Building Modern Apps
for Android

Compose, Kotlin, Coroutines, Jetpack and
the best tools for native development.

Spanish
version

Building Modern Apps for Android

Compose, Kotlin, Coroutines, Jetpack, and the best tools for
native development.

Yair Carreno

Este libro est4 a la venta en http://leanpub.com/building-modern-apps-for-android-spanish

Esta version se publico en 2022-07-04
Leanpub

Este es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el proceso de publicacion.
Lean Publishing es el acto de publicar un libro en progreso usando herramientas sencillas y muchas
iteraciones para obtener retroalimentacién del lector hasta conseguir el libro adecuado.

© 2022 Yair Carreno

http://leanpub.com/building-modern-apps-for-android-spanish
https://leanpub.com/
https://leanpub.com/manifesto

Indice general

Capitulo 1: Principios de disefio 1
“State” es el corazon en las vistas declarativaso 1
Aplicando “State hoisting” para delegar estados L 2
Definiendo el “Source of truth”, ;Quién es responsable de entregar los estados? 4
ViewModel como Source of truth. L 6
Entendiendo el flujo de los datos, “Unidirectional Data Flow” 7
Conectando los componentes “View” y “ViewModel” 8
Estructuras que pueden ser representadas como estados oL 10
Modelando y agrupando eventos 13
Resumen L e 15

Capitulo 3: OrderNow, A Real Application 16
Sobrelaaplicacion 16
Pantallas o 16
Fichatécnica e 19

Resumen e 20

a b W N =

Capitulo 1: Principios de diseno

“State” es el corazon en las vistas declarativas

El primer paradigma que dedemos tener claro cuando se disefia vistas declarativas a través de frameworks
como Compose o SwiftUI es el “State”.

Un componente Ul es la combinacién entre su representacion grafica (View) y su estado (State).

Toda aquella propiedad o dato que pueda cambiar en el componente Ul puede ser representado como un
estado. Por ejemplo, en un componente Ul de tipo TextFiel, el texto ingresado por el usuario es una variable
que puede cambiar, por lo tanto, value es una variable que podria ser representada como un estado (name),
asi como se muestra en el siguiente code snippet 1.1.

Code snippet 1.1

TextField(
label = { Text("User name") },
value = name,

onValueChange = onNameChange

Stateful View

Parent View

Stateful View

h
—

Child View

State

Stateful Views

Child View Child View

Figure 1.1 Declarative Views’s Hierarchy

Child View

0 N O O B W N =

11
12
13
14
15
16
17
18
19
20

Capitulo 1: Principios de disefio 2

La pantalla (Screen) de una aplicacion moévil, puede estar conformada por una jerarquia de vistas, asi como
se muestra en la figura 1.1.

Cada vista, a su vez, puede contener multiples variables de estado. Por ejemplo, todas las vistas de la figura
1.1 contienen un estado.

A las vistas que contienen o dependen de un estado se les denomina Stateful Views y a aquellas vistas que
carecen o no tienen dependencia de algtn estado se les conoce como Stateless Views.

Tanto Google como Apple, recomiendan como una buena practica disefiar, en la medida de lo posible, vistas
de tipo stateless por las siguientes ventajas que produce usar este tipo de vistas:

« Son vistas que pueden ser reutilizadas.
+ Permiten delegar el manejo de estado a otros componentes.
« Son funcionales y evitan side-effects.

De acuerdo a dichas recomendaciones, es importante que el disefio sea orientado al uso de vistas sin estados
y convertir aquellas vistas de tipo stateful a vistas de tipo stateless.

cEsto como se logra? En la siguiente seccion lo averiguaremos.

