Brain Games

Brain Teasers to Energize Your
Brain Cells and Python Logic Skills

Dr. Mayer, Rieger, Dr. Riaz







(©) 2019 Finzter Publishing House, Stuttgart, Germany
ALL RIGHTS RESERVED.
https://finxter.com/

For more information about permission to reproduce
selections from this book, write to chris@finxter. com.

2019, Edition

Publisher: Finzter | Coffee Break Python

Editor: Anna Altimira Grofs

Cover design: Zohaib Riaz, Christian Mayer
Newsletter: Subscribe, download your free Python cheat
sheets, and become a better coder with a free puzzle a day
https://blog.finxter.com/subscribe/.

Instagram: Get Your Free Daily “Espresso Break Python”
by Lukas Rieger: https://www.instagram.com/finxter.
com_/

If you want to rate this book, please always add a short text
comment. Did you like it? What can be improved? Who
would you recommend it to? Without a text comment, your
star rating will be tnvisible on the Amazon website.



Brain Games Python

99 Brain Teasers for Beginners to Energize
Your Brain Cells and Python Logic Skills

Christian Mayer, Lukas Rieger, and Zohaib Riaz

2019

A puzzle a day to learn, code, and play.

11



Contents

Contents iii
1 Programming Your Intelligence 1
1.1 Intended Audience . . . ... ... ... .. 6
1.2  Puzzle-based Learning to Code . . . . . .. 7
1.3 How to Read This Book . . . ... ... .. 12
1.4 How to Test and Train Your Skills? . . . . . 14

2 How to Boost Your Intelligence? 10 Tips

From Science 18
2.1 SleepMore. . . . ... ... ... ...... 18
2.2 Don’t DoDrugs . . ... ... ........ 19
2.3 Eat Brain Food . . . . ... ... ... ... 19
2.4 Meditate . . . ... 20
2.5 Exercise . . . . ... ... 20
26 Read More. . . . . . ... ... ... .... 21
2.7 Set Goals . . .. ... ... ... ... 22
28 Focus. . . . .. ... 0. 22
2.9 Play Your Strengths . . . .. ... ... .. 23

2.10 Play Brain Games . . . . . . ... ... ... 24

111



v CONTENTS

3 Absolute Computer Science Basics for Non-

Coders 26
3.1 What is Program Code? . . . .. ... ... 26
3.2 How to Read Program Code? . . . .. ... 27
3.3 Variables. . . . ... ... ... ... ..., 27
3.4 Control Flow . . . . ... ... ... .... 29
3.0 Functions . . .. .. ... ... ... ... . 33
3.6 Boolean Operators . . .. ... .... ... 34
3.7 Truth Tables . . . ... ... ... ..... 35
The Negation Operator NOT . . ... . .. 35

The AND Operator . . . . . ... ... ... 36

The OR Operator . . . . . ... . ... ... 36

3.8 Advanced Boolean Operators . . . . . . .. 37
The Exclusive-Or (xor) Operator . . . . . . 37

The Implication . . . . . .. ... ... ... 38

3.9 Boolean Operators Precedence . . . . . . . . 38
3.10 Happy Puzzle Solving! . . . . . .. .. ... 39

4 Kindergarten Logic 40
5 Complete the Sequence 53
6 If Confusion 66
7 Find the Age Difference 79
8 Eleven DNF puzzles 92
9 Eleven All and Any Puzzles 106
10 Word Similarity 119

11 Mental Math 142



CONTENTS

12 Find Your Age

13 Final Remarks

13.1 Your skill level . . . ..

13.2 Where to go from here?

Bibliography

156

169
169
171

182






_1_

Programming Your Intelligence

According to psychological research, your general intelli-
gence divides into fluid intelligence and crystallized intelli-
gence. [36] Fluid intelligence is the ability to quickly adapt
your thinking to solve new problems. Crystallized intelli-
gence is the ability to apply learned knowledge and expe-
rience. While you can increase crystallized intelligence by
collecting new experiences and acquiring more and more
knowledge [14], fluid intelligence was long considered to be
a rather static factor which you cannot change. But taking
a stand against the common belief of his peers, Professor
Walter Perrig from the University of Bern showed in a fa-
mous 2008 article [12] that fluid intelligence can be trained
by solving small working memory tasks over a relatively
short period. In short: Brain puzzles make you smarter!

