

Building Modern Apps for Android
Compose, Kotlin, Coroutines, Jetpack, and the best tools for
native development.

Yair Carreno

Este libro está a la venta en http://leanpub.com/building-modern-apps-for-android-spanish

Esta versión se publicó en 2022-07-04

Éste es un libro de Leanpub. Leanpub anima a los autores y publicadoras con el proceso de publicación.
Lean Publishing es el acto de publicar un libro en progreso usando herramientas sencillas y muchas
iteraciones para obtener retroalimentación del lector hasta conseguir el libro adecuado.

© 2022 Yair Carreno

http://leanpub.com/building-modern-apps-for-android-spanish
https://leanpub.com/
https://leanpub.com/manifesto

Índice general

Capítulo 1: Principios de diseño . 1
“State” es el corazón en las vistas declarativas . 1
Aplicando “State hoisting” para delegar estados . 2
Definiendo el “Source of truth”, ¿Quién es responsable de entregar los estados? 4
ViewModel como Source of truth . 6
Entendiendo el flujo de los datos, “Unidirectional Data Flow” . 7
Conectando los componentes “View” y “ViewModel” . 8
Estructuras que pueden ser representadas como estados . 10
Modelando y agrupando eventos . 13
Resumen . 15

Capítulo 3: OrderNow, A Real Application . 16
Sobre la aplicación . 16
Pantallas . 16
Ficha técnica . 19
Resumen . 20

Capítulo 1: Principios de diseño

“State” es el corazón en las vistas declarativas

El primer paradigma que dedemos tener claro cuando se diseña vistas declarativas a través de frameworks
como Compose o SwiftUI es el “State”.

Un componente UI es la combinación entre su representación gráfica (View) y su estado (State).

Toda aquella propiedad o dato que pueda cambiar en el componente UI puede ser representado como un
estado. Por ejemplo, en un componente UI de tipo TextFiel, el texto ingresado por el usuario es una variable
que puede cambiar, por lo tanto, value es una variable que podría ser representada como un estado (name),
así como se muestra en el siguiente code snippet 1.1.

Code snippet 1.1

1 TextField(

2 label = { Text("User name") },

3 value = name,

4 onValueChange = onNameChange

5)

Figure 1.1 Declarative Views’s Hierarchy

Capítulo 1: Principios de diseño 2

La pantalla (Screen) de una aplicación móvil, puede estar conformada por una jerarquía de vistas, así como
se muestra en la figura 1.1.

Cada vista, a su vez, puede contener múltiples variables de estado. Por ejemplo, todas las vistas de la figura
1.1 contienen un estado.

A las vistas que contienen o dependen de un estado se les denomina Stateful Views y a aquellas vistas que
carecen o no tienen dependencia de algún estado se les conoce como Stateless Views.

Tanto Google como Apple, recomiendan como una buena práctica diseñar, en la medida de lo posible, vistas
de tipo stateless por las siguientes ventajas que produce usar este tipo de vistas:

• Son vistas que pueden ser reutilizadas.
• Permiten delegar el manejo de estado a otros componentes.
• Son funcionales y evitan side-effects.

De acuerdo a dichas recomendaciones, es importante que el diseño sea orientado al uso de vistas sin estados
y convertir aquellas vistas de tipo stateful a vistas de tipo stateless.

¿Esto cómo se logra? En la siguiente sección lo averiguaremos.

Aplicando “State hoisting” para delegar estados

State hoisting es una técnica para convertir vistas de tipo stateful (con estado) a vistas de tipo stateless (sin
estado). Esto se logra a través de la inversión de control, así como se muestra en el siguiente code snippet 1.2:

Code snippet 1.2

1 // This is a Stateful View

2 @Composable

3 fun OrderScreen() {

4

5 var name by remember { mutableStateOf("") }

6 var phone by remember { mutableStateOf("") }

7

8 ContactInformation(

9 name = name,

10 onNameChange = { name = it },

11 phone = phone,

12 onPhoneChange = { phone = it })

