Build Your Own

CODING AGENT

The 2ero-Magic Guide to Al Agents in Pure Python

dependencies

oxiies configs

Comp\

V)
- Gl ' \
& n w a/bstractions

ﬁ%/' Al
hidden |77 % CODING
” //g\ AGENT I3 i

(enterprise edition)

——

X

%

Nl
\
Y
<N

.
“‘:‘

&
@

N
N

————— !

5T N,

~a
“’o
S

{
=
o=
S

L5
s
005
D\

p—

/T =240 N_— -

corner cases : 7 overheads
pitfalls

&
AN

Owen Ou

Build Your Own Coding Agent
The Zero-Magic Guide to Al Agents in Pure Python

Owen Ou

This book is available at
https:/ /leanpub.com /build-your-own-coding-agent

This version was published on 2026-02-07

N

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an

in-progress ebook using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build traction once you do.

© 2026 Owen Ou

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweet This Book!

Please help Owen Ou by spreading the word about this book on Twitter!
The suggested tweet for this book is:

Just built a coding agent from scratch with nothing but HTTP calls and a shell.
Turns out "Al magic” is just a while loop and an API call.

The suggested hashtag for this book is #buildyourowncodingagent.

Find out what other people are saying about the book by clicking on this link
to search for this hashtag on Twitter:

#buildyourowncodingagent

http://twitter.com
https://twitter.com/intent/tweet?text=Just+built+a+coding+agent+from+scratch+with+nothing+but+HTTP+calls+and+a+shell.+Turns+out+%22AI+magic%22+is+just+a+while+loop+and+an+API+call.+
https://twitter.com/intent/tweet?text=Just+built+a+coding+agent+from+scratch+with+nothing+but+HTTP+calls+and+a+shell.+Turns+out+%22AI+magic%22+is+just+a+while+loop+and+an+API+call.+
https://twitter.com/search?q=%23buildyourowncodingagent
https://twitter.com/search?q=%23buildyourowncodingagent

To my wife, my son, my parents, and my grandparents—you taught me there is
no magic, only effort. Everything I build, I build because of you.

Contents

Preface. 1
Who ThisBookIsFor, 1
WhatYou WillBuild 1
Testing Approach L 1
Code Examples 2
Conventions Used in ThisBook. 2

Chapter 1: The Zero Magic Manifesto 4
What is an Agent, Really? 4
What We Are Building 5
ProjectSetup 6
The AgentStop Exception 8
The AgentClass 8
Defining Successwith Tests 9
TheMainLoop 11
Runlt. 11
Wrapping Up oo 12

Chapter 2: TheRaw Request 13
Stepl: Getan APIKey o 13
Step2: TheVault(env) 13
Step 3: The AnatomyofaRequest 14
Step4: TheCode 15
StepS:Runlt 16
Troubleshooting 17
Cleaning Up e 17
Wrapping Up oo 18

Chapter 3: The InfiniteLoop 19
The Mlusionof Memory 19

The Testing Problem 19

CONTENTS

Response Types 20
The FakeBrain Pattern 21
Defining Success 22
The Claude Class. e 24
The Agent Class (Updated). 25
The Main Loop (Updated) 27
Verifythe TestsPass 27
Testthe Memory. 28
The Context Window Problem 28
Wrapping Up o 29
Chapter 4: The Universal Adapter 30
The Adapter Pattern 30
HTTPResilience 30
The Brain Interface 30
The FakeBrain (Updated) 30
The Claude Brain (Refactored) 30
The DeepSeek Brain. 30
The BRAINSRegistry 31
The Agent Class (Updated). 31
Tests for Multi-Brain Support. 31
The Main Loop (Updated) 31
Setting Up DeepSeek 31
Try It .« o 31
Why This Matters 31
Wrapping Up o 32
Chapter 5: The Tool Protocol 33
How Tools Actually Work 33
Defining the Tool Interface 33
The ReadFile Tool 33
The WriteFile Tool 33
Tool Helpers 33
Updating the ThoughtClass. 33
Updating the Claude Class 34
The Agent Classwith Tools 34
The MainLoop 34
TestIt . .. 34

Wrapping Up o 34

CONTENTS

Chapter 6: The Scratchpad (Memory) 35
The “Zero Magic’Memory i 35
The Memory Class. i 35
The ToolContext Class, 35
The SaveMemory Tool 35
Updating the Claude Class 35
Crafting the System Prompt. 35
Updating the AgentClass 36
The Main Loop (Updated) 36
Testing Persistence 36
Why Thisis Powerful 36
Wrapping Up oo 36

Chapter 7: The Safety Harness (Planner Mode) 37
The Concept 37
TestsFirst o 37
Extending ToolContext 37
The Guarded WriteFile Tool 37
The Agent Class (Updated). 37
The Main Loop (Updated) 37
Testingthe Harness 38
The Psychology of the “Plan” 38
Wrapping Up o 38

Chapter 8: The Context Pipeline (Map & Search) 39
The ListFiles Tool 39
The SearchCodebase Tool 39
Update the Tools List i . 39
The “Zoom In"Test 39
Wait, is this RAG? e 39
The Architectural Significance 39
WrappingUp 40

Chapter 9: The Reality Check (RunningCode) 41
The FeedbackLoop 41
TestsFirst o 41
The RunCommand Tool 41
The Interactive Trap 41

The Self-HealingDemo 41

The TDD Workflow 41

The Surgical Edit. 42
Why This Changes Everything 42
Security Considerations 42
Wrapping Up o 42
Chapter 10: Going Dark (Local Models) 43
The Trade-off. 43
InstallingOllama 43
The OllamaBrainClass 43
RunningwithOllama 43
The “Infinite Loop” Experiment 43
The Practical Differences 43
The Hybrid Workflow 44
Model Selection o o o oo 44
Troubleshooting Ollama 44
Wrapping Up o 44
Chapter 11: The Extension (Web Search) 45
Step 1: The Meta-Prompt 45
Step2: The Surgery 45
Step 3: The Reference Implementation 45
Step4: TheTest e 45
Why This Matters 45
Wrapping Up oo 45
Chapter 12: The Capstone (BuildingaGame) 47
Step 1: Preparation 47
Step 2: The Architect (PlanMode) 48
Step 3: The Builder (ActMode) 48
Step4: The RealityCheck 49
Step 5: The Pivot (Feature Creep) 50
TheResult 50
Wrapping Up oo 51
Epilogue: The End of the Beginning 51

Acknowledgments o 53

Preface

Who This Book Is For

You are a software engineer who is skeptical of Al hype.

