Napravite API koji
necete mrzeti

Phil Sturgeon Slavisa Petrovic

Napravite APl Koji Necete Mrzeti

Svako sa svojim psom zeli API, tako da biste verovatno
trebali da naucite da ga napravite

Phil Sturgeon and Slavisa Petrovi¢
This book is for sale at http://leanpub.com/build-apis-you-wont-hate-sr

This version was published on 2015-07-13

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once

you do.

©2015 Phil Sturgeon and Slavisa Petrovi¢

http://leanpub.com/build-apis-you-wont-hate-sr
http://leanpub.com
http://leanpub.com/manifesto

Capgprkaj

HATEOAS
Uvod . . o o e
Pregovaranje po pitanju sadrzaja
Hipermedija Kontrole

HATEOAS

Uvod

HATEOAS je tema nezgodna za obja$njavanje, ali je u stvari jednostavna. Ona znac¢i ‘Hypermedia
as the Engine of Application State’ (hipermedija kao pokreta¢ stanja aplikacije) i izgovara se kao
‘hat-ee-os’, ‘hate O-A-S’ ili ‘hate-ee-ohs’; ovo poslednje zvuéi kao Zitarica za API programere.

Kako god da izgovarate, u osnovi znaci dve stvari za vas APL:

1. Pregovaranje po pitanju sadrzaja
2. Hipermedija kontrole

Po mom iskustvu, pregovaranje po pitanju sadrzaja je prva stvar koju API programeri implementira-
ju. Kada sam gradio ekstenziju za Codelgniter Rest-Server, to je bila prva osobina koju sam dodao, jer
je bilo zabavno! Menjanje zaglavlja Accept i pregledanje zaglavlja Content-Type u promeni odziva
sa JSON na XML ili CSV je odli¢no i super lako.

Pregovaranje po pitanju sadrzaja

Neki samoproklamovani REST API interfejsi (Twitter, vas treba kriviti za ovo) upravljaju pregova-
ranjem po pitanju sadrzaja preko ekstenzija datoteka. Njihove URL adrese Cesto izgledaju ovako:

e /statuses/show. json?id=210462857140252672
e /statuses/show.xml?id=210462857140252672

Ovo je mala zloupotreba koncepta ‘resursa’ i prisiljava korisnika ne samo da zna da postoji krajnja
tacka ‘show’, ve¢ da mora da odabere ekstenziju tipa sadrzaja i koristi parametar id.

Dobar API bi jednostavno imao /statuses/210462857140252672. Ovo donosi dvostruku korist,
dozvoljava da API odgovori podrazumevanim tipom sadrzaja ili postujuci zaglavlje Accept i
prikazivanjem tipa sadrzaja zahteva ili izbacivanjem status koda 415, ako ga APIne podrzava. Druga
korist je da korisnik ne mora da zna ?id=.

URI adrese ne bi trebale da budu gomila fascikli ili imena datoteka, a API nije lista JSON ili XML
datoteka. One su liste resursa, koji mogu da budu predstavljeni u razli¢itim formatima u zavisnosti
od zaglavlja Accept, i nista vise.

0 N O O & W N =

NN N B S 1 s s sl
N ~, © © 0 0 O b W DN~ OO O

HATEOAS 2

Jednostavan primera pregovaranja po pitanju sadrzaja koji zahteva JSON

GET /places HTTP/1.1
Host: localhost:8000
Accept: application/json

Odziv bi onda sadrzao JSON ako API podrzava JSON kao izlazni format.

Skraceni primer HTTP odziva koji sadrzi JSON podatke

HTTP/1.1 200 OK
Host: localhost:8000

Connection: close

"data": [
{
"id": 1,
"name": "Mireille Rodriguez",
"lat": -84.147236,
"lon": 49.254065,
"address1": "12106 Omari Wells Apt. 801",

nn
7

"address2":
"city": "East Romanberg",

"state": "VT",

"zip": 20129,

"website": "http://www.torpdibbert.com/",
"phone": "(029)331-0729x4259"

Najpopularniji API interfejsi ¢e podrazumevano podrzavati JSON ili samo JSON, kao sto je to nasa
jednostavna aplikacija radila do sada. Ovo nije realisti¢no, ali je zbog jednostavnosti, do sada tako
radeno u knjizi.