Aplicando “State hoisting” para delegar estados

State hoisting es una técnica para convertir vistas de tipo stateful (con estado) a vistas de tipo stateless (sin
estado). Esto se logra a través de la inversion de control, asi como se muestra en el siguiente code snippet 1.2:

Code snippet 1.2

// This is a Stateful View
@Composable

fun OrderScreen() {

var name by remember { mutableStateOf("") }
var phone by remember { mutableStateOf("") }

ContactInformation(
name = name,
onNameChange = { name = it },
phone = phone,
onPhoneChange = { phone = it })

// This is a Stateless View
@Composable
fun ContactInformation(
name: String,
onNameChange: (String) -> Unit,
phone: String,

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Capitulo 1: Principios de disefio 3

onPhoneChange: (String) -> Unit
) |

Column(
modifier = Modifier
.fillMaxSize()
.padding(8.dp),
horizontalAlignment = Alignment.CenterHorizontally
) {
TextField(
label = {
Text("User name")
3
value = name,
onValueChange = onNameChange
)
Spacer (Modifier.padding(5.dp))
TextField(
label = {
Text("Phone number")
}
value = phone,
onValueChange = onPhoneChange
)
Spacer (Modifier.padding(5.dp))
Button(
onClick = {
println("Order generated for $name and phone $phone")
3

) {
Text("Pay order")

En el code snippet 1.2, el control de los estados name y phone se le delega a la vista OrderScreen, de tal forma
que la vista ContactInformation se despreocupa del estado de sus datos y podria ser reutilizada por otras
vistas.

OrderScreen se convierte en Stateful y ContactInformation en Stateless.

Capitulo 1: Principios de disefio 4

Code snippet 1.3

@Composable

fun OrderScreen() {

// States name and phone
var name by remember { mutableStateOf("") }
var phone by remember { mutableStateOf("") }

ContactInformation(
name = name,
onNameChange = { name = it },
phone = phone,
onPhoneChange = { phone = it })

@Composable

fun ContactInformation(
name: String,
onNameChange: (String) -> Unit,
phone: String,
onPhoneChange: (String) -> Unit,
payOrder: () -> Unit

) A
// Code omitted for simplicity

En el ejemplo Code snippet 1.3, la inversion de control se logra implementar a través de Higher order
functions permitiendo pasar como argumentos a la vista Contactinformation las definiciones de los estados
y operaciones.

Definiendo el “Source of truth”, ;Quién es responsable de
entregar los estados?

Primero aclaremos que es el término Source of truth.

Source of truth, hace referencia a la fuente fiable que provee los datos que requiere una vista para ser
presentados en pantalla y con los cuales estara interactuando el usuario.

En nuestro anélisis, datos esti estrechamente relacionado a estados. Las vistas usan los estados como
mecanismo para recibir la informacion (datos) que necesitan para hacer su trabajo.

En la figura 1.1 velamos como los estados se encuentran en cada una de sus respectivas vistas. Eso significa
que en dicho diagrama cada una de las vistas es un source of truth.

Incluso la variable name del componente Ul TextFiel del que hablabamos antes (code snippet 1.1), podria ser
un estado y, por tanto, también es un source of truth.

Capitulo 1: Principios de disefio 5

¢Es bueno tener tantos “Source of truth” en una jerarquia de vistas?

La respuesta es No.

Lo recomendable es que se limiten los source of truth a un tnico componente (o al minimo posible), asi se
puede tener mayor control sobre flujo y evitar inconsistencias de estados.

Tener una Unica source of truth claramente definida también ayuda a la implementacion correcta del patron
de diserio Unidirectional Data Flow, el cual es el patrén que promueven las vistas declarativas como Compose
o SwiftUL

En la seccién Entendiendo el flujo de los datos se hablara un poco mas de este patron.

¢Y como reduzco el numero de “source of truth” en mi disefio?

Reduciendo el nimero de vistas Stateful a través de la técnica State hoisting explicada anteriormente y
centralizando el estado en una vista. Generalmente, la delegada es la vista con mayor nivel jerarquico, es
decir, una vista padre.

Por ejemplo, en la figura 1.2 se muestra que solo existe una inica Source of truth y es la vista padre.

Las vistas hijas (Child Views) por un lado, Uinicamente se encargan de propagar los eventos recibidos por
la interaccién con el usuario y, por otro lado, reciben los estados que hardn que se renderice la vista
(Recomposition®) para reflejar los cambios de la Ul.