The purpose of this textbook is to improve both your fluid
and your crystallized intelligence—the former by presenting
you with focused working memory tasks and the latter by
teaching you new knowledge in the area of programming
and logic. It’s a book full of fun brain games which you
can solve daily to keep your brain function healthy and



CHAPTER 1. PROGRAMMING YOUR
2 INTELLIGENCE

vivid. But it’s also a Python learning book that teaches
you to read and understand Python source code quickly—
an enormously important skill that every master coder has
acquired as a result of studying myriads of code snippets.

Let’s dive a bit deeper into the topic of intelligent behavior.
While both fluid and crystallized intelligence are important
predictors of personal success, they are not the only ways
for you to access intelligence. Intelligence comes in many
forms and is all around you. To maximize your results,
you need to foster intelligent behavior of all systems you
control: your body, your brain, your social environment,
your organization, and your computational systems.

To understand what I mean with this, let’s answer an im-
portant question first: What s intelligence anyways?

The dictionary Merriam-Webster answers this question by
defining intelligence as

o “the ability to learn or understand or to deal with new
or trying situations”,

o “the ability to apply knowledge to manipulate one’s
environment”, and

o “the ability to perform computer functions”.

From this definition, you can infer three types of intelligence—
all of which are well-researched concepts:

e Individual Intelligence is about how fast you can
learn, comprehend, and adapt to new environments
and circumstances. [11] This type of intelligence is



best understood and known for thousands of years—
even the ancient Greek philosopher Aristotle wrote
about the constituents of individual intelligence [33].
You've already seen that it is divided into fluid and
crystallized intelligence. It’s the intelligence within
yourself.

e Collective Intelligence is all about how you can tap
into synergies, relationships, and the existing struc-
tures that are all around you to solve problems. |17]
In his popular book Programming Collective Intelli-
gence, Toby Segaran defined it as “the combining of
behavior, preferences, or ideas of a group of people
to create novel insights.” [29] In other words, it’s the
intelligence that emerges collectively when a group
of people works together towards solving a common
problem.

e Computing Intelligence: This relatively new type
of intelligence is least understood because it has ex-
isted only for a few decades. One of its early pioneers,
Alan Turing, asked the thought-provoking question:
May not machines carry out something which ought
to be described as thinking but which is very different
from what a man does? |35 Today, no one doubts the
incredible power of computing intelligence with ma-
chines playing games, driving cars, and translating
text beyond human-level performance. So you must
ask yourself: How can you leverage the infinite com-
puting power that is all around you?

A few decades ago, it would have sufficed for a person to
master only the first type of intelligence and still succeed
in life.



CHAPTER 1. PROGRAMMING YOUR
4 INTELLIGENCE

In a thought-provoking 2007 research paper, Jay Zagorsky
asked the question: Do you have to be smart to be rich? |38]
The researchers analyzed data from 1979 to 2004 and found
that “each point increase in I(Q) test score raises income by
between 234and616 per year after holding a variety of fac-
tors constant.” In short: the higher your individual intelli-
gence, the more money you earn.

Imagine you are living in the 1960s. You are a very intelli-
gent individual who doesn’t know a thing about collective
and computing intelligence—the latter doesn’t even exist
yet for the general public (many computers of the time cost
five million dollars). You only sit in your chamber, write,
and think about hard research problems. Yet, your indi-
vidual intelligence opens many doors and chances are that
you’ll become a very successful individual-—because of your
superior intelligence.

This would never work today: As the world becomes more
and more interconnected—with ubiquitous social media,
improved mobility, and high-speed communication—you also
need to master the art of collaboration to reach your goals
(collective intelligence). Think about your environment: Is
there a person who excels in this second type of intelligence
while being average in the first type? Most of us know at
least one such person.

But it doesn’t stop there. A new type of intelligence emerges
with the power of surpassing all others. You know intu-
itively how to use your mind (individual intelligence) and
the minds of others (collective intelligence). But if you are
like most people, you have a very bad intuition regarding
how to use the mind of computers.

The third type of intelligence, computing intelligence, only



existed for a few decades—a time frame too short to leave
any biological traces like the other two types: Evolution
couldn’t adapt our brains to account for this third type
of intelligence. And yet, it is widely recognized as one of
the most powerful sources of influence in the 21st century:
Even Merriam-Webster includes it into the official definition
of intelligence.