You have seen the demos. You have tried the frameworks. You have watched
your LangChain app hallucinate its way into deleting a production database.
And you thought: “There has to be a better way.”

There is. This book is for developers who want to understand what is actually
happening when an Al agent runs. Not the marketing diagrams. Not the
“Reasoning Engine” abstractions. The actual HTTP requests. The actual while
loop.

If you can read Python and have built a web app or CLI tool before, you have
everything you need.

What You Will Build

Nanocode is a coding agent that runs in your terminal. By the end of this book,
it will:

* Read and write files in your codebase

* Execute shell commands

* Search code using pure Python

* Remember context across sessions

* Ask for permission before dangerous operations
* Search the web for documentation and answers

You will build it from scratch using only requests, subprocess, and pytest. No
LangChain. No vector databases. No “orchestration frameworks.” Just Python
you can debug with print().

The one exception: Chapter 11 adds ddgs for web search—a single lightweight
dependency.

Preface 2

Testing Approach
This book uses a test-alongside approach. For each feature:

1. We introduce the concept (why we need this)
2. We show the test first (what success looks like)
3. We implement the code (make the test pass)

4. We verify with pytest (prove it works)

This teaches Test-Driven Development thinking without tedious red-green-
refactor cycles in print. More importantly, it solves a critical problem: you
cannot test an LLM-powered application by actually calling the LLM. API calls
are slow, expensive, and non-deterministic.

Starting in Chapter 3, we introduce the FakeBrain pattern—a test double that
returns predictable responses. This lets you run your entire test suite without
making a single API call or spending a single cent.

Code Examples

This book follows a “Code First” approach. Each chapter builds on the previous
one, and every code example is extracted from working files.

To get the code:
* GitHub: Clone or download from GitHub.!
* Leanpub: The complete source code is also included in the downloadable
resources with your purchase.

The code is organized by chapter (che1/, ch02/, etc.). Each folder contains:

* nanocode.py — The complete, runnable agent for that chapter
* test_nanocode.py — Tests that verify the code works without API calls

You can copy any chapter folder and pick up from there. Run pytest to verify
your code matches the expected behavior.

Thttps: //github.com /owenthereal /build-your-own-coding-agent

Preface 3

Conventions Used in This Book

Throughout the book, you will see three types of callouts:

Dev Tip: Architectural wisdom that applies beyond this project. These are
patterns you can reuse in your own work.

Warning: Security or safety risks. Pay attention to these—ignoring
them can lead to deleted files or leaked API keys.

Aside: Deep dives and tangents. Useful context, but you can skip
them on a first read without losing the thread.

Code walkthroughs follow a consistent pattern: first the context (why we need
this code), then the code itself, then a line-by-line explanation of the important
parts.

Let’s build.

Chapter 1: The Zero Magic Manifesto

If you have tried to build an Al application in the last two years, you have likely
felt Framework Fatigue.

You install a popular library. You import a ReasoningEngine. You call . run(). It
works like magic for the “Hello World” example. But the moment you try to do
something real-like editing a specific line in a Python file without deleting the
imports—it breaks.

And because you used a framework, you can't fix it. You are stuck digging
through layers of abstract classes, factory patterns, and “Chains” trying to find
the one prompt that is causing the hallucination.

We are not going to do that here.

This book is a rebellion against “Magic” We are going to build a production-
grade coding agent called Nanocode. We will build it in pure Python. We will
not use LangChain, AutoGPT, or Pydantic.

Why? Because an autonomous agent is not magic. It is just a while loop.

What is an Agent, Really?

Strip away the venture capital marketing, and an “Agent” is just a thermostat.

A thermostat reads the temperature (input), compares it to the target (deci-
sion), and turns on the heater (action). Then it waits and repeats. That’s it. An
Al agent does the same thing, just with text instead of temperature.

Chapter 1: The Zero Magic Manifesto 5

while True:
<User> Input = Actuator
- = Sensor i —
Brain (LLM) L—
= Controller —
~_
no tools

Response

Figure 1. The Agent Loop: User input flows through a while loop where Input (Sensor) feeds the
Brain/LLM (Controller), which triggers Tools (Actuator), cycling back to Input until the Brain
outputs a Response.

More specifically, an agent is composed of four parts:

1. The Brain: The LLM (Claude, DeepSeek). A stateless function. You send
text; it returns text.

2. The Tools: Functions the Brain can “call” (Read File, Run Command).

3. The Memory: The conversation history. A Python list.

4. The Loop: A while True that cycles through the above until the task is
done.

Note: This list exists only in memory—it dies when the program ends. We'll add
persistent storage in Chapter 6.

If you can write a while loop, you can build an agent.

By building it from scratch, you will have something the framework users don't:
Control. When our agent gets stuck in a loop, you will know exactly which line
of code caused it. When the API bill gets too high, you will see exactly where
the tokens are leaking.

What We Are Building

Nanocode is a CLI tool that runs in your terminal. You talk to it like a colleague.
It reads your files. It runs your commands. It edits your code.

By the end of this book, you will have built:

Chapter 1: The Zero Magic Manifesto 6

* The Brain: Connects to Claude Sonnet 4.5 (or DeepSeek, or a local model
via Ollama).

¢ The Hands: Tools to read files, write files, and run shell commands.

* The Eyes: A search tool that finds code using git grep.

* The Safety Harness: A “Planner Mode” that prevents accidental rm -rf /.

But first, we set up the workshop.

Project Setup

Dev Tip: The biggest threat to an Al project is “Dependency Rot” Al libraries
move fast and break things. By sticking to requests and subprocess, this
agent will likely still run 5 years from now.

1. Initialize the Project

mkdir nanocode
cd nanocode
git init

2. Create a Virtual Environment

Never install Al tools globally. They conflict with system packages.

N o o AW N -

Chapter 1: The Zero Magic Manifesto

Mac/Linux
python3 -m venv venv
source venv/bin/activate

Windows
python -m venv venv
venv\Scripts\activate

3. Install Dependencies

We only need three libraries:

¢ requests — To talk to the LLM APIs.
* python-dotenv — To load API keys from a .env file.
* pytest — To test our code without making API calls.