XML je jos uvek tezak jer morate da zahtevate datoteke za pregled, a to je van oblasti interesovanja
ovog poglavlja.

YAML, je medutim, lakse postici, tako da mozemo videti kako pregovaranje po pitanju sadrzaja radi
sa malim izmenama u nasoj aplikaciji.

Pogledajte ~/apisyouwonthate/chapter12/ kako biste videli azuriranu probnu aplikaciju.

0 N O O B W N =~

W W W W W W WwWwWwWNNDNDNDDNDNDNDDNDDNNDNNAESERASEPArEPSEPS,EPS S
0 N O Ol & WOWN-O O© 00 30 Ol WON- O © 03O0 O b N~ O O

HATEOAS 3

Osim ubacivanja [Symfony YAML komponente] glavna promena je ubacivanje metodarespondWithArray()
kako bi se proverilo zaglavlje Accept i odreagovalo u skladu sa njim.

Azurirani metod respondWithArray() sa detekcijom zaglavlja accept

protected function respondWithArray(array $array, array $headers = [])

{
// You will probably want to do something intelligent with charset if provid\

ed.
// This chapter just ignores everything and takes the main MIME type value
$mimeParts = (array) explode(';', Input::server('HTTP_ACCEPT"));
$mimeType = strtolower($mimeParts(0]);
switch ($mimeType) {
case 'application/json':
$contentType = 'application/json';
$content = json_encode($array);
break;
case 'application/x-yaml':
$contentType = 'application/x-yaml';
$dumper = new YamlDumper();
$content = $dumper->dump($array, 2);
break;
default:
$contentType = 'application/json';
$content = json_encode([
‘error' => [
'code' => static::CODE_INVALID_MIME_TYPE,
"http_code' => 400,
'message' => sprintf('Content of type %s is not supported.',\
$mimeType),

1);

$response = Response: :make($content, $this->statusCode, $headers);
$response->header ('Content-Type', $contentType);

return $response;

S © 00 I O O b W N =

[N

© 00 39 O Ol & W N =

HATEOAS 4

Osnovne stvari, ali ako sada pokusamo drugaciji MIME tip, mozemo ocekivati drugaciji rezultat:

HTTP zahtev koji navodi Zeljeni odzivni MIME tip

GET /places HTTP/1.1
Host: localhost: 8000
Accept: application/x-yaml

Odziv ¢e biti u YAML-u.

Skraceni primer HTTP odziva sa YAML podacima

HTTP/1 .1 200 OK
Host: localhost:8000
Connection: close

data:

- { id: 1, name: 'Mireille Rodriguez', lat: -84.147236, lon: 49.254065, addr\
essl: '12106 Omari Wells Apt. 801', address2: '', city: 'East Romanberg', state:\
VT, zip: 20129, website: 'http://www.torpdibbert.com/', phone: (029)331-0729x42\
59 }

Programsko pravljenje ovih odziva je jednostavno.

Koris¢enje PHP i Guzzle paketa pri zahtevanju razlicitih tipova odziva

use GuzzleHttp\Client;
$client = new Client(['base_url' => 'http://localhost:8000']);
$response = $client->get('/places', [

'headers' => ['Accept' => 'application/x-yaml']

1);

$response->getBody(); // YAML, ready to be parsed

Ovo nije kraj razgovora na temu pregovaranja po pitanju sadrzaja, jer postoji jos prica o MIME
tipovima za resurse razli¢itih vendora, koji se takode mogu verzionisati. O ovome ce biti re¢i u
Poglavlju 13: API Verzionisanje.

HATEOAS 5

Hipermedija Kontrole

Drugi deo HATEOAS, je medutim, drasti¢no neiskoriscen, i poslednji je korak u postupku da vas
API bude u duhu REST-a.

BUT/IT:S NOT
“RESTful* IFYOU..