The most successful individuals today master not one, but
all three types of intelligence. Consider for example Bill
Gates, Jeff Bezos, and Elon Musk. They all nourish their
individual intelligence!—for example, by reading a massive
amount of books. They all leverage collective intelligence—
for example, by creating organizations with tens of thou-
sands of smart people working together towards common
goals. And they all rely on computing intelligence to a de-
gree that has never been seen before in the history of the
world.

A sure way to become successful in your own life is to tap
into all of these three powerful sources of intelligence. If you
understand how you can increase your individual, collective,
and computing intelligence, your life will pick up speed and
soon blast off. Soon, you’ll create massive value for society,
enjoy monetary success way beyond your wildest dreams,
and create a healthy and thriving environment for you and
your family.

And the best news is: All three types of intelligence are
trainable. There are many ways of increasing your indi-
vidual intelligence and, even more importantly, your intel-
ligent behavior by leveraging the power of habits. The sec-
ond type of intelligence, your social intelligence, is trainable

1To be more specific: their crystalline intelligence.



CHAPTER 1. PROGRAMMING YOUR
6 INTELLIGENCE

even to a much greater degree than the first type. After all,
you are a social animal: Seek out the interaction with other
people, read books about effective communication, listen,
and learn to present your ideas to leverage collective intelli-
gence. Finally, the third type is also trainable—even more
so than the other two types: Today, everyone can learn to
code and control computing intelligence to harvest its full
potential. And it’s much easier to train your 1Q.

While you need to go out in the world to enhance your
collective intelligence, this book will help you improve the
other two types of intelligence. In other words, this book is
about individual and computing intelligence. While some
books cover individual intelligence ( “Improve your 1Q)”) and
others cover computing intelligence (“Improve your coding
skills”), this book promises to improve both your individual
and your computing intelligence at the same time.

1.1 Intended Audience

This book is based on the puzzle-based learning approach
developed for the best-selling “Coffee Break Python” text-
book series. I'll introduce puzzle-based learning in the next
section.

The great response of our readers encouraged us to write
this fifth book for absolute beginners based on the idea of
learning Python with low-stake tests. Although this is the
fifth book in the series, it’s designed to be understandable
for everyone—even if you have never even written a single
line of code. It’s for those who love brain games, quizzes,
and puzzles to keep their brain fit.

The unique strength of this book is that it also teaches you



1.2. PUZZLE-BASED LEARNING TO CODE 7

how to code basic Python programs—in a non-intrusive fun
way that is accessible to everyone including non-technical
readers. Learning to code is a bonus you’ll get in addition
to an improved working memory and logic skills.

1.2 Puzzle-based Learning to Code

The main part of the book consists of 1001 code puzzles.
Let’s have a look at the key idea of puzzle-based learning.
This section answers the question: Why does solving code
puzzles make you smarter?

Definition: A code puzzle is an educative snip-
pet of source code that teaches a single com-
puter science concept by activating the learner’s
curiosity and involving them in the learning pro-
cess.

Here’s an example of a code puzzle:

# Puzzle b
a, b = True, False

out = (a and b) or (a and b and not a) or a
print (out)
# What's the output of this code snippet?

You don’t have to understand the code puzzle, yet. We'll
explain everything you need to know in a step-by-step man-
ner later in the book. Just note that the code “does” some-
thing and you need to figure out what he’s doing. In this
book, we focus on logic-style code puzzles that you can solve



CHAPTER 1. PROGRAMMING YOUR
8 INTELLIGENCE

by rational thinking and which come with the look and feel
of traditional “brain puzzles” to keep your thinking fresh.

Why is puzzle-based learning one of the best ways
to improve your coding skills?

As you’ll see, there is robust evidence in psychological sci-
ence for the efficiency of puzzle-based learning. If you are

already familiar with the other books of the Coffee Break
Python series, you may skip the following sections.

A good teacher opens a gap between their knowledge and
the learner’s. The knowledge gap makes the learner realize
that they do not know the answer to a burning question.
This creates tension in the learner’s mind. To close this gap,
the learner wants to acquire the missing piece of knowledge.
The learner craves knowledge.

