google.github.io/styleguide/Rguide.xml), which I reccommend you to look at. The keyboard shortcut for <- is Alt + - in RStudio.

A quick way to get help is to use the ? command. For instance

1 ?print

launches a help file in RStudio describing the documentation of the print function.

Types

We describe now the most important data types in R, which are the source of silly errors in the beginning.

Vectors and types

The following types are supported in R

1 x <- c(0.5,0.6) #numeric
2 x <- c(T,F) #logical
3 x <- c("a","b","c") #character
4 x <- c(1+0i,2+4i) #complex

You can use TRUE or FALSE for logical as well.

R uses compressed notation for vectors with consecutive integers:

1 x <- 9:29
2 print(x)

which prints the numbers from 9 to 29 (both inclusive)

Coercion

Sometimes we need to coerce the types of the input data to be correctly interpreted by the package we want to use.

Let’s see how it works with an example:

1 x <- 0:6
2 class(x)

This returns:

1 [1] "integer"

If we do now:

1 as.logical(x)

we get

1 [1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE

Finally,

1 as.character(x)

gives us

1 [1] "0" "1" "2" "3" "4" "5" "6"

Coercion is not always possible, for instance

1 x <- c("a","b","c")
2 as.numeric(x)

yields

1 Warning: NAs introduced by coercion
2 [1] NA NA NA

which leads us to…

Special values in R

 	
NA is used for existing, but useless values.

 	
NaN is used for undefined values, like 0/0.

 	
NULL means unexistant value.

 	There’s also Inf and -Inf.

So, for example:

1 v <- c(1, 2, 3, NA, 5)
2 sum(v)

gives

1 [1] NA

while

1 v <- c(1, 2, 3, NaN, 5)
2 sum(v)

returns

1 [1] NaN

and

1 v <- c(1, 2, 3, NULL, 5)
2 sum(v)

returns

1 [1] 11

If you think about it for a moment, this convention makes sense. To check for this special values, you can use:

1 is.na(5) #FALSE
2 is.na(NaN) #TRUE
3 is.nan(NA) #FALSE
4 is.null(NULL) #TRUE
5 is.finite(Inf) #FALSE
6 is.na(Inf) #FALSE

Again, think about this for a moment until it sinks in.

Factors are a special and very useful data structure.

1 x <- factor(c("yes","no", "yes", "no", "no"))
2 x

Factors are special ways of representing data internally, and they are treated specially by modelling functions.

Data Frames

Data Frames are data structures resembling the matrices from your algebra class. The main difference is that data frames can accommodate other kinds of data structures, such as text. For example:

1 df <- data.frame(Weather = c("Cold","Mild","Cold","Ok")
2 , Cities = c("Prague", "Brno", "Ostrava", "Zlin")
3)
4 df

creates a small data frame with two columns and 4 rows:

1 > df
2 Weather Cities
3 1 Cold Prague
4 2 Mild Brno
5 3 Cold Ostrava
6 4 Ok Zlin

Doing

1 df$Cities

yields

1 [1] Prague Brno Ostrava Zlin
2 Levels: Brno Ostrava Prague Zlin

and we can query the data frame referring to row, columns as with matrices, for instance:

1 df[2,1] # Returns Mild
2 df[2,"Weather"] #Also returns Mild

We can do more complicated things with data frames, such as finding subsets that satisfy certain conditions:

1 df[df$Weather=='Mild',]

this gives us all the rows satisfying the condition in the first argument, and leaving a space after the comma tells R to return all the columns. Hence we get:

1 Weather Cities
2 2 Mild Brno

However, for our purposes, we will focus on dplyr instead of R base functions. dplyr provides a cleaner interface, which is also easier to debug as our app grows.

Loading and inspecting

We will use the online news popularity dataset from the UCI repository, available here for our examples. This data set consists of the URLs of articles in the online portal mashable.com and the task of the researchers was to predict whether an article would become highly shared or not, and how to tweak it to make it more shareable, based on a number of attributes, such as the number of media content, the topic of the article, the day of the week, etc.

