

Napravite API Koji Nećete Mrzeti
Svako sa svojim psom želi API, tako da biste verovatno
trebali da naučite da ga napravite

Phil Sturgeon and Slaviša Petrović

This book is for sale at http://leanpub.com/build-apis-you-wont-hate-sr

This version was published on 2015-07-13

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2015 Phil Sturgeon and Slaviša Petrović

http://leanpub.com/build-apis-you-wont-hate-sr
http://leanpub.com
http://leanpub.com/manifesto

Садржај

HATEOAS . 1
Uvod . 1
Pregovaranje po pitanju sadržaja . 1
Hipermedija Kontrole . 5

HATEOAS
Uvod

HATEOAS je tema nezgodna za objašnjavanje, ali je u stvari jednostavna. Ona znači ‘Hypermedia
as the Engine of Application State’ (hipermedija kao pokretač stanja aplikacije) i izgovara se kao
‘hat-ee-os’, ‘hate O-A-S’ ili ‘hate-ee-ohs’; ovo poslednje zvuči kao žitarica za API programere.

Kako god da izgovarate, u osnovi znači dve stvari za vaš API:

1. Pregovaranje po pitanju sadržaja
2. Hipermedija kontrole

Po mom iskustvu, pregovaranje po pitanju sadržaja je prva stvar koju API programeri implementira-
ju. Kada sam gradio ekstenziju za CodeIgniter Rest-Server, to je bila prva osobina koju sam dodao, jer
je bilo zabavno! Menjanje zaglavlja Accept i pregledanje zaglavlja Content-Type u promeni odziva
sa JSON na XML ili CSV je odlično i super lako.

Pregovaranje po pitanju sadržaja

Neki samoproklamovani REST API interfejsi (Twitter, vas treba kriviti za ovo) upravljaju pregova-
ranjem po pitanju sadržaja preko ekstenzija datoteka. Njihove URL adrese često izgledaju ovako:

• /statuses/show.json?id=210462857140252672

• /statuses/show.xml?id=210462857140252672

Ovo je mala zloupotreba koncepta ‘resursa’ i prisiljava korisnika ne samo da zna da postoji krajnja
tačka ‘show’, već da mora da odabere ekstenziju tipa sadržaja i koristi parametar id.

Dobar API bi jednostavno imao /statuses/210462857140252672. Ovo donosi dvostruku korist,
dozvoljava da API odgovori podrazumevanim tipom sadržaja ili poštujući zaglavlje Accept i
prikazivanjem tipa sadržaja zahteva ili izbacivanjem status koda 415, ako ga API ne podržava. Druga
korist je da korisnik ne mora da zna ?id=.

URI adrese ne bi trebale da budu gomila fascikli ili imena datoteka, a API nije lista JSON ili XML
datoteka. One su liste resursa, koji mogu da budu predstavljeni u različitim formatima u zavisnosti
od zaglavlja Accept, i ništa više.

HATEOAS 2

Jednostavan primera pregovaranja po pitanju sadržaja koji zahteva JSON

1 GET /places HTTP/1.1

2 Host: localhost:8000

3 Accept: application/json

Odziv bi onda sadržao JSON ako API podržava JSON kao izlazni format.

Skraćeni primer HTTP odziva koji sadrži JSON podatke

1 HTTP/1.1 200 OK

2 Host: localhost:8000

3 Connection: close

4

5 {

6 "data": [

7 {

8 "id": 1,

9 "name": "Mireille Rodriguez",

10 "lat": -84.147236,

11 "lon": 49.254065,

12 "address1": "12106 Omari Wells Apt. 801",

13 "address2": "",

14 "city": "East Romanberg",

15 "state": "VT",

16 "zip": 20129,

17 "website": "http://www.torpdibbert.com/",

18 "phone": "(029)331-0729x4259"

19 },

20 ...