Parent View Stateful View

Stateless View

h

States

Child View

Stateless Views

Child View Child View Child View

Figure 1.2 Delegating state handling to a View

"Manage state with Unidirectional Data Flow
*Recomposition

https://developer.android.com/topic/architecture/ui-layer#udf
https://developer.android.com/jetpack/compose/mental-model#recomposition

Capitulo 1: Principios de disefio 6

cExiste otra opcion que no sea delegarle toda la responsabilidad de manejo
de estados a solo una vista?

La respuesta es Si.

Una mejor opcién es delegarle dicha responsabilidad a un State Holder o un ViewModel que cumpla ese rol’.
Veamos mas detalle en la siguiente seccion.

ViewModel como Source of truth

Para evitar que la vista sea saturada de responsabilidades, se recurre a otro componente para que se encargue
de administrar el estado. El componente adecuado para este propdsito es el conocido ViewModel.

Como se muestra en la figura 1.3, trasladar los estados de la Vista al ViewModel genera la separacién
de responsabilidades, permitiendo que la logica de presentacion y sus efectos sobre el estado puedan ser
centralizadas.

Events

Parent View

ViewModel

-/

Events

Child View

A

Stateless Views

Child View Child View Child View

Figure 1.3 Delegating state handling to a ViewModel

Aun cuando este componente (ViewModel) es opcional en las implementaciones, recomiendo arduamente
que sea usado, ya que provee de muchas ventajas a la implementacion, como por ejemplo el efectivo manejo
del ciclo de vida entre los datos y las vistas. Para mayor informacién sobre este componente de arquitectura
recomiendo revisar la documentacion oficial de Google sobre ViewModels*.

La comunicacion entre View y ViewModel consta de tan solo dos tipos de mensajes, los eventos(Events) y los
estados (States):

*Managing state in Compose
“ViewModel Overview

https://developer.android.com/jetpack/compose/state#managing-state
https://developer.android.com/topic/libraries/architecture/viewmodel

Capitulo 1: Principios de disefio 7

« Los eventos son las acciones notificadas al ViewModel por cualquier Vista o Sub-vista como consecuen-
cia de una accion o interaccion del usuario con los componentes UL

« Los estados son la representacion de la informacion (data) que entrega el ViewModel a las Vistas para
su respectiva interpretacion grafica.

La funcién principal del ViewModel es recibir los eventos enviados desde las vistas, interpretarlos, aplicar
l6gica de negocio y transformarlos en estados para ser entregados nuevamente a las vistas.

La funcion de la Vista es recibir los estados enviados por el ViewModel y traducirlos a su representacién
grafica a través de la recomposicion o renderizado de las vistas.

Hasta aqui, teniendo un poco mas clara la responsabilidad de cada componente y los mensajes entre ellos,
analicemos a continuacién lo que ocurre con el flujo de la informacion.

Entendiendo el flujo de los datos, “Unidirectional Data
Flow”

Si realizamos una simplificacién del diagrama de la figura 1.3, el resultado va a hacer el siguiente diagrama
de la figura 1.4

Events
Events generates
by user
interactions
Views ViewModel
— Events generates
by other layer
interactions
States

Figure 1.4 Unidirectional Data Flow

Claramente, es un ciclo de mensajes entre la Vista y el ViewModel. El flujo de la informacién solo sigue una
unica direccion, de alli el nombre del patron Unidirectional Data Flow.

Los factores externos que pueden inyectar eventos al ciclo son interacciones del usuario, como por ejemplo
un scroll en una lista, un click en un botén y las interacciones con otras capas de la aplicaciéon como por
ejemplo una respuesta del Repository, o la repuesta de un temporizador en background, o quizas la llegada
de un push Notification.

El ciclo no puede ser interrumpido, ya que cualquier interrupcion o demora inducida se reflejara en una pobre
experiencia de usuario. El usuario percibira la aplicacién lenta, bloqueada y de mala calidad.