I have downloaded the dataset and stored it into a directory called “/data” in my computer. Please download it and save it in your computer. The data set includes a data dictionary that will explain you each columns.

1 news<-read.csv('./data/OnlineNewsPopularity/OnlineNewsPopularity.csv')
2
3 small <- news[2:5]
4 head(small) # Too many columns

1 timedelta n_tokens_title n_tokens_content n_unique_tokens
2 1 731 12 219 0.6635945
3 2 731 9 255 0.6047431
4 3 731 9 211 0.5751295
5 4 731 9 531 0.5037879
6 5 731 13 1072 0.4156456
7 6 731 10 370 0.5598886

to see quick summary statistics of our data frame, simply do

1 summary(small)

which returns

1 timedelta n_tokens_title n_tokens_content n_unique_tokens
2 Min. : 8.0 Min. : 2.0 Min. : 0.0 Min. : 0.0000
3 1st Qu.:164.0 1st Qu.: 9.0 1st Qu.: 246.0 1st Qu.: 0.4709
4 Median :339.0 Median :10.0 Median : 409.0 Median : 0.5392
5 Mean :354.5 Mean :10.4 Mean : 546.5 Mean : 0.5482
6 3rd Qu.:542.0 3rd Qu.:12.0 3rd Qu.: 716.0 3rd Qu.: 0.6087
7 Max. :731.0 Max. :23.0 Max. :8474.0 Max. :701.0000

Try the following command on your own!

1 tail(small, n = 3)

dplyr: A grammar for data manipulation

dplyr provides a function for each basic action with data:

 	filter() (and slice())

 	arrange()

 	select() (and rename())

 	distinct()

 	mutate() (and transmute())

 	summarise()

 	sample_n() (and sample_frac())

which can do many things together with the %>%. We suggest to read this operator as “and then”

We’ll provide examples of how to apply each of the verbs above to our data.

Installing and loading dplyr

Since dplyr is not preinstalled in R, we need to get it using the command:

1 install.packages("dplyr")

At the moment of writing, fall 2016, the latest version is 0.5.0.

Let’s load it into R, assuming the installation went without problems:

library(dplyr)

You will see the following warning

1 ##
2 ## Attaching package: 'dplyr'
3 ## The following objects are masked from 'package:stats':
4 ##
5 ## filter, lag
6 ## The following objects are masked from 'package:base':
7 ##
8 ## intersect, setdiff, setequal, union

Don’t worry too much about this for now.

filter()

Our first task is to filter the articles from a specific day:

1 oldest <- filter(small, timedelta == 731)
2 head(oldest, n = 2)

which gives us

1 ## timedelta n_tokens_title n_tokens_content n_unique_tokens
2 ## 1 731 12 219 0.6635945
3 ## 2 731 9 255 0.6047431

Note that we can get the same result (try it!) using the operator %>%:

1 small %>% filter(timedelta==731) %>% head(n=2)

Now you see why %>% is called “and then”. When you try to read the above command:

1 > small, and then filter where timedelta is 731, and then take the first two

Cool, right?

In pure R (without dplyr), we can do

1 oldest <- small[small$timedelta==731,]
2 head(oldest, n = 2)

which again yields the same result, but in a somewhat less clean way.

slice()

slice() filters rows by position, for instance:

1 slice(small, 16:20)

returns

1 ## timedelta n_tokens_title n_tokens_content n_unique_tokens
2 ## 1 731 12 682 0.4595420
3 ## 2 731 8 1118 0.5123967
4 ## 3 731 8 397 0.6246787
5 ## 4 731 11 103 0.6893204
6 ## 5 731 8 1207 0.4105793

arrange()

arrange() orders columns and helps to break ties.

1 small %>%
2 arrange(timedelta, n_tokens_title, n_tokens_content) %>%
3 head(n=3)

1 ## timedelta n_tokens_title n_tokens_content n_unique_tokens
2 ## 1 8 6 682 0.5394933
3 ## 2 8 8 2509 0.3488781
4 ## 3 8 10 157 0.7019868

We can use desc() to arrange a column in descending order.