Create requirements.txt:

requests
python-dotenv
pytest

Install:

pip install -r requirements.txt

4. Secure Your Keys

Warning: If you push your API key to GitHub, bots will scrape it and
drain your account within minutes.

Create .gitignore:

U A W N =

u B W N =

Chapter 1: The Zero Magic Manifesto 8

.env
__pycache /
venv/
.DS_Store
.nanocode/

The AgentStop Exception

Before we write the event loop, we need a clean way to exit. Instead of using
break statements scattered throughout the code, we'll define an exception that
signals “the agent should stop.”

The Context: Exceptions are not just for errors; they are also a control flow
mechanism. When the user types /q, we raise AgentStop. The main loop
catches it and exits cleanly.

The Code:

--- Exceptions ---

class AgentStop(Exception):
"""Raised when the agent should stop processing.
pass

This goes at the top of nanocode.py, right after the imports. It's a marker
exception—no logic, just a signal.

The Agent Class

Now the core abstraction: the Agent class. This encapsulates the agent’s state
and behavior in a testable unit.

The Context: We could put all the logic in main(). But then we'd have to mock
input() and print() to test it. By extracting the logic into Agent.handle_in-
put (), we can test it directly.

The Code:

11
12
13
14
15
16
17

18
19
20
21
22
23
24

Chapter 1: The Zero Magic Manifesto 9

class Agent:
"""A coding agent that processes user input."""

def init (self):
pass

def handle input(self, user input):
"""Handle user input. Returns output string, raises AgentStop to
- quit."""
if user _input.strip() == "/q":
raise AgentStop()

if not user input.strip():
return ""

return f"You said: {user input}\n(Agent not yet connected)"

The Walkthrough:

* Lines 13-14: Empty constructor for now. We'lladd brain and tools in later
chapters.

* Lines 18-19: Check for the /q quit command. Raise AgentStop instead of
returning a special value.

* Lines 21-22: Skip empty input. Return empty string (no output to display).

* Line 24: Echo the input back. This is a placeholder—later, we'll send this
to the Brain.

Defining Success with Tests

Before we write the main loop, let’s define what success looks like. Tests serve
as executable documentation.

Create test_nanocode. py:

= o
H O O 0 N O U B W N =

W W WNNNNNNNNNNERRRBRB B B B &
N B ©® © 0 N0 U & WNPRPOWOWOW-NOO U A~ WN

A W N R

Chapter 1: The Zero Magic Manifesto 10

import pytest
from nanocode import Agent, AgentStop

def test handle input_returns_string():
"""Verify handle input returns a string for normal input."""
agent = Agent()
result = agent.handle input("hello")
assert isinstance(result, str)
assert "hello" in result

def test empty input returns empty string():
"""Verify empty/whitespace input returns empty string.
agent = Agent()
assert agent.handle_input("") == ""
assert agent.handle_input(" ") == ""
assert agent.handle input("\n") == ""

def test quit command raises agent stop():
"""Verify /q raises AgentStop exception.
agent = Agent()
with pytest.raises(AgentStop):
agent.handle input("/q")

def test quit_command with_whitespace():
"""Verify /q works with surrounding whitespace."""
agent = Agent()
with pytest.raises(AgentStop):
agent.handle input(" /q ")

Run the tests:

pytest test nanocode.py -v

test nanocode.py::test handle input returns string PASSED

test nanocode.py::test empty input returns empty string PASSED
test nanocode.py::test quit command raises agent stop PASSED
test nanocode.py::test quit command with whitespace PASSED

All green. Our agent handles the basic cases correctly.

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Chapter 1: The Zero Magic Manifesto 1

Aside: Why pytest? It discovers functions starting with test_ and
runs them. No boilerplate, no classes required. The test code itself is
plain Python—no magic.

The Main Loop

Now the thin I/0 wrapper that connects the agent to the terminal:

def main():
agent = Agent()
print("~ Nanocode v0.1 initialized.")

print("Type '/q' to quit.")

while True:
try:
user_input = input("\n) ")
output = agent.handle input(user input)
if output:
print(output)

except (AgentStop, KeyboardInterrupt):
print("\nExiting...")

break
if name == " main_ ":
main()
The Walkthrough:

* Lines 30-32: Create the agent and print startup messages.

* Line 36: input() blocks and waits for the user to type something.

* Lines 37-39: Call handle_input() and print any output.

* Lines 41-43: Catch AgentStop (from /q) or KeyboardInterrupt (from
Ctrl+C) and exit cleanly.

Aside: Python’s input() reads one line at a time. All prompts in this
book are single-line. This keeps the code simple—production agents
use richer input methods like readline or full TUIs.

Notice the separation: Agent.handle_input() contains all the logic. main() is
just I/0 glue. This makes the agent testable without mocking stdin/stdout.

© 00 N O U B W N =

=
(<)

Chapter 1: The Zero Magic Manifesto 12

Run It

python nanocode.py
You should see:

Nanocode v0.1 initialized.
Type '/q' to quit.

> hello
You said: hello
(Agent not yet connected)

Y /q

Exiting...
This is the chassis. The engine comes next.

Wrapping Up

In this chapter, you built the foundation of an Al agent: an Agent class with a
handle_input() method, controlled by a simple event loop. More importantly,
you embraced the Zero Magic philosophy—no frameworks, no abstractions, just
raw Python you can understand and control.

You learned that an agent is composed of four parts: the Brain (LLM), the Tools
(functions), the Memory (conversation history), and the Loop (the while True
that ties it all together). If you can write a while loop, you can build an agent.

You also wrote tests before verifying the behavior manually. This test-first
approach will pay dividends as the codebase grows—each chapter builds on
the last, and tests ensure we don'’t break what already works.

In the next chapter, we'll wake up the brain by connecting to the Claude API
using nothing but the requests library. No SDK magic—just raw HTTP.

Chapter 2: The Raw Request

In Chapter 1, we built the body. Now we need to wake up the brain.

Most tutorials will tell you to pip install anthropic. We are not going to do
that.

Why? Because SDKs hide the truth. They add layers of abstraction that make
“Hello World” easy but make debugging “Error 400” a nightmare. When you use
an SDK, you are learning a library. When you use raw HTTP, you are learning
the protocol.