Batman precesto obezbeduje standardni odziv na uzaludne primedbe “But it’s not RESTful if you... (Ako nije
dovoljno u duhu REST-a za tebe..)” Zasluga Troy Hunt-a (@troyhunt)

Tako Cesto od mnogih ljudi ¢ujete Zalbe kao §to je ‘ali to nije dovoljno u duhu REST-a!’ o $asavim
stvarima, ovo je jedan od primera gde su potpuno u pravu. Roy Fielding kaze, piSuci jos 2008,
da bez hipermedija kontrola API nije dovoljno u duhu REST-a'. Ljudi ovo od tada ignorisu, a
poslednja procena kaze da 74% svih APi interfejsa koji tvrde da su u duhu REST-a ustvari i ne koriste
hipermediju.

REST Nirvana

Postoji nesto sto lebdi u REST/Hipermedija zajednici pod imenom [Richardson Maturity Model’]
(Richardson-ov Model Zrelosti), o kome je pisao ovde Martin Fowler?, ali je originalno izumeo
Leonard Richardson®. Govori o tome $ta on smatra za ‘Cetiri nivoa REST-a’:

1. “Moévara Boginja.” Koristite HTTP kako biste napravili RPC pozive. HTTP se
jedino koristi kao tunel.

2. Resursi. Umesto da svaki poziv uputite krajnjoj tacki servisa, imate vise krajnjih
tacaka koje predstavljaju resurse, a vi se obracate njima. To je sam pocetak podrske
za REST.

3. HTTP Glagoli. Ovo je nivo za koji vam Rails daje odmah podrsku: interagujete
ovim resursima koriste¢i HTTP glagole, umesto da uvek koristite POST.

4. Hipermedija Kontrole. HATEOAS. 100% REST kompatibilnosti.

- Izvor: Steve Klabnik, “Haters gonna HATEOAS™

Neki osporavaju ovaj model, kao $to Roy kaze, osim ako imate hipermediju koja nije REST. Model
je dobar sve dok razumete da koraci 1, 2 i 3 jo$ uvek ‘nisu REST’, a korak 4 je ‘REST".

*http://roy.gbiv.com/untangled/2008/rest-apis- must-be-hypertext-driven
®http://martinfowler.com/

*http://www.crummy.com/
“http://timelessrepo.com/haters-gonna-hateoas

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://martinfowler.com/
http://www.crummy.com/
http://timelessrepo.com/haters-gonna-hateoas
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://martinfowler.com/
http://www.crummy.com/
http://timelessrepo.com/haters-gonna-hateoas

© 00 N O U b W N =

N S G
IR S

HATEOAS 6

Dakle, sta predstavljaju hipermedija kontrole? Oni su jednostavno veze (linkovi) ka drugim sadr-
zajima, vezama i daljim akcijama. Ovo omogucava korisniku da predleda API i otkriva akcije u
hodu.

U osnovi, vasi podaci trebaju da imaju ‘hiperlinkove’, koje ste verovatno godinama koristili u
vasem HTML kodu. Ranije u ovoj knjizi, rekao sam da REST nije nista drugo, do koriséenje istih
konvencija kao i sam internet, umesto da se izmisljaju nove, stoga ima smisla da povezivanje sa
drugim resursima treba da bude isto u API interfejsu kao i na web stranici.

Glavna stvar koju treba naglasiti u vezi hipermedije je, da API treba da u potpunosti imam smisla
za klijentsku API aplikaciju i ljude koji gledaju odzive. bez gledanja dokumentacije.

Kroz ovu knjigu su mali HATEOAS koncepti tajno ubrizgani, pocevsi od sugerisanja kodova gresaka
sa porukama c¢itljivim za ljude i vezama ka dokumentaciji, kako bi klijentu omogucili da izbegne
matematiku prilikom interakcije sa stranienjem sadrzaja. Osnovna tema je da se uvek naprave
kontrole kao $to su sledece, prethodno (ili bilo koja druga vrsta interakcije) ucine ociglednim
racunaru ili coveku.