21]

22 }

Najpopularniji API interfejsi će podrazumevano podržavati JSON ili samo JSON, kao što je to naša
jednostavna aplikacija radila do sada. Ovo nije realistično, ali je zbog jednostavnosti, do sada tako
rađeno u knjizi.

XML je još uvek težak jer morate da zahtevate datoteke za pregled, a to je van oblasti interesovanja
ovog poglavlja.

YAML, je međutim, lakše postići, tako da možemo videti kako pregovaranje po pitanju sadržaja radi
sa malim izmenama u našoj aplikaciji.

Pogledajte ∼/apisyouwonthate/chapter12/ kako biste videli ažuriranu probnu aplikaciju.

HATEOAS 3

Osim ubacivanja [Symfony YAML komponente] glavna promena je ubacivanjemetoda respondWithArray()
kako bi se proverilo zaglavlje Accept i odreagovalo u skladu sa njim.

Ažurirani metod respondWithArray() sa detekcijom zaglavlja accept

1 protected function respondWithArray(array $array, array $headers = [])

2 {

3 // You will probably want to do something intelligent with charset if provid\

4 ed.

5 // This chapter just ignores everything and takes the main MIME type value

6

7 $mimeParts = (array) explode(';', Input::server('HTTP_ACCEPT'));

8 $mimeType = strtolower($mimeParts[0]);

9

10 switch ($mimeType) {

11 case 'application/json':

12 $contentType = 'application/json';

13 $content = json_encode($array);

14 break;

15

16 case 'application/x-yaml':

17 $contentType = 'application/x-yaml';

18 $dumper = new YamlDumper();

19 $content = $dumper->dump($array, 2);

20 break;

21

22 default:

23 $contentType = 'application/json';

24 $content = json_encode([

25 'error' => [

26 'code' => static::CODE_INVALID_MIME_TYPE,

27 'http_code' => 406,

28 'message' => sprintf('Content of type %s is not supported.',\

29 $mimeType),

30]

31]);

32 }

33

34 $response = Response::make($content, $this->statusCode, $headers);

35 $response->header('Content-Type', $contentType);

36

37 return $response;

38 }

HATEOAS 4

Osnovne stvari, ali ako sada pokušamo drugačiji MIME tip, možemo očekivati drugačiji rezultat:

HTTP zahtev koji navodi željeni odzivni MIME tip

1 GET /places HTTP/1.1

2 Host: localhost:8000

3 Accept: application/x-yaml

Odziv će biti u YAML-u.

Skraćeni primer HTTP odziva sa YAML podacima

1 HTTP/1.1 200 OK

2 Host: localhost:8000

3 Connection: close

4

5 data:

6 - { id: 1, name: 'Mireille Rodriguez', lat: -84.147236, lon: 49.254065, addr\

7 ess1: '12106 Omari Wells Apt. 801', address2: '', city: 'East Romanberg', state:\

8 VT, zip: 20129, website: 'http://www.torpdibbert.com/', phone: (029)331-0729x42\

9 59 }

10 ...

Programsko pravljenje ovih odziva je jednostavno.

Korišćenje PHP i Guzzle paketa pri zahtevanju različitih tipova odziva

1 use GuzzleHttp\Client;

2

3 $client = new Client(['base_url' => 'http://localhost:8000']);

4

5 $response = $client->get('/places', [

6 'headers' => ['Accept' => 'application/x-yaml']

7]);

8

9 $response->getBody(); // YAML, ready to be parsed

Ovo nije kraj razgovora na temu pregovaranja po pitanju sadržaja, jer postoji još priča o MIME
tipovima za resurse različitih vendora, koji se takođe mogu verzionisati. O ovome će biti reči u
Poglavlju 13: API Verzionisanje.

HATEOAS 5

Hipermedija Kontrole

Drugi deo HATEOAS, je međutim, drastično neiskorišćen, i poslednji je korak u postupku da vaš
API bude u duhu REST-a.