In this chapter, we will send a message to Claude using nothing but the
requests library. Claude is Anthropic’s flagship LLM—one of the most capable
models for coding tasks.

Step 1: Get an API Key

To talk to Claude, you need an API Key. This is a long string of characters that
acts as your credit card.

1. Go to the Anthropic Console.!

2. Sign up and add a payment method (minimum $5 credit).
3. Create a new API Key and name it nanocode.

4. Copy the key (it starts with sk-ant-...).

Warning: Treat this key like a password. Anyone with it can spend
your money.

Step 2: The Vault (.env)

We need a safe place to store this key. We never put keys directly in code.

Create a file named .env in your project root:

Thttps: //console.anthropic.com/settings /keys

Chapter 2: The Raw Request

touch .env

Open it and paste your key:

ANTHROPIC API KEY=sk-ant-api@3-...

14

We installed python-dotenv in Chapter 1 for exactly this purpose—it reads .env

and loads the values into os.environ.

Step 3: The Anatomy of a Request

To talk to an LLM, we send an HTTP POST request to:
https://api.anthropic.com/v1l/messages
This request needs three things:

1. Authentication (Headers): “Here is my ID card”

2. Configuration (Body): “I want to talk to model X with max Y tokens’
3. Message (Body): “Hello!”

U

The Headers

Anthropic requires three headers:

Header Value Purpose
x-api-key Your secret key Authentication
anthropic-version 2023-06-01 API version
content-type application/json Format

The Payload

The “Messages API” expects a list of message dictionaries:

e
H © W 00 N o Ul b WN =

NN NNNNNNNNRRRRRRB B B
© 0 N O U H»WNREROGWOWO®NOUH WN

Chapter 2: The Raw Request 15

"messages": [
{"role": "user", "content": "Hello, world!"}

Each message has a role (either "user" or "assistant")and content (the text).

Step 4: The Code

Create a file called test_api.py. This is a “smoke test” to prove our connection
works. We will delete it later.

The Context: We are writing linear, procedural code. No functions, no classes.
We want to see the bare metal.

The Code:

import os

import requests

import json

from dotenv import load dotenv

1. Load the vault
load dotenv()
api_key = os.getenv("ANTHROPIC API KEY")

Basic check so we don't crash with a confusing "NoneType" error later
if not api key:

print("Error: ANTHROPIC API KEY not found in .env")

exit(1)

2. Define the target
url = "https://api.anthropic.com/v1l/messages"

3. Authenticate

headers = {
"x-api-key": api_key,
"anthropic-version": "2023-06-01",
"content-type": "application/json"

4. Construct the payload

payload = {
"model": "claude-sonnet-4-5-20250929",
"max_tokens": 4096,
"messages": [

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Chapter 2: The Raw Request 16

}

{"role": "user", "content": "Hello, are you ready to code?"}

5. Fire! (No safety net)
print("% Sending request to Claude...")
response = requests.post(url, headers=headers, json=payload)

6. Inspect the raw result
print(f"Status: {response.status code}")

if response.status code == 200:

Success: Print the beautiful JSON
print("Response:")
print(json.dumps(response.json(), indent=2))

else:
Failure: Print the ugly raw text so we can debug
print("Error:", response.text)

The Walkthrough:

* Line 7: load dotenv() finds the .env file and loads variables into

os.environ.

* Line 8: We grab the API key. Never hardcode this.
* Lines 11-13: Basic sanity check. Without this, a missing key causes a

confusing NoneType error in the headers dict.

* Line 21: The anthropic-version header is mandatory. Omit it, and the API

rejects you.

* Line 27: claude-sonnet-4-5-20250929 specifies which model we want.
* Line 28: max_tokens is required. It caps the response length and prevents

runaway costs.

* Line 36: We fire the request. No try/except—if the network is down, let

Python crash. You need to see where it fails.

* Lines 41-47: Check the status code. 200 means success (pretty-print the

JSON). Anything else means we print the raw error text for debugging.

Step 5: Run It

Chapter 2: The Raw Request

python test api.py
If everything works, you should see:

Status: 200
Response:
{
"id": "msg 01...",
"type": "message",
"role": "assistant",
"content": [
{
"type": "text",
"text": "Hello! Yes, I'm ready to code..."
}
I,
"stop reason": "end turn",
"usage": {
"input tokens": 15,
"output tokens": 81
}
}

Troubleshooting

Error Cause

Fix

401 Unauthorized Bad API key

Check .env is

loading. Print
os.environ.get ("ANTHROPIC -
API_KEY") to verify.

400 Bad Request ~ Malformed JSON

Did you forget
max_tokens? Is
messages a list?

429 Rate Limit Too many requests or
no credits

Wait, or add credits
to your account.

17

Chapter 2: The Raw Request 18

Cleaning Up

We proved we can talk to the brain. Delete test_api.py—we will integrate this
logic into nanocode. py properly in the next chapter.

Note: This test_api.py is throwaway code—a one-time smoke test.
Real automated tests (with FakeBrain and pytest) come in Chapter 3.
You should always delete this file after verifying your API connection
works.

Dev Tip: Every API call costs money. Input tokens (what you send) are cheap.
Output tokens (what the model writes) are ~5x more expensive. Keep your
prompts concise.

Aside: To monitor your spending, check the Usage tab in the An-

o thropic Console. A typical coding session with 20-30 exchanges costs
$0.10-S0.50 with Claude Sonnet. The usage object in each response
(lines 169-172 above) shows exact token counts—you could log these
to track costs programmatically.

Wrapping Up

In this chapter, you made your first direct connection to an LLM—no SDK, no
magic, just a raw HTTP POST request. You learned the anatomy of an API call:
headers for authentication, a payload with your message, and JSON parsing to
extract the response.

You also learned why we avoid SDKs: they hide the truth. When you work with
raw HTTP, you understand the protocol. When something breaks, you know
exactly where to look.

In the next chapter, we'll give Claude memory by implementing the context
loop—the technique that makes LLMs appear to remember previous messages.

Chapter 3: The Infinite Loop

We have a problem.

