BUILD
APIS
YOU

WON'T
HATE

Everyone and their dog wants an API, so you

should probably learn how to build one.

PHILIP STURGEON

Build APIs You Won’t Hate

Everyone and their dog wants an API, so you should probably learn
how to build them.

Phil Sturgeon
This book is for sale at http://leanpub.com/build-apis-you-wont-hate

This version was published on 2016-03-30

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with
the Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction
once you do.

© 2013 - 2016 Phil Sturgeon

http://leanpub.com/build-apis-you-wont-hate
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help Phil Sturgeon by spreading the word about this book on
Twitter!

The suggested tweet for this book is:

[just bought @philsturgeon’s book about APIs, because he said if I didn’t
he would hurt me: http://apisyouwonthate.com

The suggested hashtag for this book is #apisyouwonthate.

Find out what other people are saying about the book by clicking on this
link to search for this hashtag on Twitter:

https://twitter.com/search?q=#apisyouwonthate

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20@philsturgeon's%20book%20about%20APIs,%20because%20he%20said%20if%20I%20didn't%20he%20would%20hurt%20me:%20http://apisyouwonthate.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20@philsturgeon's%20book%20about%20APIs,%20because%20he%20said%20if%20I%20didn't%20he%20would%20hurt%20me:%20http://apisyouwonthate.com
https://twitter.com/search?q=%23apisyouwonthate
https://twitter.com/search?q=%23apisyouwonthate

A huge thank you to all the developers and other folks who built the
technologies this book talks about.

I'would also like to thank everyone who bought an early copy of this book on
LeanPub. 2014 was a really messed up year for me, and those book sales kept
me going, and kept me motivated to finish the book on time.

Without you, I would be much further away from getting my boat.

Contents

1. HATEOAS
1.1 Introduction
1.2 Content Negotiation
1.3 Hypermedia Controls

1. HATEOAS

1.1 Introduction

HATEOAS is a tricky subject to explain, but it is actually rather simple.
It stands for Hypermedia as the Engine of Application State, and is pro-
nounced as either hat-ee-os, hate 0-A-S or hate-ee-ohs; the latter of which
sounds a little like a cereal for API developers.

However you want to try and say it, it basically means two things for your
API:

1. Content negotiation
2. Hypermedia controls

In my experience, content negotiation is one of the first things many
API developers implement. When building my Codelgniter Rest-Server
extension, it was the first feature I added, because hey, it is fun! Changing
the Accept header and seeing the content-Type header in the response
switch from JSON to XML or CSV is great, and also super easy to do.

1.2 Content Negotiation

Some self-proclaimed RESTful APIs (Twitter, you are to blame for this)
handle content negotiation with file extensions. Their URLs often look
like:

* /statuses/show.json?id=210462857140252672
* /statuses/show.xml?id=210462857140252672

This is a bit of a misuse of the concept of a resource and forces users to
know not only that the endpoint show exists, but that they must pick a
content type extension and that the id parameter must be used.

1

W 00 N O U M W N

[R S N T
® O o N O U b W NN RFE O

HATEOAS

A good API would simply have /statuses/210462857140252672. This has the
dual benefit of letting the API respond with a default content type, or
respecting the Accept header and either outputting the request content
type or spitting out a 415 status code if the API does not support it. The
second benefit is that the consumer does not need to know about 2id-=.

URIs are not supposed to be a bunch of folders and file names and an API
is not a list of JSON files or XML files. They are a list of resources that can
be represented in different formats depending on the Accept header, and

nothing else.

A simple example of content negotiation requesting JSON

GET /places HTTP/1.1
Host: localhost:8000
Accept: application/json

A response would then contain JSON if the API supports JSON as an output

format.

A shortened example of the HTTP response with JSON data

HTTP/1.1 200 OK
Host: localhost:8000

Connection:

"data":

{

i

close

[

nidn: 1,

"name": "Mireille Rodriguez",
"lat": -84.147236,

"lon": 49.254065,

"addressl": "12106 Omari Wells Apt.
"address2": "",

"city": "East Romanberg",

"State": IIVTH’

"zip": 20129,

801",

"website": "http://www.torpdibbert.com/",

"phone": "(029)331-0729x4259"

21
22

W 0 N O U M W N K

T T T R R
©® © O N O Ul A WN R

HATEOAS 3

Most popular APIs will support JSON by default, or maybe only JSON as
our sample app has done so far. This is not realistic, but has been done
throughout the book so far, mainly for the sake of simplicity.

XML is still a tricky one to do as you need to require view files, and that is
out of scope of this chapter.

YAML, however, is rather easy to achieve, so we can see how content
negotiation works with a little change to our app.

Check ~/apisyouwonthate/chapter12/ for the updated sample app.

The main change other than including the Symfony YAML component!
was to simply update the respondwithArray() method to check the Accept
header and react accordingly.