Code puzzles open an immediate knowledge gap. When
looking at the code, you first do not understand the mean-
ing of the puzzle. The puzzle’s semantics are hidden. How-
ever, if you study a puzzle long enough, you’ll often find
yourself experiencing a eureka effect. Your brain releases
endorphins the moment you close a knowledge gap. The
instant gratification from puzzle-solving is highly addictive,
but this addiction makes you smarter.

Still, learning to code is a complex task. You must learn
a myriad of new concepts and language features. Many
aspiring coders are overwhelmed by complexity. They seek
a clear path to mastery. As any productivity expert will
tell you: Break a big task or goal into a series of smaller
steps. Finishing each tiny step brings you one step closer
to your big goal. Divide and conquer makes you feel in
control, pushing you one step closer toward mastery.

Code puzzles do this for you by breaking up the huge task of



1.2. PUZZLE-BASED LEARNING TO CODE 9

learning to code into a series of smaller learning units. You
can digest one puzzle at a time. Each puzzle is a step to-
ward your bigger goal of mastering computer science. Keep
solving puzzles and you keep improving your skills.

To learn anything, you need feedback so that you can adapt
your actions. However, an excellent learning environment
provides you not only with feedback but with immediate
feedback for your actions. If you were to slap your friend
each time he lights a cigarette—a not overly drastic measure
to save his life—he would quickly stop smoking (or, more
likely, stop meeting you).

Puzzle-based learning offers you an environment with im-
mediate feedback to speed up the process of learning to
code.

Over time, your brain will absorb the meaning of a code
snippet quicker and with higher precision this way. Learn-
ing this skill pushes you toward the top 10% of all coders.

Robust scientific evidence shows that active learning—that
is, students actively participate in the learning process—
doubles students’ learning performance. In a study on that
matter, test scores of active learners improve by more than
one grade compared to their passive learning fellow stu-
dents.? Not using active learning techniques wastes your
time and hinders you in reaching your full potential in any
area of life. Switching to active learning is a simple tweak
that will instantly improve your performance when learning
any subject.

Active learning requires the student to interact with the ma-

2Freeman, Scott, et al. "Active learning increases student perfor-
mance in science, engineering, and mathematics." Proceedings of the
National Academy of Sciences 111.23 (2014): 8410-8415.



CHAPTER 1. PROGRAMMING YOUR
10 INTELLIGENCE

terial, rather than simply consuming it. It is student- rather
than teacher-centric. Great active learning techniques are
asking and answering questions, self-testing, teaching, and
summarizing. A popular study shows that one of the best
learning techniques is practice testing.® In this learning
technique, you test your knowledge even if you have not
learned everything yet. Rather than learning by doing, it’s
learning by testing. The study argues that students must
feel safe during these tests. Therefore, the tests must be
low-stake so that students have little to lose. After the test,
students get feedback about the correctness of the tests.
The study shows that practice testing boosts long-term re-
tention of the material by almost a factor of ten. As it turns
out, solving a daily code puzzle is not just another learning
technique—it is one of the best.

Although active learning is twice as effective, most books
focus on passive learning: The author delivers information;
the student passively consumes the information. Some pro-
gramming books include active learning elements by adding
tests or by asking the reader to try out the code examples.
But how can you try code if you’re reading on the train, on
the bus, or in bed? And if these active elements drop out,
learning becomes 100% passive again.

Fixing this mismatch between research and common prac-
tice drove us to write this book based on puzzle-based learn-
ing. In contrast to other books, this book makes active
learning a first-class citizen.

But there’s also another angle to it: For example, each
grandmaster of chess has spent tens of thousands of hours

3 http://journals.sagepub.com/doi/abs/10.1177/
1529100612453266



1.2. PUZZLE-BASED LEARNING TO CODE 11

looking into a nearly infinite number of chess positions.
Over time, they develop a powerful skill: the intuition of
the expert. When presented with a new position, they can
name a small number of strong candidate moves within sec-
onds. For normal people, the position of a single chess
piece is one chunk of information so they can only mem-
orize the position of a few chess pieces. But chess grand-
masters view a whole position or a sequence of moves as a
single chunk of information. They operate on a higher level
than lesser chess players. The extensive training and experi-
ence have burned strong patterns into their biological neural
networks. Their brains can hold much more information—
a result of the good learning environment they have put
themselves in.