Razumevanje Hipermedija Kontrola

Ovo je najlaksi deo pravljenja API interfejsa u duhu REST-a, tako da ¢u zaista pokusati da ne
ostavim ovaj odeljak na ‘samo dodaj linkove druze’ (moj normalni savet za svakoga ko pita o pojmu
HATEOAS).

Nasi uobicajeni podaci su prikazani tako da predstavljaju jedan ili vise resursa. Samo po sebi, jedan
deo podataka je ostrvo, kompletno odsec¢eno od ostatka API interfejsa. Jedini nacin da se nastavni
interakcija sa API interfejsom je da programer procita dokumentaciju i razume koji podaci mogu
biti povezani i da otkrije gde se ti podaci nalaze. Ovo je daleko od idealnog.

Povezivanje jednog place (mesto) sa resursima, podresursima ili kolekcijama je lako.

"data": |
"id": 1,
"name": "Mireille Rodriguez",
"lat": -84.147236,
"lon": 49.2540065,
"address1": "12106 Omari Wells Apt. 801",
"address2": ""
"city": "East Romanberg",
"state": "VT",
"zip": 20129,
"website": "http://www.torpdibbert.com/",
"phone": "(029)331-0729x4259",
"links": [

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

HATEOAS 7

{
"rel": "self",
"uri": "/places/2"

},

{
"rel": "place.checkins",
"uri": "/places/2/checkins"”

},

{
"rel": "place.image",
"uri": "/places/2/image"

}

]
]
}

Ovde imamo tri jednostavna unosa, gde prvi povezuje sa samim sobom. Oni svi sadrze uri (Universal
Resource Indicator) i rel (Relationship).

o URI protiv URL

Akronim ‘URT je Cesto koriscen da bi se referenciralo samo na sadrzaj koji dolazi posle
protokola, imena hosta i porta (Sto znaci da je URI putanja, ekstenzija i string upita),
dok je ‘URL’ kori$¢en da opise punu adresu. Iako ovo nije strogo ta¢no, podrzavano je
od strane mnogih softverskih projekata kao $to je Codelgniter. Wikipedia® i W3° govore
gomilu kontradiktornih stvari, ali ja imam osecaj da je URI na jedan lak na¢in opisan kao
bilo koja vrsta identifikatora za lokaciju resursa na internetu.

URI moze biti parcijalan ili apsolutni. Neki smatraju da je URL nepostoje¢i termin, ali ova
knjiga koristi URL kako bi opisala apsolutni URI, sto je ono $to vidite u polju za adrese.
Tacno ili neta¢no. Razumete?

Neki ljudi se rugaju relaciji sel £, sugerisuci da je ona nepotrebna. lako znate koju URL adresu ste
upravo pozvali, ista se nece uvek poklapati sa self URI adresom. Na primer, ako ste upravo kreirali
resurs place, upravo ste pozvali POST /places, a to je nesto Sto biste Zeleli da ponovo pozovete
kako biste dobili azurirane informacije o istom resursu. Nezavisno od sadrzaja, prikazivanje resursa
place uvek mora da ima relaciju self, a sam sel f ne bi trebao da prikazuje samo ono $to je u polju
za adresu. U osnovi, relacija sel f ukazuje na mesto gde resurs Zivi, a ne na trenutnu adresu.

Sto se tice ostalih rel stavki, oni su veze do podresursa koji sadrze povezane informacije, Sadrzaj
tagova moze biti Sta god Zelite, ali ipak zadrzite konstantnost. Konvencija koja je koris¢ena u ovom
primeru je vezana za imenske prostore, tako da su oni jedinstveni. Dva razliita tipa resursa su

*http://wikipedia.org/wiki/Uniform_Resource_Identifier
®http://www.w3.org/TR/uri- clarification/

http://wikipedia.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/uri-clarification/
http://wikipedia.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/uri-clarification/

0 N O O b W N =~

NN NN NN B 1 | s s s
O 0O N~ O O© 01 O O b O N~ O O

HATEOAS 8

mogla imati relaciju checkins (npr: users i places), stoga njihova jedinstvenost moze doprineti
barem dokumentaciji. Mozda biste Zeleli da uklonite imenski prostor, ali je to na vama.