13 }

14

15 // This is a Stateless View

16 @Composable

17 fun ContactInformation(

18 name: String,

19 onNameChange: (String) -> Unit,

20 phone: String,

Capítulo 1: Principios de diseño 3

21 onPhoneChange: (String) -> Unit

22) {

23

24 Column(

25 modifier = Modifier

26 .fillMaxSize()

27 .padding(8.dp),

28 horizontalAlignment = Alignment.CenterHorizontally

29) {

30 TextField(

31 label = {

32 Text("User name")

33 },

34 value = name,

35 onValueChange = onNameChange

36)

37 Spacer(Modifier.padding(5.dp))

38 TextField(

39 label = {

40 Text("Phone number")

41 },

42 value = phone,

43 onValueChange = onPhoneChange

44)

45 Spacer(Modifier.padding(5.dp))

46 Button(

47 onClick = {

48 println("Order generated for $name and phone $phone")

49 },

50) {

51 Text("Pay order")

52 }

53 }

54 }

En el code snippet 1.2, el control de los estados name y phone se le delega a la vista OrderScreen, de tal forma
que la vista ContactInformation se despreocupa del estado de sus datos y podría ser reutilizada por otras
vistas.

OrderScreen se convierte en Stateful y ContactInformation en Stateless.

Capítulo 1: Principios de diseño 4

Code snippet 1.3

1 @Composable

2 fun OrderScreen() {

3

4 // States name and phone

5 var name by remember { mutableStateOf("") }

6 var phone by remember { mutableStateOf("") }

7

8 ContactInformation(

9 name = name,

10 onNameChange = { name = it },

11 phone = phone,

12 onPhoneChange = { phone = it })

13 }

14

15 @Composable

16 fun ContactInformation(

17 name: String,

18 onNameChange: (String) -> Unit,

19 phone: String,

20 onPhoneChange: (String) -> Unit,

21 payOrder: () -> Unit

22) {

23 // Code omitted for simplicity

24 }

En el ejemplo Code snippet 1.3, la inversión de control se logra implementar a través de Higher order
functions permitiendo pasar como argumentos a la vista ContactInformation las definiciones de los estados
y operaciones.

Definiendo el “Source of truth”, ¿Quién es responsable de
entregar los estados?

Primero aclaremos que es el término Source of truth.

Source of truth, hace referencia a la fuente fiable que provee los datos que requiere una vista para ser
presentados en pantalla y con los cuales estará interactuando el usuario.

En nuestro análisis, datos está estrechamente relacionado a estados. Las vistas usan los estados como
mecanismo para recibir la información (datos) que necesitan para hacer su trabajo.

En la figura 1.1 veíamos como los estados se encuentran en cada una de sus respectivas vistas. Eso significa
que en dicho diagrama cada una de las vistas es un source of truth.

Incluso la variable name del componente UI TextFiel del que hablábamos antes (code snippet 1.1), podría ser
un estado y, por tanto, también es un source of truth.

Capítulo 1: Principios de diseño 5

¿Es bueno tener tantos “Source of truth” en una jerarquía de vistas?

La respuesta es No.

Lo recomendable es que se limiten los source of truth a un único componente (o al mínimo posible), así se
puede tener mayor control sobre flujo y evitar inconsistencias de estados.

Tener una única source of truth claramente definida también ayuda a la implementación correcta del patrón
de diseño Unidirectional Data Flow¹, el cual es el patrón que promueven las vistas declarativas comoCompose
o SwiftUI.

En la sección Entendiendo el flujo de los datos se hablará un poco más de este patrón.

¿Y como reduzco el número de “source of truth” en mi diseño?

Reduciendo el número de vistas Stateful a través de la técnica State hoisting explicada anteriormente y
centralizando el estado en una vista. Generalmente, la delegada es la vista con mayor nivel jerárquico, es
decir, una vista padre.

Por ejemplo, en la figura 1.2 se muestra que solo existe una única Source of truth y es la vista padre.

Las vistas hijas (Child Views) por un lado, únicamente se encargan de propagar los eventos recibidos por
la interacción con el usuario y, por otro lado, reciben los estados que harán que se renderice la vista
(Recomposition²) para reflejar los cambios de la UI.