Por ello, el disefio debe tener en mente las siguientes reglas hasta donde sea posible:

+ El Composable que define la vista debe ser idempotente y funcional.

o N O O B W N =~

a1 S w N =

Capitulo 1: Principios de disefio 8

« En la vista, no puede haber tareas que retarden el ciclo. Toda tarea que requiera un proceso extenso
debe ser delegado al ViewModel para que a través de Reactive programming y usando Flow Coroutines
realice de forma asincrénica dichas tareas.

Ahora que se tiene mayor idea del flujo de los datos y los mensajes intercambiados entre “View” y
“ViewModel”, es logico preguntar:

,Coémo se implementa el canal de comunicacion entre View y ViewModel? Lo veremos a continuacion.

Conectando los componentes “View" y “ViewModel”

Analizando la figura 1.4, se identifica claramente los dos tipos de canales de comunicacion que se requieren
implementar.

El primer canal es el de los eventos (Eventos) que va en sentido View —> ViewModel. Para esta implementacion,
solo se requiere que el ViewModel exponga las operaciones publicas que puedan ser llamadas por View, asi
como se muestra en el siguiente code snippet 1.4.

Code snippet 1.4

//Ul's Events
fun onNameChange(): (String) -> Unit = {
name = it

fun onPhoneChange(): (String) -> Unit = {
phone = it

El segundo canal es el de los estados (States) que va en sentido ViewModel —> View.
,Como se entera la UI que el estado ha cambiado?

Observando los estados. Para observar los estados primero, el ViewModel debe exponerlos hacia la Ul a través
del componente mutableStateOf asi:

Code snippet 1.5

// Ul's states

var name by mutableStateOf("")
private set

var phone by mutableStateOf("")

private set

El componente mutableStateOf no solo permitira exponer el estado a la vista, sino que ademéas permitira que
la vista puede susbcribirse para que le sea notificado cualquier cambio en dicho estado.

Veamos la implementacién completa tanto del ViewModel como de la vista (Composable):

o N O O b W N =

11
12
13
14
15
16
17
18
19
20
21

Capitulo 1: Principios de disefio

Code snippet 1.6: ViewModel

class OrderViewModel : ViewModel() {

// Ul's states

var name by mutableStateOf("")
private set

var phone by mutableStateOf("")
private set

//Ul's Events
fun onNameChange(): (String) -> Unit = {

name = it

fun onPhoneChange(): (String) -> Unit = {
phone = it

fun payOrder(): () -> Unit = {
println("Order generated for $name and phone $phone")

Code snippet 1.7: View (Composables)

@Composable
fun OrderScreen(viewModel: OrderViewModel = viewModel()) ({

ContactInformation(
name = viewModel.name,
onNameChange = viewModel.onNameChange(),
phone = viewModel.phone,
onPhoneChange = viewModel .onPhoneChange(),
payOrder = viewModel.payOrder()

@Composable

fun ContactInformation(
name: String,
onNameChange: (String) -> Unit,
phone: String,
onPhoneChange: (String) -> Unit,
payOrder: () -> Unit

) A

22
23
24
25
26
27
28
29

31
32
33
34
35
36

38
39
40
41
42
43
44
45
46
47
48
49
50

Capitulo 1: Principios de disefio 10

Column(
modifier = Modifier
.fillMaxSize()
.padding(8.dp),
horizontalAlignment = Alignment.CenterHorizontally

) {
TextField(
label = {
Text("User name")
}
value = name,
onValueChange = onNameChange
)
Spacer (Modifier.padding(5.dp))
TextField(
label = {
Text("Phone number")
}/
value = phone,
onValueChange = onPhoneChange
)
Spacer (Modifier.padding(5.dp))
Button(
onClick = payOrder,
) |
Text("Pay order")
}
}

Hasta el momento, hemos visto que los estados, tales como name y phone, son representacion de una variable
de tipo String, es decir, el estado esta representando una variable primitiva. Sin embargo, la representacién
del estado puede ser extendiendo a componentes (components) y pantallas (screens).

En la siguiente seccién, veremos otras opciones para la representacion de los estados.