Ove korisnicki definisane relacije imaju relativno jedinstvena imena, ali za vise genericke relacije
mozete da razmotrite koris¢enje Registra Relacija Veza’ definisanog od strane IANA, koju koristi
Atom (RFC 4287°) i mnogo drugih stvari

Kreiranje Hipermedija Kontrola

Ovo je bukvalno prikazivanje linkova u vasim izlaznim podacima. Medutim, ako se odlucite da ovo
sprovedete, moze biti deo vaseg ‘transformacionog’ ili ‘prezentacionog’ sloja.
Ako koristite PHP komponentu Fractal - koja je koris¢ena kao primer kroz ovu knjigu - onda

jednostavno mozete da uradite sledece:

Klasa PlaceTransformer sa ubac¢enim linkovima u odzivnim podacima.

public function transform(Place $place)

{
return |

"id' => (int) $place->id,
"name’ => $place->name,
"lat' => (float) $place->lat,
"lon' => (float) $place->1lon,
'addresst' => $place->addressi,
'address2' => $place->address?,
‘city! => $place->city,
'state’ => $place->state,
'zip' => (float) $place->zip,
'website' => $place->website,
'phone’ => $place->phone,
"links' = [

[
'rel' => 'self',
'uri' => '/places/'.$place->id,

'rel' => 'place.checkins',

'uri' => '/places/'.$place->id."'/checkins',
1,
[

"http://www.iana.org/assignments/link-relations/link-relations.xhtm]
®http://atompub.org/rfc4287.html

http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://atompub.org/rfc4287.html
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://atompub.org/rfc4287.html

26
27
28
29
30
31

0 N O O & W N -~

S
O© 00 1 O Ol b WO N~ O ©

HATEOAS 9

'rel' => 'place.image',

'uri' => '/places/'.$place->id."'/image’,

Ljudi pokusavaju da se prave pametni i da ubace razlicite relacije zasnovane na $_SERVER podesava-
njima ili zasnovane na ORM relacijama, ali sve ovo moze da vam donese samo probleme. Ako imate
ove transformacije, onda ovu grupu podataka morate da napisete samo jednom. Ovo onda sprecava
da se prikazuje logika vezana za bazu podataka, a kod ostaje ¢itljiv i razumljiv.

Sada kad ste uneli ove linkove, ljudi moraju da znaju kako da sa njima interaguju. Mozda mislite
‘svakako trebao bih da ubacim GET ili PUT kako bi ljudi znali $ta rade’. pogresno. Ovi linkovi su veze
ka resursima, a ne akcijama. Slika postoji za mesto, a mi mozemo ili da na slepo pretpostavimo da
mozemo da na njoj izvedemo neke akcije ili mozemo pitati API koje su akcije dostupne i kesirati
rezultat.

Programsko Otkrivanje Resursa

Ako uzmemo skraéenu verziju ranijeg primera iz ovog poglavlja, mozemo da oc¢ekujemo da vidimo
izlaz kao ovaj:

{
"data": [
"links": [

{
"rel": "self",
"uri": "/places/2"

4,

{
"rel": "place.checkins",
"uri": "/places/2/checkins”

}

{
"rel": "place.image",
"uri": "/places/2/image"

}

W N -

O O b W N -~

HATEOAS 10

Mozemo da pretpostavimoo da ¢e GET raditi sa krajnim tackamasel f i place.checkins, ali §ta drugo
mozemo da uradimo sa njima? Iza toga, Sta bi trebalo da radimo sa krajnjom tackom place.image?

HTTP nas ovde pokriva, sa jednostavnim i efektivnim glagolom o kome jo$ nije diskutovano:
OPTIONS.