1 small %>%
2 arrange(desc(timedelta), n_tokens_title, n_tokens_content) %>%
3 head(n=3)

and we see now

1 ## timedelta n_tokens_title n_tokens_content n_unique_tokens
2 ## 1 731 5 356 0.6182336
3 ## 2 731 6 109 0.6666667
4 ## 3 731 6 174 0.6918605

select()

We can use select to, well, select specific columns:

1 small %>% select(timedelta,n_tokens_content) %>% head(n=2)
2
3 ## timedelta n_tokens_content
4 ## 1 731 219
5 ## 2 731 255

or to avoid specific columns

1 small %>% select(-c(n_tokens_title,n_tokens_content)) %>% head(n=2)
2
3 ## timedelta n_unique_tokens
4 ## 1 731 0.6635945
5 ## 2 731 0.6047431

We can use select() also to rename columns

1 small %>% select(words_in_title = n_tokens_title) %>% head(n=3)
2 ## words_in_title
3 ## 1 12
4 ## 2 9
5 ## 3 9

however, this drops all the non-selected variables.

rename()

This function is useful to rename a column without dropping the other variables

1 small %>% rename(words_in_title = n_tokens_title) %>% head(n=3)
2 ## timedelta words_in_title n_tokens_content n_unique_tokens
3 ## 1 731 12 219 0.6635945
4 ## 2 731 9 255 0.6047431
5 ## 3 731 9 211 0.5751295

distinct()

This function allows us to find unique values in a table:

1 small %>% distinct(timedelta) %>% head(n=3)
2 ## timedelta
3 ## 1 731
4 ## 2 730
5 ## 3 729

To count how many of those distinct values are, simply do

1 small %>% distinct(timedelta,n_tokens_title) %>% nrow
2 ## [1] 6792

mutate()

Sometimes we need to add new columns that are function of existing columns, for instance:

 1 small %>%
 2 mutate(title_to_content = n_tokens_title/n_tokens_content
 3 ,total_unique = n_tokens_content * n_unique_tokens) %>%
 4 head(n=3)
 5
 6 ## timedelta n_tokens_title n_tokens_content n_unique_tokens
 7 ## 1 731 12 219 0.6635945
 8 ## 2 731 9 255 0.6047431
 9 ## 3 731 9 211 0.5751295
10 ## title_to_content total_unique
11 ## 1 0.05479452 145.3272
12 ## 2 0.03529412 154.2095
13 ## 3 0.04265403 121.3523

A really amazing feature is that we can recycle newly created variables!

 1 small %>%
 2 mutate(title_to_content = n_tokens_title/n_tokens_content
 3 ,percentage = round(100*title_to_content,2)) %>%
 4 head(n=3)
 5 ## timedelta n_tokens_title n_tokens_content n_unique_tokens
 6 ## 1 731 12 219 0.6635945
 7 ## 2 731 9 255 0.6047431
 8 ## 3 731 9 211 0.5751295
 9 ## title_to_content percentage
10 ## 1 0.05479452 5.48
11 ## 2 0.03529412 3.53
12 ## 3 0.04265403 4.27

transmute()

This is like mutate(), but keeps only the newly created variables

1 small %>%
2 transmute(title_to_content = n_tokens_title/n_tokens_content
3 ,total_unique = n_tokens_content * n_unique_tokens) %>%
4 head(n=3)
5
6 ## title_to_content total_unique
7 ## 1 0.05479452 145.3272
8 ## 2 0.03529412 154.2095
9 ## 3 0.04265403 121.3523

Sampling: sample_n() and sample_frac()

These two functions allow us to sample randomly a fixed number of rows or a fraction. Use replace = TRUE for a sample with replacement, and you can add weights for the sampling if needed. Since we won’t need this functions very much for now, I’ll point you to dplyr’s help in ?sample_n.

Grouping functions

All the functions above become really useful when we can apply them to groups. This is the real meat of the package, in a way.