Estructuras que pueden ser representadas como estados

En Compose y en general en las vistas declarativas, los estados podrian representar diferentes tipos de
estructuras Ul asi como se muestra en la siguiente figura 1.5.

Capitulo 1: Principios de disefio 11

Order Screen
— Screen Ul state

User name

_I—bﬂompﬁnent Ul' state

—» Property Ul' state

Phone number

i Address

Pay Order
. |—>F'roperrg.r UI' state
|r _______________ i
: Save information i—l_ Component UI' state

Figure 1.5 Structures represented by states

« Property UI’s state: Son variables primitivas representadas como estados. En la figura 1.5, los campos
de entrada de texto como name, phone o address son de este tipo.

« Component UI’s state: Representa los estados asociados a un componente que agrupa elementos Ul
relacionados. Por ejemplo, en la pantalla OrderScreen podria existir un componente llamado Contac-
tInformationForm que agrupa los datos requeridos como informacién de contacto. Este componente
podria tener estados de Name Value Changed, Phone Value Changed, Success validated.

« Screen UT’s state: Representa los estados asociados a una pantalla (Screen) y que pueden ser tratados
como estados absolutos e independientes, por ejemplo una pantalla llamada OrderScreen podria tener
los estados: Loading, Loaded successfully o Load failed.

Ahora veamos que opciones de implementacion existen en Android y Kotlin para definir estos tipos de estados.

Property Ul's state

Son estados declarados a partir de una variable de tipo primitivo, tales como String, Boolean, List, Int, entre
otros.

Si es declarado en ViewModel (ViewModel as Source of truth), su definicion podria ser asi:

O © 00 N O O b wWw N =

[ENNEN

W -

Capitulo 1: Principios de disefio 12

Code snippet 1.8

var name by mutableStateOf("")
private set

var phone by mutableStateOf("")
private set

var address by mutableStateOf("")

private set

var payEnable by mutableStateOf(false)
private set

Si es declarado en View (View as Source of truth), su definicion en el Composable podria ser asi:

Code snippet 1.9

var name by remember { mutableStateOf("") }

var phone by remember { mutableStateOf("") }

var address by remember { mutableStateOf("") }

var payEnable by remember { mutableStateOf(false) }

remember es un composable que permite mantener temporalmente el estado de la variable durante la
recomposicion. Al ser un Composable, esta propiedad puede ser definida inicamente en vistas declarativas,
es decir, en funciones Composables.

Siempre recordar que para usar la delegacion a través de “by”, es necesario importar:

Code snippet 1.10

import androidx.compose.runtime.getValue
import androidx.compose.runtime.setValue

En los ejemplos anteriores, solo hemos hablado de representar propiedades o variables a través de estados
usando el componente mutableStateOf. Sin embargo, también es posible que flujos de datos puedan
ser representados como estados y ser observados por los Composables. Estas opciones adicionales estan
relacionadas con Flow, LiveData o RxJava. En el Capitulo 7: Implementando “Features” veremos varios
ejemplos usando StateFlow.

Component Ul's state

Cuando se tiene un conjunto de elementos Ul relacionados entre si, sus estados podrian ser agrupados y
consolidados en una unica estructura o componente Ul con un unico estado.

En la figura 1.5 por ejemplo, los elementos User name, Phone number, Address e incluso el botén Pay Order,
podrian ser agrupados en un solo componente Ul y representarle los estados en un tnico estado llamado por
ejemplo FormUiState.

0 N O O b W N =~

a s W N -

Capitulo 1: Principios de disefio 13

Code snippet 1.11

data class FormUiState(
val nameValueChanged: String = "",

val phoneValueChanged: String =
val addressValueChanged: String = ""

val FormUiState.successValidated: Boolean get() = nameValueChanged.length > 1
&& phoneValueChanged.length > 3

En este caso, modelar multiples estados en una clase consolidada de estados funciona muy bien, ya que las
variables estan relacionadas e incluso definen el valor de otras variables, por ejemplo, esto es lo que ocurre
con la variable successValidated, la cual depende de las variables nameValueChanged y phoneValueChanged.