Chess exemplifies principles of good learning that are valid
in any field you want to master:

First, transform the object to learn into a stimulus that you
present to yourself over and over again. In chess, study as
many chess positions as you can. In math, make it a habit
to read mathematical papers with theorems and proofs. In
coding, expose yourself to lots of code.

Second, seek feedback. Immediate feedback is better than
delayed feedback. However, delayed feedback is still much
better than no feedback at all. Third, take your time to
learn and understand thoroughly:.

In the world of coding, some people recommend learning
by coding practical projects and doing nothing more. Chess
grandmasters do not follow this advice. They learn by prac-
ticing isolated stimuli again and again until they have mas-
tered them. Then they move on to more complex stimuli—
such as more complex chess positions.



CHAPTER 1. PROGRAMMING YOUR
12 INTELLIGENCE

Puzzle-based learning is code-centric. You will find your-
self staring at the code for a long time until the insight
strikes. This creates new synapses in your brain that help
you understand, write, and read code fast. Placing code
in the center of the whole learning process creates an en-
vironment in which you will develop the powerful intuition
of the expert. Therefore: Maximize the learning time you
spend looking at code rather than at other stimuls.

My professor of theoretical computer science used to argue
that if you only stare long enough at a proof, the meaning
will transfer into your brain by osmosis. This fosters deep
thinking, a state of mind where learning is more productive.
In my experience, his staring method works—but only if the
proof contains everything you need to know to solve it. It
must be self-contained.

A good code puzzle beyond the most basic level is self-
contained. You can solve it purely by staring at it until
your mind follows your eyes—your mind develops a solution
based on rational thinking. There is no need to look things
up. If you are a great programmer, you will find the solution
quickly. If not, it will take more time but you can still find
the solution—it is just more challenging. The gold standard
in this book was to design each puzzle to be self-contained.

1.3 How to Read This Book

Think about an experienced Python programmer you know,
e.g., your nerdy colleague or classmate. How good are their
Python skills compared to yours? On a scale from your
grandmother to Bill Gates, where is your colleague and
where are you? These questions are difficult to answer



1.3. HOW TO READ THIS BOOK 13

because there is no simple way to measure the skill level
of a programmer. This creates a severe problem for your
learning progress: the concept of being a good programmer
becomes fuzzy and diluted. What you can’t measure, you
can’t improve.

So how can you possibly measure your learning progress?
To answer this, let us once more travel to the world of chess,
which happens to provide an excellent learning environment
for aspiring players. Every player has an Elo rating number
that measures their skill level. You get an Elo rating when
playing against other players—if you win, your Elo rating
increases. Victories against stronger players lead to a higher
increase in the Elo rating. Every ambitious chess player
simply focuses on one thing: increasing their Elo rating.
The ones that manage to push their Elo rating very high,
earn grandmaster titles. They become respected among
chess players and in the outside world.

Every ambitious chess player dreams of being a grandmas-
ter. The goal is as measurable as it can be: reaching an
Elo of 2500. Thus, chess is a great learning environment—
every player is always aware of their skill level. A player can
measure how decisions and habits impact their Elo rating.
How does sleep influence their game performance? How
does training opening variants? How does solving chess
puzzles? What you can measure, you can improve.

The main idea of this book series and the associated learn-
ing app https://Finxter.com is to transfer this method
of measuring skills from the chess world to programming.
Suppose you want to learn Python. The Finxter website as-
signs you a rating number that measures your coding skills.
Every Python puzzle has a rating number as well, accord-
ing to its difficulty level. You ‘play’ against a puzzle at



CHAPTER 1. PROGRAMMING YOUR
14 INTELLIGENCE

your difficulty level: The puzzle and you will have more or
less the same Elo rating so that you can enjoy personalized
learning. If you solve the puzzle, your Elo increases and
the puzzle’s Elo decreases. Otherwise, your Elo decreases
and the puzzle’s Elo increases. Hence, the Elo ratings of
the difficult puzzles increase over time.

This self-organizing system ensures that you are always
challenged but not overwhelmed, while you constantly re-
ceive feedback about how good your skills are in comparison
with others. You always know exactly where you stand on
your path to mastery.