Run the script from Chapter 2 twice. Say “My name is Alice” Claude says hello.
Run it again and ask “What is my name?” Claude says “I don’t know”

This is because LLMs are stateless. They have total amnesia. Every request is
the first time you have ever met.

To build an agent, we need to fix this. We need to create artificial memory.

The lllusion of Memory

“Memory” in an LLM isn’t a hard drive. It’s a log file.

When you chat with ChatGPT, it doesn't “remember” what you said 5 minutes
ago. Behind the scenes, the code sends the entire conversation history back
to the model with every new message.

Turn 2 Turn 1

User: Hi » Assistant: Hello > User: How are you? » APICall User: Hi » APl Call

Figure 2. Context accumulation: Turn 1 sends just “User: Hi” to the API. Turn 2 sends the full
history—“User: Hi", “Assistant: Hello", “User: How are you?”—to the API.

The model sees the full transcript every time. That’s the trick.

We are going to implement this context loop manually. But first, we need to
make our code testable.

The Testing Problem

Here'’s a hard truth: you cannot test an LLM-powered application by actually
calling the LLM.

17
18
19
20
21
22
23

Chapter 3: The Infinite Loop 20

API calls are slow (2-10 seconds each), expensive (real money per call), and non-
deterministic (you might get a different response every time). Imagine running
a test suite that costs $5 and takes 20 minutes. You'd never run it.

The solution is dependency injection. Instead of hardcoding the API call inside
our agent, we pass in a “brain” object. In production, the brain is Claude. In
tests, the brain is a fake that returns predictable responses.

This pattern is so fundamental that we'll establish it now, before writing any
more production code.

Response Types

Before we build the brain, we need to define what it returns. Claude’s API sends
back complex JSON with multiple content blocks. We need simple Python
objects to work with.

The Context: Claude can return text, tool calls, or both in a single response.
We need data classes to represent these possibilities.

The Code:

class ToolCall:
"""A tool invocation request from the brain.

def init (self, id, name, args):
self.id = id
self.name = name
self.args = args # dict

ToolCall represents the brain asking us to execute a tool. The id is a unique
identifier for tracking (Claude needs it when we report results back). The name
is which tool to run. The args is a dictionary of parameters.

We won't use ToolCall in this chapter—the brain can't call tools yet—but we
define it now because it’s part of the Thought response type. In Chapter 5,
you'll see how Claude returns these when it wants to read a file or execute a
command.

26
27
28
29
30
31

Chapter 3: The Infinite Loop 21

class Thought:
"""Standardized response from any Brain.

def init (self, text=None, tool calls=None):
self.text = text # str or None
self.tool calls = tool calls or [] # list of ToolCall

A Thought is what the brain returns after thinking. It might have text, tool calls,
both, or neither. This abstraction will let us swap Claude for DeepSeek later
without changing any other code.

The FakeBrain Pattern

Now we can build a fake brain for testing.

The Context: We need a brain that returns predictable responses, tracks how
many times it was called, and records what conversation it received.

The Code:

class FakeBrain:
"""Fake brain for testing - returns predictable responses."""
def _ init_ (self, responses=None):
self.responses = responses or [Thought(text="Fake response")]
self.call count = 0
self.last conversation = None

def think(self, conversation):
self.last conversation = list(conversation) # Store a copy
if self.call count < len(self.responses):
response = self.responses[self.call count]
self.call count += 1
return response
return Thought(text="No more responses")

This goes in test_nanocode.py, not the production code. The key insight:
FakeBrain has the same interface as our real brain will-a think() method that
takes a conversation and returns a Thought.

S Ul W N

= o
H © O 0 N O U & W N =

_ e
w N

Chapter 3: The Infinite Loop 22

predictable fake for testing—is called dependency injection. Martin
Fowler’s article “Mocks Aren't Stubs™ explains the variations (fakes,
stubs, mocks, spies). For LLM testing, a simple fake with canned
responses is usually all you need.

0 Dive Deeper: This pattern—replacing a real dependency with a

Defining Success

Before writing the production code, let’s define what success looks like. These
tests will guide our implementation.

Test 1: The brain returns a response

def test handle input returns brain response():
"""Verify handle input returns the brain's response text."""
brain = FakeBrain(responses=[Thought(text="Hello from brain!")])
agent = Agent(brain=brain)
result = agent.handle input("hi")
assert result == "Hello from brain!"

Notice we pass brain=brain to the Agent. This is dependency injection in
action.

Test 2: Conversation accumulates

def test conversation accumulates():
"""Verify conversation list grows with each interaction."""
brain = FakeBrain(responses=[
Thought (text="Response 1"),
Thought (text="Response 2")
D
agent = Agent(brain=brain)

agent.handle input("First message")
assert len(agent.conversation) == 2 # user + assistant

agent.handle input("Second message")
assert len(agent.conversation) == 4 # 2 users + 2 assistants

Thttps: //martinfowler.com/articles /mocksArentStubs.html

_ e
H © W 00 N O U B WN =

© 00 N O Ul B W N -

=
o

1

Chapter 3: The Infinite Loop 23

This is the memory test. After each exchange, the conversation should have
both the user message and the assistant response.

Test 3: Correct message structure

def test conversation contains correct roles():
"""Verify conversation has correct role alternation.
brain FakeBrain(responses=[Thought (text="AI response")])
agent = Agent(brain=brain)

agent.handle input("User message")

assert agent.conversation[0]["role"] == "user"

assert agent.conversation[0O]["content"] == "User message"
assert agent.conversation[1l]["role"] == "assistant"
assert agent.conversation[1]["content"] == "AI response"

The messages must have the exact format Claude expects: {"role": "user",
"content": "..."}.

Test 4: Brain receives the conversation

def test brain receives conversation():
"""Verify brain.think is called with the conversation list."""
brain = FakeBrain()
agent = Agent(brain=brain)

agent.handle input("Test message")
assert brain.last conversation is not None

assert len(brain.last conversation) ==
assert brain.last conversation[0]["content"] == "Test message"

The brain must receive the full conversation, not just the current message.

Run these tests now—they should all fail:

pytest test nanocode.py -v

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61

Chapter 3: The Infinite Loop 24

FAILED test nanocode.py::test handle input returns brain response
FAILED test nanocode.py::test conversation accumulates

Good. Now let’s make them pass.

The Claude Class

Time to build the real brain.