HTTP zahtev uz pomo¢ glagola OPTIONS

OPTIONS /places/2/checkins HTTP/1.1
localhost : 8000

Odziv za prethodni HTTP zahtev

HTTP/1.1 200 OK
localhost : 8000
close
GET,HEAD, POST

Pregledom zaglavlja Allow, mi kao ljudi (ili programski kao API klijent aplikacija) mozemo da
shvatimo koje opcije su nam dostupne za svaku krajnju tacku. Ovo je ono $to Javascript radi cesto
u vasim internet pregledacima prilikom AJAX zahteva, a da toga mozda niste ni svesni.

Programski se ovo moze uraditi takode lako i vecina HTTP klijenata u bilo kom programskom jeziku
¢e vam omoguciti da napravite poziv OPTIONS jednako lako kao $to to radite sa GET ili POST. Ako vam
vas HTTP klijent ovo ne dozvoljava, onda promenite va§ HTTP klijent.

Pravljenje HTTP zahteva OPTIONS koriste¢i PHP i paket Guzzle

use GuzzleHttp\Client;

$client = new Client(['base_url' => 'http://localhost:8000']);

$response = $client->options('/places/2/checkins');

$methods = array_walk('trim', explode(',', $response->getHeader('Accept'));
var_dump($methods); // Outputs: ['GET', 'HEAD', 'POST']

Dakle u ovom primeru, znamo da mozemo da dobavimo listu ¢ekiranja za jedno mesto koriste¢i GET,
a mozemo da tome pridodamo tako $to ¢emo da napravimo POST HTTP zahtev ka toj istoj URL adresi.
Takode mozemo da proverimo HEAD, $to je isto Sto i zahtev GET, ali bez HTTP tela. Verovatno cete
morati da ovo uradite drugacije u vasoj aplikaciji, ali ovo je jako korisno kada trebate da proverite da
li postoji kolekcija ili resurs bez preuzmanja celokupnog tela sadrzaja (t.j: samo trazite 200 ili 404).

Mozda deluje malo ludo da se pravi ovaj dodatni korak kako biste interagovali sa vasim API
interfejsom, ali u stvari trebalo bi smatrati ovo laksim nego pretrazivanje kroz dokumentaciju.
Razmislite: pokusaj da se pronade mali link ‘Developers’ na websajtu, onda pretrazivanje kroz

HATEOAS 11

dokumentaciju kako biste pronasli pravi API (jer su oni toliko kul da imaju tri), onda pitanja
da li imate pravu verziju...nije zabavno. Uporedite ovo sa programski samodokumentovanim API
interfejsom, koji moze da raste, menja se i §iri tokom vremena, preimenovanje URL adresa i...pa to
je pravi dobitak, Verujte mi.

Ako znate da se API pridrzava REST principa onda trebate biti uvereni da se pridrzava i HATEOAS
- jer reklamirati da je nesto u duhu REST-a bez pridrzavanja HATEOAS je velika smrdljiva laz. Na
zalost, vecina popularnih API interfejsa su veliki smrdljivi lazovi.

GitHub daje odziv 500, Reddit 501 Not Implemented, Google mape 405 Method Not
Allowed. Shvatate. Probao sam mnoge druge i rezultati su jako sli¢ni. Ponekad daje
nesto identi¢no GET odzivu. Nista od ovoga nije u redu. — Izvor: Zac Stewart, “HTTP
metod OPTIONS i mogucnost pravljenja samoopisnih API interfejsa u duhu REST-a™

Ako pravite sopstveni APIL, ovo mozZete da uradite sami, onda ¢e vasii klijenti znati da mozete da
napravite pristojan APL

To je sve sto ima u vezi HATEOAS. Sada bi trebalo da znate da napravite API, koji u teoriji necete
mrzeti. Na zZalost, verovatno ¢ete morati da napravite novu verziju za nekoliko meseci, stoga ¢emo
pogledati API verzionisanje.

*http://zacstewart.com/2012/04/14/http-options-method.html

http://zacstewart.com/2012/04/14/http-options-method.html
http://zacstewart.com/2012/04/14/http-options-method.html
http://zacstewart.com/2012/04/14/http-options-method.html

	Садржај
	HATEOAS
	Uvod
	Pregovaranje po pitanju sadržaja
	Hipermedija Kontrole