Suppose we are interested in finding out if news about world events have more images than, say, lifestyle. Let’s take a look:

1 gps <- news %>%
2 group_by(data_channel_is_lifestyle
3 ,data_channel_is_world)%>%
4 summarise(count=n()
5 ,avg_imgs = mean(num_imgs, na.rm = TRUE)
6 , avg_videos =mean(num_videos, na.rm = TRUE))

The group_by() function takes tuples of values (in this case, from lifestyle, world and all the other categories) and calculates the functions hidden inside the summarise() function.

That’s quite a bit of a query. Let’s see the results, which hopefully make it clearer.

1 data_channel_is_lifestyle data_channel_is_world count avg_imgs avg_videos
2 <dbl> <dbl> <int> <dbl> <dbl>
3 1 0 0 2923 5.091687 1.4844338
4 2 0 1 833 2.801921 0.6974790
5 3 1 0 208 4.956731 0.3317308

To get an clearer picture of this, let’s plot the average number of images against each category:

1 barplot(gps$avg_imgs
2 , names.arg = c("Other", "Lifestyle", "World")
3 , main = "Average number of images")

we obtain

 [image: Fig 1.1]
 Fig 1.1

Before moving to the exercises, let’s draw one more plot that will help you:

1 plot(news$timedelta,news$shares
2 , type='l', main = "Number of shares across time"
3 , xlab = "Days since acquisition", ylab = "Number of shares")

 [image: Fig 1.2]
 Fig 1.2

Exercises

Try it yourselves! Let’s test some hypothesis:

 	What are the 5 most shared articles?

 	Which channel (among the six described) has the largest average number of shares? does it change across time?

 	Which day has the most shares, on average?

Solutions

 What are the 5 most shared articles?

A simple application of arrange() and desc:

1 news %>% arrange(desc(shares)) %>% select(url,shares) %>% head(n=5)

 1 ## url
 2 ## 1 http://mashable.com/2013/07/03/low-cost-iphone/
 3 ## 2 http://mashable.com/2013/04/15/dove-ad-beauty-sketches/
 4 ## 3 http://mashable.com/2014/04/09/first-100-gilt-soundcloud-stitchfix/
 5 ## 4 http://mashable.com/2013/11/18/kanye-west-harvard-lecture/
 6 ## 5 http://mashable.com/2013/03/02/wealth-inequality/
 7 ## shares
 8 ## 1 843300
 9 ## 2 690400
10 ## 3 663600
11 ## 4 652900
12 ## 5 617900

 Which channel has the largest number of shares?

This is a bit more complicated, since we need to use group_by() and summarise():

1 ex2a <- news %>%
2 group_by(data_channel_is_lifestyle
3 , data_channel_is_entertainment
4 , data_channel_is_bus
5 , data_channel_is_socmed
6 , data_channel_is_tech
7 , data_channel_is_world)%>%
8 summarise(avg_shares = mean(shares))

For the plot,

1 barplot(ex2a$avg_shares,
2 names.arg =c("Other","LS","Ent","Bus","SM","Tech","World"))

which gives the output in Fig 1.3.

 [image: Fig 1.3]
 Fig 1.3

So we see that, among the specified categories, World has the most shares in average.

 Does it change with time?

We simply need to filter out the category World using filter()

1 ex2b <- news %>% filter(data_channel_is_world ==1)
2 plot(ex2b$timedelta,ex2b$shares
3 , type='l', main = "Number of shares across time- World"
4 , xlab = "Days since acquisition", ylab = "Number of shares")

The output is in Fig 1.4.

 [image: Fig 1.4]
 Fig 1.4

 Which day has the most shares, on average?

This is again a combination of group_by() and summarise():

1 ex3 <- news %>%
2 group_by(weekday_is_monday
3 , weekday_is_tuesday
4 , weekday_is_wednesday
5 , weekday_is_thursday
6 , weekday_is_friday
7 , weekday_is_saturday
8 , weekday_is_sunday)%>%
9 summarise(avg_shares = mean(shares))

The code for the plot is:

1 barplot(ex3$avg_shares,
2 names.arg =c("Mon", "Tue",'Wed', "Thu", "Fri", "Sat", "Sun"))

which you can see in Fig 1.5.