The Context: We need a class that wraps the Claude API. It should handle
authentication, send conversation history, and parse the response into a
Thought.

The Code:

class Claude:
"""Claude API - the brain of our agent."""

def init (self):
self.api key = os.getenv("ANTHROPIC API KEY")
if not self.api_key:
raise ValueError("ANTHROPIC API KEY not found in .env")
self.model = "claude-sonnet-4-5-20250929"
self.url = "https://api.anthropic.com/v1l/messages"

def think(self, conversation):
headers = {
"x-api-key": self.api key,
"anthropic-version": "2023-06-01",

"content-type": "application/json"
)
payload = {

"model": self.model,

"max_tokens": 4096,

"messages": conversation
)

print("(Claude is thinking...)")

response = requests.post(self.url, headers=headers, json=payload,
— timeout=120)

response.raise for status()

return self. parse response(response.json()["content"])

The Walkthrough:

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

Chapter 3: The Infinite Loop 25

* Lines 39-42: Load the API key and fail fast if it's missing.

* Lines 43-44: Store config. We'll make the model configurable later.

Line 46: The think() method is the brain’s interface—same as FakeBrain.
Lines 52-55: The payload includes "messages": conversation—the full
history, not just the current message. This is the context loop.

* Line 61: Parse Claude’s complex response format into our simple Thought.

Now the response parser:

def parse response(self, content):
"""Convert Claude's response format to Thought."""
text parts = []
tool calls []

for block in content:

if block["type"] == "text":
text parts.append(block["text"])
elif block["type"] == "tool use":

tool calls.append(ToolCall(
id=block["id"],
name=block["name"],
args=block["input"]

))

return Thought(
text="\n".join(text parts) if text parts else None,
tool calls=tool calls

Claude’s API returns a list of “content blocks” Each block has a type—either
"text" or "tool _use". We collect all text blocks into a single string and convert
tool_use blocks into ToolCall objects.

The Agent Class (Updated)

Now we update the Agent from Chapter 1 to accept a brain and maintain
conversation history.

The Code:

86
87
88
89
90
91
92
93
94

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Chapter 3: The Infinite Loop 26

class Agent:
"""A coding agent with conversation memory."""

def init (self, brain):
self.brain = brain
self.conversation = []

def handle input(self, user input):
"""Handle user input. Returns output string, raises AgentStop to
— quit."""
if user _input.strip() == "/q":
raise AgentStop()

if not user input.strip():
return ""

self.conversation.append({"role": "user", "content": user input})

try:
thought = self.brain.think(self.conversation)
text = thought.text or ""
self.conversation.append({"role": "assistant", "content": text})
return text
except Exception as e:
self.conversation.pop() # Remove failed user message
return f"Error: {e}"

The Walkthrough:

* Lines 89-91: Accept a brain via dependency injection. Initialize an empty
conversation list.

* Line 101: Append the user’s message to history before calling the brain.

* Lines 103-107: Call the brain, extract the text, append the response to
history.

* Lines 108-110: If the API call fails, remove the user message we just added.
This keeps the conversation in a valid state.

The key insight is line 101: we add the user message before calling the brain.
The brain needs to see the full conversation including the current message.

Dev Tip: When things go wrong, your first debugging tool is
print(self.conversation). This shows exactly what the brain is seeing.

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

Chapter 3: The Infinite Loop 27

Malformed messages, missing roles, or truncated content become obvious
when you inspect the raw list.

The Main Loop (Updated)

The main loop is now just a thin I/O wrapper:

def main():
brain = Claude()
agent = Agent(brain)
print("# Nanocode v0.2 (Memory Active)")
print(“Type '/q' to quit.\n")

while True:
try:
user _input = input(") ")
output = agent.handle input(user input)
if output:
print(f"\n{output}\n")

except (AgentStop, KeyboardInterrupt):

print("\nExiting...")
break

if name == " main ":
main()

All the logicis in the Agent class. The loop just reads input, calls handle_input(),
and prints the result. This separation makes the agent testable-we test
Agent.handle_input() directly without needing to mock input() or print().

Verify the Tests Pass

Run the tests again:

B W N

© W N U A WN R

Chapter 3: The Infinite Loop 28

pytest test nanoco

test nanocode.py:
test nanocode.py:
test nanocode.py:
test nanocode.py:

de.py -v

:test handle input returns brain response PASSED
:test conversation accumulates PASSED

:test conversation contains correct roles PASSED
:test brain_receives conversation PASSED

All green. The tests verify our implementation without making a single API call.

Test the Memory

Now test with the

python nanocode.py

real brain:

Try this conversation:

> I am building a
(Claude is thinkin

That sounds exciti

) What language am
(Claude is thinkin

You are using Pyth

Python agent.
g...)

ng! Building a Python agent is a great project...

I using?
g...)

on.

It remembers. We have built a stateful chatbot.

The Context

You might be thin
No.

Window Problem

king: “Can I keep this running forever?”

Every loop iteration, the messages list grows:

Chapter 3: The Infinite Loop 29

Turn Approximate Tokens
1 50

10 5,000

100 50,000

Eventually, you hit the context limit (200k tokens for Claude Sonnet). Exceed
it, and the API returns 400 Bad Request.

Aside: Real agents solve this by “pruning’—deleting old messages
from the beginning of the list, or summarizing them. For our pro-
totype, this is fine—restart the agent to clear the history.

Dev Tip: Notice print("(Claude is thinking...)")? Network calls take 2-
10 seconds. Always give immediate feedback that the Enter key worked, or
users will hit Ctrl+C thinking it froze.

Wrapping Up

In this chapter, you solved the stateless problem. LLMs have total amnesia—
every request is a fresh start. The trick is to send the entire conversation
history with every message, creating the illusion of memory.

You built a context loop: a growing list of messages that accumulates user
input and assistant responses. This is how ChatGPT and every other chatbot
“remembers” your conversation.

More importantly, you learned the FakeBrain pattern—dependency injection
that lets you test your agent without API calls. This pattern will appear
throughout the book. Every brain we build (Claude, DeepSeek, Ollama) will
have the same think() interface, and FakeBrain will test them all.

In the next chapter, we'll clean up our code using the Adapter Pattern, making
it trivial to switch between Claude, DeepSeek, or any other LLM provider.