Consolidar los estados agrega ventajas a la implementacién, centraliza el control y organiza el cédigo. Sera
la técnica a la cual se recurira con mayor frecuencia en la implementacion.

Screen Ul's state

Si lo que se requiere es modelar estados que puedan ser totalmente independientes, pero que forman parte
de la misma familia, se podria usar la siguiente definicion:

Code snippet 1.12

sealed class OrderScreenUiState {
data class Success(val order: Order): OrderScreenUiState()
data class Failed(val message: String): OrderScreenUiState()
object Loading: OrderScreenUiState()

Este tipo de implementacion es util cuando se trabaja con estados absolutos y excluyentes, es decir, o se tiene
un estado o se tiene otro estado, pero no ambos a la vez.

Generalmente, pantallas sencillas de este tipo como por ejemplo OnboardignScreen, ResultScreen pueden ser
modelas con estos estados.

Cuando la pantalla es méas compleja y contiene muchos elementos UI que operan de forma independiente y
multiples relaciones entre ellos, recomiendo al lector inclinarse por la definicién de estados con las técnicas
Property UL’ state y Component Ul state.

Modelando y agrupando eventos

Volviendo al ejemplo de la pantalla OrderScreen, ahora analizaremos el modelado de los Events y como
agruparlos de forma similar como se hizo con los States.

Considere una pantalla como la que muestra en la siguiente figura 1.6:

Capitulo 1: Principios de disefio 14

Order Screen T
e
onNameChange()
User name >
onPhoneChange()
Phone number >
onAddressChangel)
Address >
(N payOrder()
Pay Order »
\x_._,_____,._,/
5 inf ti
ave information |:| OrderScreenViewModel

Figure 1.6 Multiple events

El ViewModel expone a la vista cuatro operaciones (eventos) cada una de las cuales es utilizado por un
elemento Ul de View.

Analizando, los cuatro eventos estan relacionados con un formulario para ingreso de informacién de contacto
del usuario, luego tiene sentido pensar en agruparlos en un tnico tipo de evento, asi como se muestra en la
siguiente figura 1.7:

Order Screen /——"'_'_‘_‘_"'-\\
Contact Form e

User name

Phone number

onContactFormEvent (event)

CantactFormEvent

>

Address

onNameChangel)
onPhaneChange()

onAddressChange()
payQrder()

Pay Order

OrderScreenViewhModel

Figure 1.7 Grouping events

La implementacion para representar los diferentes tipos de eventos podria ser asi:

> O s W N

Capitulo 1: Principios de disefio 15

Code snippet 1.13

sealed class ContactFormEvent {
data class OnNameChange(val name: String): FormUiEvent()
data class OnPhoneChange(val phone: String): FormUiEvent()
data class OnAddressChange(val address: String): FormUiEvent()
object PayOrder: FormUiEvent()

Para finalizar, no hay que ser tan estrictos a la hora de simplificar los estados o los eventos. Es necesario
analizar las ventajas y desventajas de cada aprovechamiento y tomar las decisiones que correspondan.

Para aquellos componentes UI que estén relacionados hace mucho sentido tenerlos agrupados y algunos otros
elementos transversales sera mas saludable dejarlos independientes.

Resumen

En este primer capitulo hemos hecho un repaso por los principales conceptos usados en el desarrollo moderno
de aplicaciones Android.

Conceptos tales como States and Events, State hoisting, Source of truth, Unidirectional Data Flow son
indispensables entenderlos antes de comenzar con una implementacién a través de Jetpack Compose,
ViewModels y otras herramientas de arquitectura disponibles para Android. Esta ha sido la razon por la cual
hemos iniciado con dichos conceptos en este primer capitulo.

En los capitulos posteriores, entraremos a las definiciones de arquitectura y disefio en una aplicacion movil,
para lo cual usaremos como referencia, los conceptos expuestos en este capitulo.

Posteriormente sera implementada una aplicacion movil llamada “Order Now” usando como concepto el e-
commerce. Esta aplicacion tendra las principales partes de un e-commerce tales como carrito de compras, lista
de productos, proceso de checkout, entre otros. Todo esto para introducir al lector a una experiencia de disefio
y desarrollo lo mas cercano a una aplicacién real y productiva.