 [image: Fig 1.5]
 Fig 1.5

Chapter 2: ggplot2

We did some plots on the last chapter, but they where a bit ugly (aesthetically and synthactically).

Let’s do something else this time. We will work with the same dataset as before.

1 library(ggplot2)
2 news<-read.csv('./data/OnlineNewsPopularity/OnlineNewsPopularity.csv')

Grammar of graphics

A grammar of graphics is a structured way to create graphs. We can think of a plot in terms of layers, where each layer has:

 	
Data: No need to explain this one.

 	
Aesthetics: Map variables on the data set to graphic primitives, like size, color, x, y.

 	
Geometry: Visual display and custom parameters.

For example,

1 #Fig 2.1
2
3 ggplot(news,aes(x=timedelta,y=shares))+geom_point()

tells us to use the news dataframe, map the variables timedelta and shares to the x-y axis respectively, and we will use points to represent the relation between these two. We can see the result in Figure 2.1

 [image: Fig 2.1]
 Fig 2.1

We can add color to the aesthetics of our plot, and get the plot in Figure 2.2:

1 #Fig 2.2
2
3 ggplot(news,aes(x=timedelta,y=shares,
4 color=data_channel_is_lifestyle))+geom_point()

 [image: Fig 2.2]
 Fig 2.2

Note that, since data_channel_is_lifestyle was interpreted as numeric by dplyr, we get a continuous color scale.
To obtain a discrete color scale, we can coerce this variable to factor, and we get the result in Figure 2.3:

1 #Fig 2.3
2 ggplot(news,aes(x=timedelta,y=shares,
3 color=as.factor(data_channel_is_lifestyle)))+geom_point()

 [image: Fig 2.3]
 Fig 2.3

We can fit more than two dimensions of our data in a two-dimensional coordinate system, if we use colors and shapes. For instance, Figure 2.4 shows four dimensions!

1 #Fig 2.4
2
3 ggplot(news,aes(x=timedelta,y=shares,
4 color=as.factor(data_channel_is_lifestyle),
5 shape=as.factor(data_channel_is_bus)))+geom_point()

 [image: Fig 2.4]
 Fig 2.4

ggplot2 and dplyr

A great advantage of ggplot2 is that is fully compatible with dplyr. Let’s revisit the plot from our previous exercise:

 1 ex2a <- news %>%
 2 group_by(data_channel_is_lifestyle
 3 , data_channel_is_entertainment
 4 , data_channel_is_bus
 5 , data_channel_is_socmed
 6 , data_channel_is_tech
 7 , data_channel_is_world)%>%
 8 summarise(avg_shares = mean(shares))
 9
10 ex2a$channel <- c("Other","LS","Ent","Bus","SM","Tech","World")

In particular, we can use the pipe operator!

1 #Fig 2.5
2
3 ex2a %>%
4 ggplot(aes(x=channel, y=avg_shares))+geom_bar(stat = "identity")

which yields Fig 2.5,

 [image: Fig 2.5]
 Fig 2.5

and make even nicer plots, such as Fig 2.6:

1 #Fig 2.6
2
3 q <- ex2a %>%
4 ggplot(aes(x=channel, y=avg_shares,
5 fill = avg_shares))+geom_bar(stat = "identity")+
6 scale_fill_continuous(name="Average shares")

 [image: Fig 2.6]
 Fig 2.6

Wait, what’s the “stats” there? The issue is that some plots visualize transformations of the data. We can combine stat with geom, for instance:

1 news %>%
2 select(is_weekend) %>%
3 ggplot(aes(x=as.factor(is_weekend)))+geom_bar(stat="count")

and

1 news %>%
2 select(is_weekend) %>%
3 ggplot(aes(x=as.factor(is_weekend)))+stat_count(geom = "bar")

yield the same plot (try it!)

Diving deeper into the grammar of graphics

Let’s go a bit more in detail with the grammar of graphics, using instead the diamonds dataset, included in ggplot, that contains the price of different diamonds and their attributes.