Chapter 4: The Universal Adapter

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Adapter Pattern

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

HTTP Resilience

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Brain Interface

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The FakeBrain (Updated)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Claude Brain (Refactored)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 4: The Universal Adapter 31

The DeepSeek Brain

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The BRAINS Registry

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Agent Class (Updated)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Tests for Multi-Brain Support

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Main Loop (Updated)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Setting Up DeepSeek

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Try It

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 4: The Universal Adapter 32

Why This Matters

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Wrapping Up

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 5: The Tool Protocol

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

How Tools Actually Work

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Defining the Tool Interface

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The ReadFile Tool

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The WriteFile Tool

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Tool Helpers

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 5: The Tool Protocol 34

Updating the Thought Class

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Updating the Claude Class

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Agent Class with Tools

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Main Loop

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Test It

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Wrapping Up

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 6: The Scratchpad (Memory)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The “Zero Magic” Memory

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Memory Class

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The ToolContext Class

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The SaveMemory Tool

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Updating the Claude Class

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 6: The Scratchpad (Memory) 36

Crafting the System Prompt

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Updating the Agent Class

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Main Loop (Updated)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Testing Persistence

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Why This is Powerful

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Wrapping Up

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 7: The Safety Harness
(Planner Mode)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Concept

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Tests First

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Extending ToolContext

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Guarded WriteFile Tool

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Agent Class (Updated)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 7: The Safety Harness (Planner Mode) 38

The Main Loop (Updated)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Testing the Harness

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Psychology of the “Plan”

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Wrapping Up

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 8: The Context Pipeline (Map
& Search)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The ListFiles Tool

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The SearchCodebase Tool

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Update the Tools List

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The “Zoom In” Test

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Wait, is this RAG?

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 8: The Context Pipeline (Map & Search) 40

The Architectural Significance

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Wrapping Up

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 9: The Reality Check (Running
Code)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Feedback Loop

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Tests First

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The RunCommand Tool

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Interactive Trap

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Self-Healing Demo

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 9: The Reality Check (Running Code) 42

The TDD Workflow

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Surgical Edit

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Why This Changes Everything

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Security Considerations

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Wrapping Up

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 10: Going Dark (Local Models)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Trade-off

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Installing Ollama

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Ollama Brain Class

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Running with Ollama

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The “Infinite Loop” Experiment

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 10: Going Dark (Local Models) 44

The Practical Differences

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

The Hybrid Workflow

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Model Selection

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Troubleshooting Ollama

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Wrapping Up

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 11: The Extension (Web
Search)

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Step 1: The Meta-Prompt

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Step 2: The Surgery

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Step 3: The Reference Implementation

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Step 4: The Test

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

Why This Matters

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent
https://leanpub.com/build-your-own-coding-agent

Chapter 11: The Extension (Web Search) 46

Wrapping Up

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent

Chapter 12: The Capstone (Building a
Game)

We have reached the end of the road.

We started with a minimal script that could barely echo “Hello” We ended with
Nanocode v1.0: an autonomous agent with:

* Brains: Support for Claude, DeepSeek, and local models via Ollama
e Hands: Tools to read, write, and edit files

* Eyes: Tools to map and search the codebase

* Memory: A persistent scratchpad

* Safety: A plan mode harness

* Curiosity: A web search tool to learn new things

Now, we must answer the only question that matters: Can it actually code?

In this final chapter, we perform a “Zero Code Challenge.” We will build a classic
Snake game using Python and Pygame. The rule: you are not allowed to write
a single line of Python. You can only speak to the agent in English.

Aside: This demo involves many API calls. If you hit rate limits (HTTP
429), the agent will retry automatically. For long sessions, consider
using a local model via Ollama to avoid limits entirely.

Step 1: Preparation

Create a working directory for the game and navigate into it:

Chapter 12: The Capstone (Building a Game) 48

mkdir -p snake game
cd snake game

If you are using the book’s code repository, copy the agent from chil:

cp ../chll/nanocode.py .
cp ../.env . # Your API key

(If you built nanocode.py from scratch, copy your latest version and .env file
into this folder instead.)

Install Pygame:

pip install pygame

Aside: On Windows, this should work out of the box. On ma-

o cOS, you may need to install SDL libraries first: brew install
sd12 sd12_image sd12 mixer sdl2_ttf. On Linux, install the SDL
dev packages: sudo apt install libsdl2-dev libsdl2-image-dev
libsdl2-mixer-dev libsdl2-ttf-dev.

Step 2: The Architect (Plan Mode)

Start the agent. We begin in plan mode because we want a blueprint before we
lay bricks.

python nanocode.py
The Prompt:

Build a classic Snake game using Pygame. Include a score counter and Game Over
— screen with restart. Put ALL code in ONE file: snake.py. Write the plan in
< PLAN.md.

The agent will use write_file to create PLAN.md. Read it. It should outline the
Snake class, the Food class, and the game loop—all in a single file.

If it looks good, approve it.

Chapter 12: The Capstone (Building a Game) 49

Step 3: The Builder (Act Mode)

Switch to act mode:
/mode act
The Prompt:
Implement the plan in snake.py. All code in one file.
Watch the terminal:
- Writing snake.py

The agent is generating code based on the context it stored in PLAN.md.

Step 4: The Reality Check

Now, we run it.

The Prompt:

Run the game with: python snake.py

The agent executes run_command. A window pops up. You play Snake.

Dev Tip: The game window blocks the agent. When you run python
snake.py, the agent waits until you close the game window before
continuing. This is normal-Pygame’s main loop holds the terminal.

Chapter 12: The Capstone (Building a Game) 50

If it crashes: LLMs are non-deterministic. Your agent might produce a bug on
the first try. If the game crashes with an error like AttributeError: 'Snake'
object has no attribute 'draw', don't fix it yourself. Let the agent see the
stderr.

The Prompt:

The game crashed. Read the error and fix it.

The agent will read the traceback, use read_file to find the bug, use edit_file
to patch it, and run again.

Dev Tip: This is the feedback loop from Chapter 9 in action. The agent writes,
runs, reads the error, and fixes. You just watch.

Step 5: The Pivot (Feature Creep)

The game works, but it’s ugly. The snake is just green squares. Let’s stress-test
the agent’s ability to refactor.