Pero antes, aplicaremos los conceptos aprendidos en este capitulo en la implementacién de un sencillo
formulario.

Ese sera el tema del siguiente capitulo descrito a continuacion.

Capitulo 3: OrderNow, A Real Application

Sobre la aplicacion

OrderNow es un ejemplo de Minimum Viable Product (MVP) de una aplicacién mévil de tipo e-commerce
que diseflaremos e implementaremos a lo largo de este libro. Usaremos dicha aplicacién a manera de ejemplo
para aplicar los conceptos aprendidos en cada capitulo del libro.

Implementar una solucion e-commerce, nos acercara a los retos que demanda una aplicacion real y productiva.

Las siguientes son las principales funcionalidades del e-commerce que desarrollaremos en OrderNow:

« Presentar un listado de categorias.

« Presentar un listado de productos por categorias.

« Presentar el detalle de un producto especifico.

« Gestionar productos (agregar o eliminar) en un carrito de compras.
Ver el listado de los productos seleccionados para compra.

+ Realizar el diligenciamiento de informacion y datos para realizar la compra (checkout).

Simular el proceso de pago.

Pantallas

Las pantallas relacionadas a diferentes funcionalidades serian:

« Home

» Listado de productos

+ Detalle del producto

« Carrito de compras (Cart)

« Proceso de compras (Checkout)
« Simulacién del pago

Capitulo 3: OrderNow, A Real Application 17

Home, Product List and Product detail

419 @ L il | 420 @ L il | 526 @ van
OrderNow OrderNow < OrderNow
Q V)
Neck T-Shirt
Categories $16.0
=) N an
s o K o
Clothes Technology Furniture Padded Jacket
$78.0
Recommended = Clothes
o © © Top Sneakers
Fit Sport Shorts SR priiiem
$35.0 Price and other details may vary based
’ on product size and color
-1+ $20.9
Neck T-Shirt iPhone Black Q
$16.0 $200.5 ‘ Top Sneakers
\‘_I- e
New arrivals =
© 2 - %
1, - 1) - a -

Home Cart Home Cart Home Cart

Figure 3.1 Screenshots: Home, Product List and Product detail

Capitulo 3: OrderNow, A Real Application

Cart and Checkout

453 @ vdin 423 @ L il |
OrderNow < OrderNow
iPhone Black ltems(2) $862.5
_ Shipping: $0.0
$ 200.5/per item [] Tax $0.0
Total: $862.5
-3 + $601.5
Contact Information
iWatch SE
User name
$ 130.5/per item []
Phone number
-2+ $261.0
Itermns(2): $862.5 Address
Shipping: $0.0
Tax $0.0 .
Payment Information
Total: $862.5 y
“ E— :
0000-0000-0000-0000 B

MM YY cwv

L)4 L =
a C

Home Cart Home Cart

Figure 3.2 Screenshots: Cart and Checkout

425 @

< OrderNow

rotai

Contact Information

User name

yaircarreno

Phone number

3159234321

Address

Cli 32 #34-56 T4 APT 701

Payment Information

Mame on card
Yair Carreno

0000-00 0000
8732-2374-3212-4967

MM vy
12 m

cwv
765

18

*dan

D BOL.D

Continue order

L

Home

-

Cart

Capitulo 3: OrderNow, A Real Application 19

Place Order

OrderNow OrderNow OrderNow
m s
MName: yaircarreno
Phone: 3159234321 Clothes Technology Furniture
Address: Cll 32#34-56 T4 APT 701
Recommended 2
ltems(3) $878.5
Shipping: $0.0 @ O
Tax: 50.0
Total: $878.5
Thanks for your purchase
Pay order $ 878.5

Name: yaircarreno

Phone: 3159234321 iPhane Black iWatch SE

Address: CIl 32 #34-56 T4 APT 701 $200.5 $130.5

New arrivals =

Items(2) §862.5

Shipping: $0.0

Tax $0.0

Total: $862.5

Neck T-Shirt iPhone Black
] = f = f -4

Figure 3.3 Screenshots: Place Order

Ficha técnica

Este es un resumen de las caracteristicas técnicas de OrderNow para que el lector tenga presente las
herramientas y guia de disefio que seran empleadas en la implementacion.