Updated respondWithArray() method with accept header detection

protected function respondWithArray(array $array, array $headers = [])

{
// You will probably want to do something intelligent with charset if provided.
// This chapter just dignores everything and takes the main MIME type value

$mimeParts = (array) explode(';', Input::server ('HTTP_ACCEPT'));
$mimeType = strtolower ($mimeParts[0]);

switch ($mimeType) {
case 'application/json':
ScontentType = 'application/json';
Scontent = json_encode(Sarray);
break;

case 'application/x-yaml':
ScontentType = 'application/x-yaml';
Sdumper = new YamlDumper();
Scontent = $dumper->dump(Sarray, 2);
break;

'http://symfony.com/doc/current/components/yaml/introduction.html

http://symfony.com/doc/current/components/yaml/introduction.html
http://symfony.com/doc/current/components/yaml/introduction.html

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

W 0 N O U1 M W N

HATEOAS 4

default:
ScontentType = 'application/json';

Scontent = json_encode([
'error' =>

I =

'code' => static::CODE_INVALID_MIME_TYPE,

'http_code' => 406,

'message' => sprintf('Content of type %s is not supported.', $mim\
eType),

D;

Sresponse = Response::make(Scontent, $this->statusCode, $headers);
$Sresponse->header ('Content-Type', $contentType);

return $response;

Very basic, but now if we try a different MIME type we can expect a
different result:

An HTTP request specifying the preferred response MIME type

GET /places HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

The response will be in YAML.

A shortened example of the HTTP response with YAML data

HTTP/1.1 200 OK
Host: localhost:8000
Connection: close

data:
- { id: 1, name: 'Mireille Rodriguez',6 lat: -84.147236, lon: 49.254065, addressl:\
'12106 Omari Wells Apt. 801', address2: '', city: 'East Romanberg', state: VT, zip: \
20129, website: 'http://www.torpdibbert.com/', phone: (029)331-0729x4259 }

Making these requests programmatically is simple.

W 0 N O U M W N

HATEOAS 5

Using PHP and the Guzzle package to request a different response type
use GuzzleHttp\Client;

Sclient = new Client(['base_url' => 'http://localhost:8000']);
Sresponse = $client->get('/places', [
'headers' => ['Accept' => 'application/x-yaml']

s

Sresponse->getBody(); // YAML, ready to be parsed

This is not the end of the conversation for content negotiation as there
is more to talk about with vendor-based MIME types for resources, which
can also be versioned. To keep this chapter on point, that discussion will
happen in Chapter 13: API Versioning.

1.3 Hypermedia Controls

The second part of HATEOAS, however, is drastically underused, and is the
last step in making your API technically a RESTful API.

BUT/IT:S NOT
“RESTful* IFYOU..

Batman provides a standard response to often futile bucket remark “But it’s not RESTful if you...”
Credit to Troy Hunt (@troyhunt)

While you often hear complaints like “but that is not RESTful!” from
people about silly things, this is one instance where they are completely
right. Roy Fielding says that without hypermedia controls an API is not
RESTful?, writing back in 2008. People have been ignoring that ever since,
and the last estimate was that 74% of APIs claiming to be “RESTful” do not
actually use hypermedia.

*http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

HATEOAS 6

RESTful Nirvana

There is something floating around the REST/Hypermedia community
called the Richardson Maturity Model3, written about here by Martin
Fowler# but originally invented by Leonard Richardson>. It covers what
he considers to be ‘the four levels of REST’:

1. “The Swamp of POX.” You’re using HTTP to make RPC

calls. HTTP is only really used as a tunnel.
2. Resources. Rather than making every call to a service end-

point, you have multiple endpoints that are used to repre-
sent resources, and you’re talking to them. This is the very
beginnings of supporting REST.

3. HTTP Verbs. This is the level that something like Rails
gives you out of the box: You interact with these Resources

using HTTP verbs, rather than always using POST.
4. Hypermedia Controls. HATEOAS. You’re 100% REST com-

pliant.
- Source: Steve Klabnik, “Haters gonna HATEOAS”®

Some dispute this model because, as Roy says, unless you have hyperme-
dia then it is not REST. The model is good as long as you understand that
steps 1, 2 and 3 are still “not REST” and step 4 is “REST”.

So, what are hypermedia controls? They are just links to other content,
relationships, and further actions. These allow a consumer to browse
around the API, discovering actions as it goes.

Basically, your data needs to have “hyperlinks”, which you have probably
been using in your HTML output for years. I said early on in the book that
REST is just using the same conventions as the actual Internet, instead
of inventing new ones, so it makes sense that linking to other resources
should be the same in an API as it is in a web page.