Figure 1.2 Delegating state handling to a View

¹Manage state with Unidirectional Data Flow
²Recomposition

https://developer.android.com/topic/architecture/ui-layer#udf
https://developer.android.com/jetpack/compose/mental-model#recomposition

Capítulo 1: Principios de diseño 6

¿Existe otra opción que no sea delegarle toda la responsabilidad de manejo
de estados a solo una vista?

La respuesta es Si.

Una mejor opción es delegarle dicha responsabilidad a un State Holder o un ViewModel que cumpla ese rol³.
Veamos mas detalle en la siguiente sección.

ViewModel como Source of truth

Para evitar que la vista sea saturada de responsabilidades, se recurre a otro componente para que se encargue
de administrar el estado. El componente adecuado para este propósito es el conocido ViewModel.

Como se muestra en la figura 1.3, trasladar los estados de la Vista al ViewModel genera la separación
de responsabilidades, permitiendo que la lógica de presentación y sus efectos sobre el estado puedan ser
centralizadas.

Figure 1.3 Delegating state handling to a ViewModel

Aun cuando este componente (ViewModel) es opcional en las implementaciones, recomiendo arduamente
que sea usado, ya que provee de muchas ventajas a la implementación, como por ejemplo el efectivo manejo
del ciclo de vida entre los datos y las vistas. Para mayor información sobre este componente de arquitectura
recomiendo revisar la documentación oficial de Google sobre ViewModels⁴.

La comunicación entre View y ViewModel consta de tan solo dos tipos de mensajes, los eventos(Events) y los
estados (States):

³Managing state in Compose
⁴ViewModel Overview

https://developer.android.com/jetpack/compose/state#managing-state
https://developer.android.com/topic/libraries/architecture/viewmodel

Capítulo 1: Principios de diseño 7

• Los eventos son las acciones notificadas al ViewModel por cualquier Vista o Sub-vista como consecuen-
cia de una acción o interacción del usuario con los componentes UI.

• Los estados son la representación de la información (data) que entrega el ViewModel a las Vistas para
su respectiva interpretación gráfica.

La función principal del ViewModel es recibir los eventos enviados desde las vistas, interpretarlos, aplicar
lógica de negocio y transformarlos en estados para ser entregados nuevamente a las vistas.

La función de la Vista es recibir los estados enviados por el ViewModel y traducirlos a su representación
gráfica a través de la recomposición o renderizado de las vistas.

Hasta aquí, teniendo un poco más clara la responsabilidad de cada componente y los mensajes entre ellos,
analicemos a continuación lo que ocurre con el flujo de la información.

Entendiendo el flujo de los datos, “Unidirectional Data
Flow”

Si realizamos una simplificación del diagrama de la figura 1.3, el resultado va a hacer el siguiente diagrama
de la figura 1.4

Figure 1.4 Unidirectional Data Flow

Claramente, es un ciclo de mensajes entre la Vista y el ViewModel. El flujo de la información solo sigue una
única dirección, de allí el nombre del patrón Unidirectional Data Flow.

Los factores externos que pueden inyectar eventos al ciclo son interacciones del usuario, como por ejemplo
un scroll en una lista, un click en un botón y las interacciones con otras capas de la aplicación como por
ejemplo una respuesta del Repository, o la repuesta de un temporizador en background, o quizás la llegada
de un push Notification.

El ciclo no puede ser interrumpido, ya que cualquier interrupción o demora inducida se reflejará en una pobre
experiencia de usuario. El usuario percibirá la aplicación lenta, bloqueada y de mala calidad.

Por ello, el diseño debe tener en mente las siguientes reglas hasta donde sea posible:

• El Composable que define la vista debe ser idempotente y funcional.

Capítulo 1: Principios de diseño 8

• En la vista, no puede haber tareas que retarden el ciclo. Toda tarea que requiera un proceso extenso
debe ser delegado al ViewModel para que a través de Reactive programming y usando Flow Coroutines
realice de forma asincrónica dichas tareas.

Ahora que se tiene mayor idea del flujo de los datos y los mensajes intercambiados entre “View” y
“ViewModel”, es lógico preguntar:

¿Cómo se implementa el canal de comunicación entre View y ViewModel? Lo veremos a continuación.