Two basic constructs:

 	
plot: coord, scale, facet and layers

 	
layer: data mapping, stat, geom, position

The plot is the canvas on which we paint, the layer is the things we paint there. Let’s see how to do some common plots:

Continuous vs continuous

That’s pretty much like the first plot we saw:

1 # Fig 2.7
2
3 diamonds %>%
4 ggplot(aes(x=carat,y=price))+
5 geom_point()

 [image: Fig 2.7]
 Fig 2.7

Discrete vs Continuous

1 # Fig 2.8
2 diamonds %>%
3 ggplot(aes(x=cut,y=price))+
4 geom_point()

 [image: Fig 2.8]
 Fig 2.8

This plot is not very useful, because all the dots are on the same vertical line. We can add a bit of jitter on it:

1 # Fig 2.9
2 p <-
3 diamonds %>%
4 ggplot(aes(x=cut,y=price))+
5 geom_point(position = "jitter")

 [image: Fig 2.9]
 Fig 2.9

We need not restrict ourselves to points or lines, we can change the geom, too!

1 # Fig 2.10
2 p <-
3 diamonds %>%
4 ggplot(aes(x=cut,
5 y=price))+
6 geom_boxplot(position = "dodge")

 [image: Fig 2.10]
 Fig 2.10

A really useful feature that comes from the abstraction is that combining layers is quite natural:

1 # Fig 2.11
2 p <-
3 diamonds %>%
4 ggplot(aes(x=cut,y=price))+
5 geom_point(position = "jitter")+
6 geom_boxplot(position = "dodge",
7 fill = "blue",
8 color="red",
9 alpha=0.3)

 [image: Fig 2.11]
 Fig 2.11

We saw already that adding colors or shapes is useful to represent more information. We can go even further on the slicing and dicing of our data for analysis using facets:

1 # Fig 2.12
2 p <-
3 diamonds %>%
4 ggplot(aes(x=carat,
5 y=price,
6 color=color))+
7 scale_color_hue()+
8 geom_point()+
9 facet_wrap(~cut)

 [image: Fig 2.12]
 Fig 2.12

We can add a fitted curve, to highlight some trends in our data:

 1 #Fig 2.13
 2
 3 p <-
 4 diamonds %>%
 5 ggplot(aes(x=carat,
 6 y=price,
 7 color=color))+
 8 scale_color_hue()+
 9 geom_point()+
10 geom_smooth(aes(x=carat,y=price),
11 stat="smooth",
12 method="loess")+
13 facet_wrap(~cut)

 [image: Fig 2.13]
 Fig 2.13

Exercises

Reproduce the following plots.

 [image: Exercise 1]
 Exercise 1

 [image: Exercise 2]
 Exercise 2

 [image: Exercise 3]
 Exercise 3

 [image: Exercise 4]
 Exercise 4

 [image: Exercise 5]
 Exercise 5

Solutions

Exercise 1

1 diamonds %>%
2 ggplot(aes(factor(cut), price, fill=cut)) +
3 geom_boxplot() +
4 ggtitle("Diamond Price according Cut") +
5 xlab("Type of Cut") +
6 ylab("Diamond Price U$") +
7 coord_cartesian(ylim=c(0,7500))

Exercise 2

1 diamonds %>%
2 ggplot(aes(factor(color), (price/carat), fill=color)) +
3 geom_violin() +
4 ggtitle("Diamond Price per Carat according Color") +
5 xlab("Color") + ylab("Diamond Price per Carat U$")

Exercise 3

1 ggplot(data=diamonds,aes(x=price, group=cut, fill=cut)) +
2 geom_density(adjust=1.5)

Exercise 4

1 ggplot(data=diamonds,aes(x=price, group=cut, fill=cut)) +
2 geom_density(adjust=1.5 , alpha=0.2)

Exercise 5

1 ggplot(data=diamonds,aes(x=price, group=cut, fill=cut)) +
2 geom_density(adjust=1.5, position="fill")