Batman prečesto obezbeđuje standardni odziv na uzaludne primedbe “But it’s not RESTful if you… (Ako nije
dovoljno u duhu REST-a za tebe..)” Zasluga Troy Hunt-a (@troyhunt)

Iako često od mnogih ljudi čujete žalbe kao što je ‘ali to nije dovoljno u duhu REST-a!’ o šašavim
stvarima, ovo je jedan od primera gde su potpuno u pravu. Roy Fielding kaže, pišući još 2008,
da bez hipermedija kontrola API nije dovoljno u duhu REST-a¹. Ljudi ovo od tada ignorišu, a
poslednja procena kaže da 74% svih APi interfejsa koji tvrde da su u duhu REST-a ustvari i ne koriste
hipermediju.

REST Nirvana

Postoji nešto što lebdi u REST/Hipermedija zajednici pod imenom [‘Richardson Maturity Model’]
(Richardson-ov Model Zrelosti), o kome je pisao ovde Martin Fowler², ali je originalno izumeo
Leonard Richardson³. Govori o tome šta on smatra za ‘četiri nivoa REST-a’:

1. “Močvara Boginja.” Koristite HTTP kako biste napravili RPC pozive. HTTP se
jedino koristi kao tunel.

2. Resursi. Umesto da svaki poziv uputite krajnjoj tački servisa, imate više krajnjih
tačaka koje predstavljaju resurse, a vi se obraćate njima. To je sam početak podrške
za REST.

3. HTTP Glagoli. Ovo je nivo za koji vam Rails daje odmah podršku: interagujete
ovim resursima koristeći HTTP glagole, umesto da uvek koristite POST.

4. Hipermedija Kontrole. HATEOAS. 100% REST kompatibilnosti.
– Izvor: Steve Klabnik, “Haters gonna HATEOAS”⁴

Neki osporavaju ovaj model, kao što Roy kaže, osim ako imate hipermediju koja nije REST. Model
je dobar sve dok razumete da koraci 1, 2 i 3 još uvek ‘nisu REST’, a korak 4 je ‘REST’.

¹http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
²http://martinfowler.com/
³http://www.crummy.com/
⁴http://timelessrepo.com/haters-gonna-hateoas

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://martinfowler.com/
http://www.crummy.com/
http://timelessrepo.com/haters-gonna-hateoas
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://martinfowler.com/
http://www.crummy.com/
http://timelessrepo.com/haters-gonna-hateoas

HATEOAS 6

Dakle, šta predstavljaju hipermedija kontrole? Oni su jednostavno veze (linkovi) ka drugim sadr-
žajima, vezama i daljim akcijama. Ovo omogućava korisniku da predleda API i otkriva akcije u
hodu.

U osnovi, vaši podaci trebaju da imaju ‘hiperlinkove’, koje ste verovatno godinama koristili u
vašem HTML kodu. Ranije u ovoj knjizi, rekao sam da REST nije ništa drugo, do korišćenje istih
konvencija kao i sam internet, umesto da se izmišljaju nove, stoga ima smisla da povezivanje sa
drugim resursima treba da bude isto u API interfejsu kao i na web stranici.

Glavna stvar koju treba naglasiti u vezi hipermedije je, da API treba da u potpunosti imam smisla
za klijentsku API aplikaciju i ljude koji gledaju odzive. bez gledanja dokumentacije.

Kroz ovu knjigu su mali HATEOAS koncepti tajno ubrizgani, počevši od sugerisanja kodova grešaka
sa porukama čitljivim za ljude i vezama ka dokumentaciji, kako bi klijentu omogućili da izbegne
matematiku prilikom interakcije sa straničenjem sadržaja. Osnovna tema je da se uvek naprave
kontrole kao što su sledeće, prethodno (ili bilo koja druga vrsta interakcije) učine očiglednim
računaru ili čoveku.

Razumevanje Hipermedija Kontrola

Ovo je najlakši deo pravljenja API interfejsa u duhu REST-a, tako da ću zaista pokušati da ne
ostavim ovaj odeljak na ‘samo dodaj linkove druže’ (moj normalni savet za svakoga ko pita o pojmu
HATEOAS).