Recordemos que esta es una propuesta de implementacién. El lector estara en su libre decisién de reemplazar
o incluir alguna otra herramienta con la que tenga experiencia o se sienta comodo para trabajar.

Guia de Diseiio y Arquitectura

En los capitulos llamados Principios de disefio y Arquitectura de Aplicacién, se documentan las guias de
disefio y arquitectura, es decir, el Minimum Viable Architecture (MVA)’, que sera empleada para el desarrollo
de OrderNow.

A Minimum Viable Product Needs a Minimum Viable Architecture

https://www.infoq.com/articles/minimum-viable-architecture/

Capitulo 3: OrderNow, A Real Application 20

Arquitectura de componentes

« Compose®: Sera el framework usado para implementacién de vistas declarativas en nuestra capa de
presentacion.

« ViewModel’: Componente de Arquitectura en la capa de presentacion que usaremos para encapsular
légica de negocio.

« Hilt® Sera el gestor e inyector de dependencias usado en nuestra aplicacion.

« Flow’: Usaremos Flow Coroutines para la programacion reactiva en nuestra aplicacion. Flow permitira
que los mensajes, ya sean sincrénicos o asincrénicos entre los componentes del App sean realizados de
la forma mas 6ptima posible.

« Navigation'’: Este componente de Arquitectura sera usado para implementar la navegacion a través
de las diferentes pantallas de nuestra aplicacion.

Dependencias

« Coil'": Libreria que usaremos para cargar imagenes remotas o locales en nuestra APP, a través de Kotlin
y con soporte para Jetpack Compose.

Por fuera del alcance

Algunos temas son excluidos del contenido del libro, no por ser menos importantes si no para lograr acotar
el alcance y cumplir metas concretas.

Intentar cubrir todos los topicos relacionados en una aplicaciéon Android podria extender demasiado el
contenido y desviarnos de los conceptos principales que en un inicio se deben tener claros.

No se incluye y quedan por fuera del alcance del ejemplo de MVP las siguientes capacidades:

« Guia de Disefio UI/UX.

« Componentes de Autenticacién y Autorizacion de la aplicacion.
+ Testing.

« Otras dimensiones de pantallas diferentes a smartphones.

+ Accesibilidad.

Resumen

En este corto capitulo, se describe de forma general, la aplicacion OrderNow y las funcionalidades que seran
implementadas a manera de ejemplo en este libro.

También se presenta un resumen de las tecnologias y componentes empleados en la implementacioén para que
el lector no solo disponga del cddigo fuente y trate de adivinar como fue construido, si no por el contrario
conozca perfectamente cada decision tomada tanto a nivel de diseflo como a nivel de implementacién.

“Jetpack Compose
"ViewModel Overview
*Hilt

Kotlin flows on Android
*Navigating

"Coil and Jetpack Compose

https://developer.android.com/jetpack/compose/documentation
https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/training/dependency-injection/hilt-android
https://developer.android.com/kotlin/flow
https://developer.android.com/jetpack/compose/navigation
https://coil-kt.github.io/coil/compose/

	Tabla de contenido
	Capítulo 1: Principios de diseño
	``State'' es el corazón en las vistas declarativas
	Aplicando ``State hoisting'' para delegar estados
	Definiendo el ``Source of truth'', ¿Quién es responsable de entregar los estados?
	ViewModel como Source of truth
	Entendiendo el flujo de los datos, ``Unidirectional Data Flow''
	Conectando los componentes ``View'' y ``ViewModel''
	Estructuras que pueden ser representadas como estados
	Modelando y agrupando eventos
	Resumen

	Capítulo 3: OrderNow, A Real Application
	Sobre la aplicación
	Pantallas
	Ficha técnica
	Resumen