The general underlying theme of hypermedia is that an API should be able
to make perfect sense to an API client application and the human looking

3http://martinfowler.com/articles/richardsonMaturityModel.html
4http://martinfowler.com/

Shttp://www.crummy.com/

6http://tirnelessrepo.com/haters— gonna-hateoas

http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/
http://martinfowler.com/
http://www.crummy.com/
http://timelessrepo.com/haters-gonna-hateoas
http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/
http://www.crummy.com/
http://timelessrepo.com/haters-gonna-hateoas

© 0 N o U bh W N R

e T i =
a M W N F

HATEOAS 7

at the responses, entirely without having to hunt through documentation
to work out what is going on.

Small HATEOAS concepts have been sneakily sprinkled throughout this
book, from suggesting error codes be combined with human readable
error messages and documentation links, to helping the client application
avoid maths when interacting with pagination. The underlying theme is
always to make controls such as next, previous (or any other sort of related
interaction) clearly obvious to either a human or a computer.

Understanding Hypermedia Controls

This is the easiest part of building a RESTful API, so I am going to try really
hard not to leave this section at “just add links mate” (my normal advice
for anyone asking about HATEOAS).

Our usual data is output in such a way that only represents one or more
resources. By itself, this one piece of data is an island, completely cut off
from the rest of the API. The only way to continue interacting with the API
is for the developer to read the documentation and understand what data
can be related, and to discover where that data might live. This is far from
ideal.

To tie one place to the related resources, subresources or collections is
easy.

"data": {
"id": 1,
"name": "Mireille Rodriguez",
"lat": -84.147236,
"lon": 49.254065,
"address1": "12106 Omari Wells Apt. 801",

"address2": "",

"city": "East Romanberg",

"state": "VT",

"zip": 20129,

"website": "http://www.torpdibbert.com/",
"phone": "(029)331-0729x4259",

"links": [

{

HATEOAS 8

16 "rel": "self",

17 "uri": "/places/2"

18 },

19 {

20 "rel": "place.checkins",
21 "uri": "/places/2/checkins"
22 1,

23 {

24 "rel": "place.image",

25 "uri": "/places/2/image"
26 }

27]

28 }

29}

Here are three simple entries, with the first linking to itself. They all
contain a uri (Universal Resource Indicator) and a rel (Relationship).

0 URI vs. URL

The acronym “URI” is often used to refer to only content after
the protocol, hostname and port (meaning URI is the path,
extension and query string), whilst “URL” is used to describe
the full address. While this is not strictly true, it is perpetuated
by many software projects such as Codelgniter. Wikipedia’ and
the W3% say a bunch of conflicting things, but I feel like a URI
is easily described as being simply any sort of identifier for the
location of a resource on the Internet.

A URI can be partial, or absolute. URL is considered by some to
be a completely non-existent term, but this book uses URL to
describe an absolute URI, which is what you see in the address
bar. Rightly or wrongly. Got it?

Some people scoff at the self relationship suggesting that it is pointless.
While you certainly know what URL you just called, that URL is not always
going to match up with the self URI. For example, if you just created
a place resource, you will have called posT /places, and that is not what
you would want to call again to get updated information on the same

"http://wikipedia.org/wiki/Uniform_Resource_Identifier
8http://www.w3.org/TR/uri—clarification/

http://wikipedia.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/uri-clarification/
http://wikipedia.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/uri-clarification/

O 0w N o U bd W N

HATEOAS 9

resource. Regardless of the context, outputting a place always needs to
have a self relationship, and that self should not just output whatever is
in the address bar. Basically put, the self relationship points to where the
resource lives, not the current address.

As for the other rel items, they are links to subresources that contain
related information. The content of the tags can be anything you like,
just keep it consistent throughout. The convention used in this example
is to namespace relationships so that they are unique. Two different types
of resources could have a checkins relationship (eg: users and places), so
keeping them unique could be of benefit for the sake of documentation at
least. Maybe you would prefer to remove the namespace, but that is up to
you.

Those custom relationships have fairly unique names, but for more generic
relationships you can consider using the Registry of Link Relations® de-
fined by the IANA, which is used by Atom (RFC 4287'°) and plenty of other
things.

Creating Hypermedia Controls

This is literally a case of shoving some links into your data output. How-
ever you chose to do that, it can be part of your “transformation” or
“presentation” layer.