Naši uobičajeni podaci su prikazani tako da predstavljaju jedan ili više resursa. Samo po sebi, jedan
deo podataka je ostrvo, kompletno odsečeno od ostatka API interfejsa. Jedini način da se nastavni
interakcija sa API interfejsom je da programer pročita dokumentaciju i razume koji podaci mogu
biti povezani i da otkrije gde se ti podaci nalaze. Ovo je daleko od idealnog.

Povezivanje jednog place (mesto) sa resursima, podresursima ili kolekcijama je lako.

1 {

2 "data": [

3 "id": 1,

4 "name": "Mireille Rodriguez",

5 "lat": -84.147236,

6 "lon": 49.254065,

7 "address1": "12106 Omari Wells Apt. 801",

8 "address2": "",

9 "city": "East Romanberg",

10 "state": "VT",

11 "zip": 20129,

12 "website": "http://www.torpdibbert.com/",

13 "phone": "(029)331-0729x4259",

14 "links": [

HATEOAS 7

15 {

16 "rel": "self",

17 "uri": "/places/2"

18 },

19 {

20 "rel": "place.checkins",

21 "uri": "/places/2/checkins"

22 },

23 {

24 "rel": "place.image",

25 "uri": "/places/2/image"

26 }

27]

28]

29 }

Ovde imamo tri jednostavna unosa, gde prvi povezuje sa samim sobom. Oni svi sadrže uri (Universal
Resource Indicator) i rel (Relationship).

URI protiv URL
Akronim ‘URI’ je često korišćen da bi se referenciralo samo na sadržaj koji dolazi posle
protokola, imena hosta i porta (što znači da je URI putanja, ekstenzija i string upita),
dok je ‘URL’ korišćen da opiše punu adresu. Iako ovo nije strogo tačno, podržavano je
od strane mnogih softverskih projekata kao što je CodeIgniter. Wikipedia⁵ i W3⁶ govore
gomilu kontradiktornih stvari, ali ja imam osećaj da je URI na jedan lak način opisan kao
bilo koja vrsta identifikatora za lokaciju resursa na internetu.

URI može biti parcijalan ili apsolutni. Neki smatraju da je URL nepostojeći termin, ali ova
knjiga koristi URL kako bi opisala apsolutni URI, što je ono što vidite u polju za adrese.
Tačno ili netačno. Razumete?

Neki ljudi se rugaju relaciji self, sugerišući da je ona nepotrebna. Iako znate koju URL adresu ste
upravo pozvali, ista se neće uvek poklapati sa self URI adresom. Na primer, ako ste upravo kreirali
resurs place, upravo ste pozvali POST /places, a to je nešto što biste želeli da ponovo pozovete
kako biste dobili ažurirane informacije o istom resursu. Nezavisno od sadržaja, prikazivanje resursa
place uvek mora da ima relaciju self, a sam self ne bi trebao da prikazuje samo ono što je u polju
za adresu. U osnovi, relacija self ukazuje na mesto gde resurs živi, a ne na trenutnu adresu.

Što se tiče ostalih rel stavki, oni su veze do podresursa koji sadrže povezane informacije, Sadržaj
tagova može biti šta god želite, ali ipak zadržite konstantnost. Konvencija koja je korišćena u ovom
primeru je vezana za imenske prostore, tako da su oni jedinstveni. Dva različita tipa resursa su

⁵http://wikipedia.org/wiki/Uniform_Resource_Identifier
⁶http://www.w3.org/TR/uri-clarification/

http://wikipedia.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/uri-clarification/
http://wikipedia.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/uri-clarification/

HATEOAS 8

mogla imati relaciju checkins (npr: users i places), stoga njihova jedinstvenost može doprineti
barem dokumentaciji. Možda biste želeli da uklonite imenski prostor, ali je to na vama.