Conectando los componentes “View” y “ViewModel”

Analizando la figura 1.4, se identifica claramente los dos tipos de canales de comunicación que se requieren
implementar.

El primer canal es el de los eventos (Eventos) que va en sentidoView—>ViewModel. Para esta implementación,
solo se requiere que el ViewModel exponga las operaciones públicas que puedan ser llamadas por View, así
como se muestra en el siguiente code snippet 1.4.

Code snippet 1.4

1 //UI's Events

2 fun onNameChange(): (String) -> Unit = {

3 name = it

4 }

5

6 fun onPhoneChange(): (String) -> Unit = {

7 phone = it

8 }

El segundo canal es el de los estados (States) que va en sentido ViewModel –> View.

¿Cómo se entera la UI que el estado ha cambiado?

Observando los estados. Para observar los estados primero, el ViewModel debe exponerlos hacia la UI a través
del componente mutableStateOf así:

Code snippet 1.5

1 // UI's states

2 var name by mutableStateOf("")

3 private set

4 var phone by mutableStateOf("")

5 private set

El componentemutableStateOf no solo permitirá exponer el estado a la vista, sino que además permitirá que
la vista puede susbcribirse para que le sea notificado cualquier cambio en dicho estado.

Veamos la implementación completa tanto del ViewModel como de la vista (Composable):

Capítulo 1: Principios de diseño 9

Code snippet 1.6: ViewModel

1 class OrderViewModel : ViewModel() {

2

3 // UI's states

4 var name by mutableStateOf("")

5 private set

6 var phone by mutableStateOf("")

7 private set

8

9 //UI's Events

10 fun onNameChange(): (String) -> Unit = {

11 name = it

12 }

13

14 fun onPhoneChange(): (String) -> Unit = {

15 phone = it

16 }

17

18 fun payOrder(): () -> Unit = {

19 println("Order generated for $name and phone $phone")

20 }

21 }

Code snippet 1.7: View (Composables)

1 @Composable

2 fun OrderScreen(viewModel: OrderViewModel = viewModel()) {

3

4 ContactInformation(

5 name = viewModel.name,

6 onNameChange = viewModel.onNameChange(),

7 phone = viewModel.phone,

8 onPhoneChange = viewModel.onPhoneChange(),

9 payOrder = viewModel.payOrder()

10)

11 }

12

13 @Composable

14 fun ContactInformation(

15 name: String,

16 onNameChange: (String) -> Unit,

17 phone: String,

18 onPhoneChange: (String) -> Unit,

19 payOrder: () -> Unit

20) {

21

Capítulo 1: Principios de diseño 10

22 Column(

23 modifier = Modifier

24 .fillMaxSize()

25 .padding(8.dp),

26 horizontalAlignment = Alignment.CenterHorizontally

27) {

28 TextField(

29 label = {

30 Text("User name")

31 },

32 value = name,

33 onValueChange = onNameChange

34)

35 Spacer(Modifier.padding(5.dp))

36 TextField(

37 label = {

38 Text("Phone number")

39 },

40 value = phone,

41 onValueChange = onPhoneChange

42)

43 Spacer(Modifier.padding(5.dp))

44 Button(

45 onClick = payOrder,

46) {

47 Text("Pay order")

48 }

49 }

50 }

Hasta el momento, hemos visto que los estados, tales como name y phone, son representación de una variable
de tipo String, es decir, el estado está representando una variable primitiva. Sin embargo, la representación
del estado puede ser extendiendo a componentes (components) y pantallas (screens).

En la siguiente sección, veremos otras opciones para la representación de los estados.

Estructuras que pueden ser representadas como estados

En Compose y en general en las vistas declarativas, los estados podrían representar diferentes tipos de
estructuras UI, así como se muestra en la siguiente figura 1.5.

Capítulo 1: Principios de diseño 11

Figure 1.5 Structures represented by states

• Property UI’s state: Son variables primitivas representadas como estados. En la figura 1.5, los campos
de entrada de texto como name, phone o address son de este tipo.

• Component UI’s state: Representa los estados asociados a un componente que agrupa elementos UI
relacionados. Por ejemplo, en la pantalla OrderScreen podría existir un componente llamado Contac-
tInformationForm que agrupa los datos requeridos como información de contacto. Este componente
podría tener estados de Name Value Changed, Phone Value Changed, Success validated.