If you are using the PHP component Fractal - which has been used as an
example throughout the book - then you can simply do the following:

PlaceTransformer with links included in the response data.

public function transform(Place $place)

{
return [

'id! => (int) $place->id,
'name’ => $place->name,

'lat! => (float) $place->lat,
'lon' => (float) $place->lon,
'address1' => $place->addressl1,
'address2' => S$place->address2,

“http://www.iana.org/assignments/link-relations/link-relations.xhtml
%http://atompub.org/rfc4287.html

http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://atompub.org/rfc4287.html
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://atompub.org/rfc4287.html

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

HATEOAS 10

'city! => $place->city,
'state' => S$place->state,
'zip' => $place->zip,
'website' => $place->website,
'phone’ => S$place->phone,
'links' => [

[
'rel' => 'self',
'uri' => '"/places/'.splace->1id,

'rel' => 'place.checkins',
'uri' => '/places/'.$place->id.'/checkins',

'rel' => 'place.image',
'uri' => '/places/'.$place->id."'/image"',

1,
1;

People try to get smarter and have various relationships based on their
$_SERVER settings or based on their ORM relationships, but all of that is just
going to cause you problems. If you have these transformers then you only
need to write this lot out once. This then avoids exposing any database
logic and keeps your code readable and understandable.

Once you have input these links, other people need to know how to
interact with them. You might think, “surely I should put GeT or puT in
there so people know what to do”. Wrong. They are links to resources,
not actions. An image exists for a place, and we can either blindly assume
we can make certain actions on it, or we can ask our APl what actions are
available and cache the result.

Discovering Resources Programmatically

Taking a shortened example from earlier on in this chapter, we can expect
to see output like this:

© o N o ubd W N

e T R e T T =
© 0 N o b W N KHEH O

A W N =

HATEOAS 11

{
"data": {
"links": [
{
"rel": "self",
"uri": "/places/2"
1,
{
"rel": "place.checkins",
"uri": "/places/2/checkins"
1,
{
"rel": "place.image",
"uri": "/places/2/image"
}
}
}
}

We can assume that a GeT will work on both the self and the place.checkins
endpoints, but what else can we do with them? Beyond that, what on Earth
do we do with the place.image endpoint?

HTTP has us covered here with a simple and effective verb that has so far
not been discussed: oPTIONS.

An HTTP request using the OPTIONS verb

OPTIONS /places/2/checkins HTTP/1.1
Host: localhost:8000

The response to the previous HTTP request

HTTP/1.1 200 OK
Host: localhost:8000
Connection: close
Allow: GET,HEAD,POST

By inspecting the Allow header, we as humans (or programmatically as an
API client application), can work out what options are available to us on

o b~ W N R

HATEOAS 12

any given endpoint. This is what JavaScript is often doing in your browser
for AJAX requests and you might not even know it.

Doing this programmatically is pretty easy too, and most HTTP clients
in any given language will let you make an opTIONS call just as easily as
making a GeT or posT call. If your HTTP client does not let you do this, then
change your HTTP client.

Making an OPTIONS HTTP request using PHP and the Guzzle package

use GuzzleHttp\Client;

Sclient = new Client(['base_url' => 'http://localhost:8000']);

Sresponse = $client->options('/places/2/checkins');

Smethods = array_walk('trim', explode(',', $response->getHeader ('Accept'));
var_dump($methods); // Outputs: ['GET', 'HEAD', 'POST']

So in this instance, we know that we can get a list of check-ins for a place
using GeT and we can add to them by making a post HTTP request to that
URL. We can also do a Heap check, which is the same as a GeT but skips
the HTTP body. You will probably need to handle this differently in your
application, but this is handy for checking if a resource or collection exists
without having to download the entire body content (i.e: just look for a 2e0
OT Q 404).

It might seem a little nuts to take this extra step to interact with an
API, but really it should be considered much easier than hunting for
documentation. Think about it: trying to find that little “Developers” link
on the website, then navigating to the documentation for the correct API
(because they are so cool they have about three), then wondering if you
have the right version... not fun. Compare that to a programmatically
self-documenting API, which can grow, change and expand over time,
rename URLs and... well that is a real win. Trust me.

If you know that an API follows RESTful principles then you should be con-
fident that it follows HATEOAS because advertising it as RESTful without
following HATEOAS is a big stinking lie. Sadly, most of the popular APIs
out there are big stinking liars.

GitHub responds with a 500, Reddit with 501 Not Implemented,
Google maps with 405 Method Not Allowed. You get the idea.

HATEOAS 13

I’ve tried many others, and the results are usually similar.
Sometimes it yields something identical to a GET response.
None of these are right.

— Source: Zac Stewart, “The HTTP OPTIONS method and poten-
tial for self-describing RESTful APIs”!

If you are building your own API, then you can easily do this yourself and
your clients know that you know how to build a decent API.

And that, is about all there is for HATEOAS. You should now know enough
to go out and build up an API that in theory you won’t hate. Sadly, you will
probably need to build a new version within a few months regardless, so
for that we will now take a look at API versioning.

Mhttp://zacstewart.com/2012/04/14/http-options-method.html

http://zacstewart.com/2012/04/14/http-options-method.html
http://zacstewart.com/2012/04/14/http-options-method.html
http://zacstewart.com/2012/04/14/http-options-method.html

	Table of Contents
	HATEOAS
	Introduction
	Content Negotiation
	Hypermedia Controls