Ove korisnički definisane relacije imaju relativno jedinstvena imena, ali za više generičke relacije
možete da razmotrite korišćenje Registra Relacija Veza⁷ definisanog od strane IANA, koju koristi
Atom (RFC 4287⁸) i mnogo drugih stvari

Kreiranje Hipermedija Kontrola

Ovo je bukvalno prikazivanje linkova u vašim izlaznim podacima. Međutim, ako se odlučite da ovo
sprovedete, može biti deo vašeg ‘transformacionog’ ili ‘prezentacionog’ sloja.

Ako koristite PHP komponentu Fractal - koja je korišćena kao primer kroz ovu knjigu - onda
jednostavno možete da uradite sledeće:

Klasa PlaceTransformer sa ubačenim linkovima u odzivnim podacima.

1 public function transform(Place $place)

2 {

3 return [

4 'id' => (int) $place->id,

5 'name' => $place->name,

6 'lat' => (float) $place->lat,

7 'lon' => (float) $place->lon,

8 'address1' => $place->address1,

9 'address2' => $place->address2,

10 'city' => $place->city,

11 'state' => $place->state,

12 'zip' => (float) $place->zip,

13 'website' => $place->website,

14 'phone' => $place->phone,

15

16 'links' => [

17 [

18 'rel' => 'self',

19 'uri' => '/places/'.$place->id,

20],

21 [

22 'rel' => 'place.checkins',

23 'uri' => '/places/'.$place->id.'/checkins',

24],

25 [

⁷http://www.iana.org/assignments/link-relations/link-relations.xhtml
⁸http://atompub.org/rfc4287.html

http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://atompub.org/rfc4287.html
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://atompub.org/rfc4287.html

HATEOAS 9

26 'rel' => 'place.image',

27 'uri' => '/places/'.$place->id.'/image',

28]

29],

30];

31 }

Ljudi pokušavaju da se prave pametni i da ubace različite relacije zasnovane na $_SERVER podešava-
njima ili zasnovane na ORM relacijama, ali sve ovo može da vam donese samo probleme. Ako imate
ove transformacije, onda ovu grupu podataka morate da napišete samo jednom. Ovo onda sprečava
da se prikazuje logika vezana za bazu podataka, a kod ostaje čitljiv i razumljiv.

Sada kad ste uneli ove linkove, ljudi moraju da znaju kako da sa njima interaguju. Možda mislite
‘svakako trebao bih da ubacim GET ili PUT kako bi ljudi znali šta rade’. pogrešno. Ovi linkovi su veze
ka resursima, a ne akcijama. Slika postoji za mesto, a mi možemo ili da na slepo pretpostavimo da
možemo da na njoj izvedemo neke akcije ili možemo pitati API koje su akcije dostupne i keširati
rezultat.

Programsko Otkrivanje Resursa

Ako uzmemo skraćenu verziju ranijeg primera iz ovog poglavlja, možemo da očekujemo da vidimo
izlaz kao ovaj:

1 {

2 "data": [

3 ...

4 "links": [

5 {

6 "rel": "self",

7 "uri": "/places/2"

8 },

9 {

10 "rel": "place.checkins",

11 "uri": "/places/2/checkins"

12 },

13 {

14 "rel": "place.image",

15 "uri": "/places/2/image"

16 }

17]

18]

19 }

HATEOAS 10

Možemo da pretpostavimoo da će GET raditi sa krajnim tačkama self i place.checkins, ali šta drugo
možemo da uradimo sa njima? Iza toga, šta bi trebalo da radimo sa krajnjom tačkom place.image?

HTTP nas ovde pokriva, sa jednostavnim i efektivnim glagolom o kome još nije diskutovano:
OPTIONS.

HTTP zahtev uz pomoć glagola OPTIONS

1 OPTIONS /places/2/checkins HTTP/1.1

2 Host: localhost:8000

Odziv za prethodni HTTP zahtev

1 HTTP/1.1 200 OK

2 Host: localhost:8000

3 Connection: close

4 Allow: GET,HEAD,POST

Pregledom zaglavlja Allow, mi kao ljudi (ili programski kao API klijent aplikacija) možemo da
shvatimo koje opcije su nam dostupne za svaku krajnju tačku. Ovo je ono što Javascript radi često
u vašim internet pregledačima prilikom AJAX zahteva, a da toga možda niste ni svesni.