• Screen UI’s state: Representa los estados asociados a una pantalla (Screen) y que pueden ser tratados
como estados absolutos e independientes, por ejemplo una pantalla llamada OrderScreen podría tener
los estados: Loading, Loaded successfully o Load failed.

Ahora veamos que opciones de implementación existen enAndroid yKotlin para definir estos tipos de estados.

Property UI’s state

Son estados declarados a partir de una variable de tipo primitivo, tales como String, Boolean, List, Int, entre
otros.

Si es declarado en ViewModel (ViewModel as Source of truth), su definición podría ser así:

Capítulo 1: Principios de diseño 12

Code snippet 1.8

1 var name by mutableStateOf("")

2 private set

3

4 var phone by mutableStateOf("")

5 private set

6

7 var address by mutableStateOf("")

8 private set

9

10 var payEnable by mutableStateOf(false)

11 private set

Si es declarado en View (View as Source of truth), su definición en el Composable podría ser así:

Code snippet 1.9

1 var name by remember { mutableStateOf("") }

2 var phone by remember { mutableStateOf("") }

3 var address by remember { mutableStateOf("") }

4 var payEnable by remember { mutableStateOf(false) }

remember es un composable que permite mantener temporalmente el estado de la variable durante la
recomposición. Al ser un Composable, esta propiedad puede ser definida únicamente en vistas declarativas,
es decir, en funciones Composables.

Siempre recordar que para usar la delegación a través de “by”, es necesario importar:

Code snippet 1.10

1 import androidx.compose.runtime.getValue

2 import androidx.compose.runtime.setValue

En los ejemplos anteriores, solo hemos hablado de representar propiedades o variables a través de estados
usando el componente mutableStateOf. Sin embargo, también es posible que flujos de datos puedan
ser representados como estados y ser observados por los Composables. Estas opciones adicionales están
relacionadas con Flow, LiveData o RxJava. En el Capítulo 7: Implementando “Features” veremos varios
ejemplos usando StateFlow.

Component UI’s state

Cuando se tiene un conjunto de elementos UI relacionados entre sí, sus estados podrían ser agrupados y
consolidados en una única estructura o componente UI con un único estado.

En la figura 1.5 por ejemplo, los elementos User name, Phone number, Address e incluso el botón Pay Order,
podrían ser agrupados en un solo componente UI y representarle los estados en un único estado llamado por
ejemplo FormUiState.

Capítulo 1: Principios de diseño 13

Code snippet 1.11

1 data class FormUiState(

2 val nameValueChanged: String = "",

3 val phoneValueChanged: String = ""

4 val addressValueChanged: String = ""

5)

6

7 val FormUiState.successValidated: Boolean get() = nameValueChanged.length > 1

8 && phoneValueChanged.length > 3

En este caso, modelar múltiples estados en una clase consolidada de estados funciona muy bien, ya que las
variables están relacionadas e incluso definen el valor de otras variables, por ejemplo, esto es lo que ocurre
con la variable successValidated, la cual depende de las variables nameValueChanged y phoneValueChanged.

Consolidar los estados agrega ventajas a la implementación, centraliza el control y organiza el código. Será
la técnica a la cual se recurirá con mayor frecuencia en la implementación.

Screen UI’s state

Si lo que se requiere es modelar estados que puedan ser totalmente independientes, pero que forman parte
de la misma familia, se podría usar la siguiente definición:

Code snippet 1.12

1 sealed class OrderScreenUiState {

2 data class Success(val order: Order): OrderScreenUiState()

3 data class Failed(val message: String): OrderScreenUiState()

4 object Loading: OrderScreenUiState()

5 }

Este tipo de implementación es útil cuando se trabaja con estados absolutos y excluyentes, es decir, o se tiene
un estado o se tiene otro estado, pero no ambos a la vez.

Generalmente, pantallas sencillas de este tipo como por ejemplo OnboardignScreen, ResultScreen pueden ser
modelas con estos estados.