The Prompt:

The game looks boring. Make the snake change color as it eats food, increase
— speed every 5 points, and search the web for 'cool retro game color
— palettes' to apply.

The agent should:

1. Use search_web to find color palettes

2. Use read_file to understand the current rendering logic
3. Use edit_file to inject the new features

4. Run the game to verify

This is the full toolkit in action: search, read, edit, run.

Chapter 12: The Capstone (Building a Game) 51

The Result

If everything worked, you now have a playable Snake game. You didn't write a
single line of Python. You spoke English, and the agent translated your intent
into working code.

Warning: Your results may vary. LLMs are non-deterministic. The

A agent might take a different approach, produce different bugs, or
need more iterations. That's normal. The point isn't that it works
perfectly on the first try—it’s that it converges on a working solution
through iteration.

Wrapping Up

In this chapter, you put Nanocode through its final exam: building a complete
game from scratch using only English prompts.

You experienced:

1. Plan mode: The agent architected the solution in PLAN.md

2. Act mode: The agent implemented the code

3. The feedback loop: The agent debugged its own crashes

4. The full toolkit: read, write, edit, search, run—all working together

The key insight: an autonomous coding agent isn't magic. It's the combination
of simple tools (file I/O, subprocess, web search) orchestrated by a language
model. You built every piece yourself.

Epilogue: The End of the Beginning

You have just built a video game without writing code.

But you built something more important than a Snake game. You built the
machine that builds the machine.

You now possess a tool that grants you:

Chapter 12: The Capstone (Building a Game) 52

* Leverage: Spin up prototypes in minutes, not hours

* Fearlessness: Dive into unknown codebases because your agent can map
and explain them

* Independence: Run local models and keep your data private

Where to go from here?

This nanocode. py is yours. It's under 700 lines of Python. You understand every
line because you wrote it.

Some ideas:

* Add Git: Write a tool to commit changes automatically

* Add Vision: Give Claude screenshots of your frontend so it can fix CSS

* Add Voice: Hook up Whisper so you can talk to your agent while walking
* Add MCP: Connect to external services via the Model Context Protocol

The Al revolution isn’'t about waiting for a god-like model to save us. It's about
engineers like you building the harnesses that make these models useful.

You are no longer just a coder. You are an Al engineer.

Now, go build something impossible.

Acknowledgments

This content is not available in the sample book. The book can be purchased
on Leanpub at https://leanpub.com /build-your-own-coding-agent.

https://leanpub.com/build-your-own-coding-agent

	Table of Contents
	Preface
	Who This Book Is For
	What You Will Build
	Testing Approach
	Code Examples
	Conventions Used in This Book

	Chapter 1: The Zero Magic Manifesto
	What is an Agent, Really?
	What We Are Building
	Project Setup
	The AgentStop Exception
	The Agent Class
	Defining Success with Tests
	The Main Loop
	Run It
	Wrapping Up

	Chapter 2: The Raw Request
	Step 1: Get an API Key
	Step 2: The Vault (.env)
	Step 3: The Anatomy of a Request
	Step 4: The Code
	Step 5: Run It
	Troubleshooting
	Cleaning Up
	Wrapping Up

	Chapter 3: The Infinite Loop
	The Illusion of Memory
	The Testing Problem
	Response Types
	The FakeBrain Pattern
	Defining Success
	The Claude Class
	The Agent Class (Updated)
	The Main Loop (Updated)
	Verify the Tests Pass
	Test the Memory
	The Context Window Problem
	Wrapping Up

	Chapter 4: The Universal Adapter
	The Adapter Pattern
	HTTP Resilience
	The Brain Interface
	The FakeBrain (Updated)
	The Claude Brain (Refactored)
	The DeepSeek Brain
	The BRAINS Registry
	The Agent Class (Updated)
	Tests for Multi-Brain Support
	The Main Loop (Updated)
	Setting Up DeepSeek
	Try It
	Why This Matters
	Wrapping Up

	Chapter 5: The Tool Protocol
	How Tools Actually Work
	Defining the Tool Interface
	The ReadFile Tool
	The WriteFile Tool
	Tool Helpers
	Updating the Thought Class
	Updating the Claude Class
	The Agent Class with Tools
	The Main Loop
	Test It
	Wrapping Up

	Chapter 6: The Scratchpad (Memory)
	The ``Zero Magic'' Memory
	The Memory Class
	The ToolContext Class
	The SaveMemory Tool
	Updating the Claude Class
	Crafting the System Prompt
	Updating the Agent Class
	The Main Loop (Updated)
	Testing Persistence
	Why This is Powerful
	Wrapping Up

	Chapter 7: The Safety Harness (Planner Mode)
	The Concept
	Tests First
	Extending ToolContext
	The Guarded WriteFile Tool
	The Agent Class (Updated)
	The Main Loop (Updated)
	Testing the Harness
	The Psychology of the ``Plan''
	Wrapping Up

	Chapter 8: The Context Pipeline (Map & Search)
	The ListFiles Tool
	The SearchCodebase Tool
	Update the Tools List
	The ``Zoom In'' Test
	Wait, is this RAG?
	The Architectural Significance
	Wrapping Up

	Chapter 9: The Reality Check (Running Code)
	The Feedback Loop
	Tests First
	The RunCommand Tool
	The Interactive Trap
	The Self-Healing Demo
	The TDD Workflow
	The Surgical Edit
	Why This Changes Everything
	Security Considerations
	Wrapping Up

	Chapter 10: Going Dark (Local Models)
	The Trade-off
	Installing Ollama
	The Ollama Brain Class
	Running with Ollama
	The ``Infinite Loop'' Experiment
	The Practical Differences
	The Hybrid Workflow
	Model Selection
	Troubleshooting Ollama
	Wrapping Up

	Chapter 11: The Extension (Web Search)
	Step 1: The Meta-Prompt
	Step 2: The Surgery
	Step 3: The Reference Implementation
	Step 4: The Test
	Why This Matters
	Wrapping Up

	Chapter 12: The Capstone (Building a Game)
	Step 1: Preparation
	Step 2: The Architect (Plan Mode)
	Step 3: The Builder (Act Mode)
	Step 4: The Reality Check
	Step 5: The Pivot (Feature Creep)
	The Result
	Wrapping Up
	Epilogue: The End of the Beginning

	Acknowledgments