Programski se ovo može uraditi takođe lako i većina HTTP klijenata u bilo kom programskom jeziku
će vam omogućiti da napravite poziv OPTIONS jednako lako kao što to radite sa GET ili POST. Ako vam
vaš HTTP klijent ovo ne dozvoljava, onda promenite vaš HTTP klijent.

Pravljenje HTTP zahteva OPTIONS koristeći PHP i paket Guzzle

1 use GuzzleHttp\Client;

2

3 $client = new Client(['base_url' => 'http://localhost:8000']);

4 $response = $client->options('/places/2/checkins');

5 $methods = array_walk('trim', explode(',', $response->getHeader('Accept'));

6 var_dump($methods); // Outputs: ['GET', 'HEAD', 'POST']

Dakle u ovom primeru, znamo da možemo da dobavimo listu čekiranja za jedno mesto koristeći GET,
a možemo da tome pridodamo tako što ćemo da napravimo POSTHTTP zahtev ka toj istoj URL adresi.
Takođe možemo da proverimo HEAD, što je isto što i zahtev GET, ali bez HTTP tela. Verovatno ćete
morati da ovo uradite drugačije u vašoj aplikaciji, ali ovo je jako korisno kada trebate da proverite da
li postoji kolekcija ili resurs bez preuzmanja celokupnog tela sadržaja (t.j: samo tražite 200 ili 404).

Možda deluje malo ludo da se pravi ovaj dodatni korak kako biste interagovali sa vašim API
interfejsom, ali u stvari trebalo bi smatrati ovo lakšim nego pretraživanje kroz dokumentaciju.
Razmislite: pokušaj da se pronađe mali link ‘Developers’ na websajtu, onda pretraživanje kroz

HATEOAS 11

dokumentaciju kako biste pronašli pravi API (jer su oni toliko kul da imaju tri), onda pitanja
da li imate pravu verziju…nije zabavno. Uporedite ovo sa programski samodokumentovanim API
interfejsom, koji može da raste, menja se i širi tokom vremena, preimenovanje URL adresa i…pa to
je pravi dobitak, Verujte mi.

Ako znate da se API pridržava REST principa onda trebate biti uvereni da se pridržava i HATEOAS
- jer reklamirati da je nešto u duhu REST-a bez pridržavanja HATEOAS je velika smrdljiva laž. Na
žalost, većina popularnih API interfejsa su veliki smrdljivi lažovi.

GitHub daje odziv 500, Reddit 501 Not Implemented, Google mape 405 Method Not
Allowed. Shvatate. Probao sam mnoge druge i rezultati su jako slični. Ponekad daje
nešto identično GET odzivu. Ništa od ovoga nije u redu. – Izvor: Zac Stewart, “HTTP
metod OPTIONS i mogućnost pravljenja samoopisnih API interfejsa u duhu REST-a”⁹

Ako pravite sopstveni API, ovo možete da uradite sami, onda će vašii klijenti znati da možete da
napravite pristojan API.

To je sve što ima u vezi HATEOAS. Sada bi trebalo da znate da napravite API, koji u teoriji nećete
mrzeti. Na žalost, verovatno ćete morati da napravite novu verziju za nekoliko meseci, stoga ćemo
pogledati API verzionisanje.

⁹http://zacstewart.com/2012/04/14/http-options-method.html

http://zacstewart.com/2012/04/14/http-options-method.html
http://zacstewart.com/2012/04/14/http-options-method.html
http://zacstewart.com/2012/04/14/http-options-method.html

	Садржај
	HATEOAS
	Uvod
	Pregovaranje po pitanju sadržaja
	Hipermedija Kontrole