OEBPS/images/fig3_ch2.png
8e+05-

6e+05-
® as.factor(data_channel_is_lifestyle)
i< O 0
8 4e.05-
%] ° 1

L[]
L] ° ¢
2e+05-
0e+00 -

timedelta

OEBPS/images/fig4_ch2.png
shares

8e+05-

6e+05-

4e+05-

2e+05-

0e+00 -

timedelta

as.factor(data_channel_is_bus)
e 0

PO

as.factor(data_channel_is_lifestyle)
° 0

e 1

OEBPS/images/fig5_ch2.png
avg_shares

6000 -

4000 -

2000 -

Bus Ent LS Other SM Tech World
channel

OEBPS/images/lp2.png
Number of shares

250000

150000

0 50000

Number of shares across time- World

200 400 600

Days since acquisition

OEBPS/images/bp3.png
[
000¥

T
000€

T
0002

T
0001}

o -

Tue Wed Thu Fri Sat Sun

Mon

OEBPS/images/fig1_ch2.png
shares

8e+05-

6e+05 -

4e+05-

2e+05-

0e+00 -

timedelta

OEBPS/images/fig2_ch2.png
shares

8e+05-

L] °
6e+05- s
data_channel_is_lifestyle
1.00
0.75
L]
4e+05 - 0.50
R 0.25
° L]
° 0.00
2e+05-
0e+00 -

timedelta

OEBPS/images/ex4.png
density

3e-04 -

2e-04 - (E
Fair
Good
Very Good
Premium
Ideal

1e-04 -

0e+00 -

0 5000 10000 15000
price

OEBPS/images/bp1.png
Average number of images

Other Lifestyle World

OEBPS/images/ex5.png
density

1.00 -

0.75-

0.50-

0.25-

0.00-

5000 10000 15000
price

cut

I:I Fair

I:I Good
. Very Good

Premium

|:| Ideal

OEBPS/images/lp1.png
Number of shares

4e+05 8e+05

0e+00

Number of shares across time

200 400

Days since acquisition

600

OEBPS/images/bp2.png
3000 5000

1000

0

Other

Ent

Bus

Tech

World

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/ex3.png
3e-04 -

density

2e-04 -

1e-04 -

0e+00 -

5000

10000
price

15000

Premium

IIIIdem

OEBPS/images/title_page.jpg
Building
Shiny
Apps

... '
| a
4'

al t!.—‘\

Web development for R users

Pablo Maldonado, Ph.D

OEBPS/images/ex1.png
Diamond Price according Cut

6000 -
& cut
]
[} - Fair
O
= 4000- B3 Good
T - Very Good
o
£ - Premium
8
Aa B3 ideal
2000 -
0 -

Fair Good Very Good Premium Ideal

Type of Cut

OEBPS/images/ex2.png
Diamond Price per Carat U$

15000 -

10000 -

5000 -

Diamond Price per Carat according Color

Color

{d

OEBPS/images/fig10_ch2.png
price

15000 -

10000 -

5000 -

leair

Good

Very IGood
cut

'
Premium

Ideal

OEBPS/images/fig11_ch2.png
'
o
S
[=}
el

Premium

Very Good

Ideal

cut

OEBPS/images/fig12_ch2.png
price

15000 -

10000 -

5000 -

Very Good

color

L]
I O m m O

OEBPS/images/fig13_ch2.png
price

20000 -

15000 -

10000 -

5000 -

20000 -

15000 -

10000 -

Fair

Premium

Good

Ideal

Very Good

color
“-D
=
- F
== G
== H
== |

-

OEBPS/images/fig6_ch2.png
avg_shares

6000 -

4000 -

2000 -

0-

Bus

Ent

LS

Other
channel

Average shares

5000

4000
3000

sM Tech World

OEBPS/images/fig7_ch2.png
15000 -

'
o
S
S
=)

oLid

[0]

5000 -

carat

OEBPS/images/fig8_ch2.png
price

15000 -

10000 -

5000 -

Féir Golod Very IGood Prenlﬁium Idéal
cut

OEBPS/images/fig9_ch2.png
'
=3
S
(=}
el

Very IGood Prenlﬁium Idéal

Good

cut