Cuando la pantalla es más compleja y contiene muchos elementos UI que operan de forma independiente y
múltiples relaciones entre ellos, recomiendo al lector inclinarse por la definición de estados con las técnicas
Property UI’ state y Component UI’ state.

Modelando y agrupando eventos

Volviendo al ejemplo de la pantalla OrderScreen, ahora analizaremos el modelado de los Events y como
agruparlos de forma similar como se hizo con los States.

Considere una pantalla como la que muestra en la siguiente figura 1.6:

Capítulo 1: Principios de diseño 14

Figure 1.6 Multiple events

El ViewModel expone a la vista cuatro operaciones (eventos) cada una de las cuales es utilizado por un
elemento UI de View.

Analizando, los cuatro eventos están relacionados con un formulario para ingreso de información de contacto
del usuario, luego tiene sentido pensar en agruparlos en un único tipo de evento, así como se muestra en la
siguiente figura 1.7:

Figure 1.7 Grouping events

La implementación para representar los diferentes tipos de eventos podría ser así:

Capítulo 1: Principios de diseño 15

Code snippet 1.13

1 sealed class ContactFormEvent {

2 data class OnNameChange(val name: String): FormUiEvent()

3 data class OnPhoneChange(val phone: String): FormUiEvent()

4 data class OnAddressChange(val address: String): FormUiEvent()

5 object PayOrder: FormUiEvent()

6 }

Para finalizar, no hay que ser tan estrictos a la hora de simplificar los estados o los eventos. Es necesario
analizar las ventajas y desventajas de cada aprovechamiento y tomar las decisiones que correspondan.

Para aquellos componentes UI que estén relacionados hace mucho sentido tenerlos agrupados y algunos otros
elementos transversales será más saludable dejarlos independientes.

Resumen

En este primer capítulo hemos hecho un repaso por los principales conceptos usados en el desarrollo moderno
de aplicaciones Android.

Conceptos tales como States and Events, State hoisting, Source of truth, Unidirectional Data Flow son
indispensables entenderlos antes de comenzar con una implementación a través de Jetpack Compose,
ViewModels y otras herramientas de arquitectura disponibles para Android. Esta ha sido la razón por la cuál
hemos iniciado con dichos conceptos en este primer capítulo.

En los capítulos posteriores, entraremos a las definiciones de arquitectura y diseño en una aplicación móvil,
para lo cual usaremos como referencia, los conceptos expuestos en este capítulo.

Posteriormente será implementada una aplicación móvil llamada “Order Now” usando como concepto el e-
commerce. Esta aplicación tendrá las principales partes de un e-commerce tales como carrito de compras, lista
de productos, proceso de checkout, entre otros. Todo esto para introducir al lector a una experiencia de diseño
y desarrollo lo más cercano a una aplicación real y productiva.

Pero antes, aplicaremos los conceptos aprendidos en este capítulo en la implementación de un sencillo
formulario.

Ese será el tema del siguiente capítulo descrito a continuación.

Capítulo 3: OrderNow, A Real Application

Sobre la aplicación

OrderNow es un ejemplo de Minimum Viable Product (MVP) de una aplicación móvil de tipo e-commerce
que diseñaremos e implementaremos a lo largo de este libro. Usaremos dicha aplicación a manera de ejemplo
para aplicar los conceptos aprendidos en cada capítulo del libro.

Implementar una solución e-commerce, nos acercará a los retos que demanda una aplicación real y productiva.

Las siguientes son las principales funcionalidades del e-commerce que desarrollaremos en OrderNow:

• Presentar un listado de categorías.
• Presentar un listado de productos por categorías.
• Presentar el detalle de un producto específico.
• Gestionar productos (agregar o eliminar) en un carrito de compras.
• Ver el listado de los productos seleccionados para compra.
• Realizar el diligenciamiento de información y datos para realizar la compra (checkout).
• Simular el proceso de pago.

Pantallas

Las pantallas relacionadas a diferentes funcionalidades serían:

• Home
• Listado de productos
• Detalle del producto
• Carrito de compras (Cart)
• Proceso de compras (Checkout)
• Simulación del pago

Capítulo 3: OrderNow, A Real Application 17

Home, Product List and Product detail

Figure 3.1 Screenshots: Home, Product List and Product detail

Capítulo 3: OrderNow, A Real Application 18

Cart and Checkout

Figure 3.2 Screenshots: Cart and Checkout

Capítulo 3: OrderNow, A Real Application 19

Place Order

Figure 3.3 Screenshots: Place Order

Ficha técnica

Este es un resumen de las características técnicas de OrderNow para que el lector tenga presente las
herramientas y guía de diseño que serán empleadas en la implementación.

Recordemos que esta es una propuesta de implementación. El lector estará en su libre decisión de reemplazar
o incluir alguna otra herramienta con la que tenga experiencia o se sienta cómodo para trabajar.

Guía de Diseño y Arquitectura

En los capítulos llamados Principios de diseño y Arquitectura de Aplicación, se documentan las guías de
diseño y arquitectura, es decir, elMinimum Viable Architecture (MVA)⁵, que será empleada para el desarrollo
de OrderNow.

⁵A Minimum Viable Product Needs a Minimum Viable Architecture

https://www.infoq.com/articles/minimum-viable-architecture/

Capítulo 3: OrderNow, A Real Application 20

Arquitectura de componentes

• Compose⁶: Será el framework usado para implementación de vistas declarativas en nuestra capa de
presentación.

• ViewModel⁷: Componente de Arquitectura en la capa de presentación que usaremos para encapsular
lógica de negocio.

• Hilt⁸: Será el gestor e inyector de dependencias usado en nuestra aplicación.
• Flow⁹: Usaremos Flow Coroutines para la programación reactiva en nuestra aplicación. Flow permitirá
que los mensajes, ya sean sincrónicos o asincrónicos entre los componentes del App sean realizados de
la forma más óptima posible.

• Navigation¹⁰: Este componente de Arquitectura será usado para implementar la navegación a través
de las diferentes pantallas de nuestra aplicación.

Dependencias

• Coil¹¹: Librería que usaremos para cargar imágenes remotas o locales en nuestra APP, a través deKotlin
y con soporte para Jetpack Compose.

Por fuera del alcance

Algunos temas son excluidos del contenido del libro, no por ser menos importantes si no para lograr acotar
el alcance y cumplir metas concretas.

Intentar cubrir todos los tópicos relacionados en una aplicación Android podría extender demasiado el
contenido y desviarnos de los conceptos principales que en un inicio se deben tener claros.

No se incluye y quedan por fuera del alcance del ejemplo deMVP las siguientes capacidades:

• Guía de Diseño UI/UX.
• Componentes de Autenticación y Autorización de la aplicación.
• Testing.
• Otras dimensiones de pantallas diferentes a smartphones.
• Accesibilidad.

Resumen

En este corto capítulo, se describe de forma general, la aplicación OrderNow y las funcionalidades que serán
implementadas a manera de ejemplo en este libro.

También se presenta un resumen de las tecnologías y componentes empleados en la implementación para que
el lector no solo disponga del código fuente y trate de adivinar como fue construido, si no por el contrario
conozca perfectamente cada decisión tomada tanto a nivel de diseño como a nivel de implementación.

⁶Jetpack Compose
⁷ViewModel Overview
⁸Hilt
⁹Kotlin flows on Android
¹⁰Navigating
¹¹Coil and Jetpack Compose

https://developer.android.com/jetpack/compose/documentation
https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/training/dependency-injection/hilt-android
https://developer.android.com/kotlin/flow
https://developer.android.com/jetpack/compose/navigation
https://coil-kt.github.io/coil/compose/

	Tabla de contenido
	Capítulo 1: Principios de diseño
	``State'' es el corazón en las vistas declarativas
	Aplicando ``State hoisting'' para delegar estados
	Definiendo el ``Source of truth'', ¿Quién es responsable de entregar los estados?
	ViewModel como Source of truth
	Entendiendo el flujo de los datos, ``Unidirectional Data Flow''
	Conectando los componentes ``View'' y ``ViewModel''
	Estructuras que pueden ser representadas como estados
	Modelando y agrupando eventos
	Resumen

	Capítulo 3: OrderNow, A Real Application
	Sobre la aplicación
	Pantallas
	Ficha técnica
	Resumen