This book is an extension of the https://Finxter.com
website. It provides you with 1001 (!) brain puzzles specifi-
cally in the math and logic area. Each puzzle has an associ-
ated Elo rating. Initially, solving each puzzle will take time.
But as you go through the puzzles, you’ll become faster and
faster—feel free to measure your time! Ultimately, you’ll
look at a piece of simple code and the meaning will imme-
diately “pop into your head”.

Table 1.1 shows the ranks for each Elo rating level. The
table is an opportunity for you to estimate your logic skill
level.

1.4 How to Test and Train Your
Skills?

I recommend solving at least one or two brain puzzles every
day, e.g., as you drink your morning coffee. If you want to
track your logic skills, use the following simple method.

1. Track your Elo rating as you read the book and solve



1.4. HOW TO TEST AND TRAIN YOUR SKILLS” 15

Elo rating Rank
2500 World Class

2400-2500 Grandmaster
2300-2400 International Master
2200-2300 Master
2100-2200 National Master
2000-2100 Master Candidate
1900-2000 Authority
1800-1900 Professional
1700-1800 Expert
1600-1700 | Experienced Intermediate
1500-1600 Intermediate
1400-1500 Experienced Learner
1300-1400 Learner
1200-1300 Scholar
1100-1200 Autodidact
1000-1100 Beginner

0-1000 Basic Knowledge

Table 1.1: Elo ratings and skill levels.

the puzzles. Simply write your current Elo rating into
the book. Start with an initial rating of 1000 if you
are a beginner, 1500 if you are an intermediate, and
2000 if you are an advanced Python programmer. Of
course, if you already have an online rating on https:
//finxter.com, starting with this rating would be
the most precise option.

2. If your solution is correct, add the Elo points accord-
ing to the table given with the puzzle. Otherwise,
subtract the given Elo points from your current Elo



CHAPTER 1. PROGRAMMING YOUR
16 INTELLIGENCE

number.

Solve the puzzles in a sequential manner because they grad-
ually become harder. Advanced readers can also solve puz-
zles in the sequence they wish—the Elo rating will work as
well.

Use the following training plan to develop a strong habit of
puzzle-based learning.

1. Select a daily trigger after which you solve puzzles for
10 minutes. For example, decide on your Coffee Break
Python, or even solve code puzzles as you brush your
teeth or sit on the train to work, university, or school.

2. Scan over the puzzle in a first quick pass and ask
yourself: what is the unique idea of this puzzle?

3. Dive deeply into the code. Try to understand the pur-
pose of each symbol, even if it seems trivial at first.
Avoid being shallow and lazy. Instead, solve each puz-
zle thoroughly and take your time. It’s counterintu-
itive: To learn faster in less time, you must stay calm
and take your time and allow yourself to dig deep.
There is no shortcut.

4. Stay objective when evaluating your solution—we all
tend to fake ourselves.

5. Look up the solution and read the explanation with
care. Do you understand every aspect of the code?
Write open questions down and look them up later,
or send them to me (admin@finxter.com). I will do
everything I can to come up with a good explanation.



1.4. HOW TO TEST AND TRAIN YOUR SKILLS? 17

6. Only if your solution was 100% correct—including
whitespaces, data types, and formatting of the output—
you get Elo points for this puzzle. Otherwise, you
should count it as a wrong solution and swallow the
negative Elo points. The reason for this strict rule is
that this is the best way to train yourself to solve the
puzzles thoroughly.

As you follow this simple training plan, your skill to see
through source code quickly will improve. Over the long
haul, this will have a huge impact on your career, income,
and work satisfaction. You do not have to invest much time
because the training plan requires only 10-20 minutes per
day. But you must be persistent in your training effort. If
you get off track, get right back on track the next day.

When you run out of code puzzles, feel free to checkout
https://Finxter.com with more than 300 hand-crafted
code puzzles. I regularly publish new code puzzles on the
website as well.



_2_

How to Boost Your Intelligence? 10 Tips
From Science

The introductory chapter shows that intelligent behavior
is a prerequisite of your success. There are many different
ways of tapping into intelligence. This chapter provides
you with tips to help you become a more intelligent human
being. Ignore them at your own risk!

2.1 Sleep More

Sleep deprivation reduces your intelligence [15|. Say, you
decide to sleep only six instead of eight hours from now on.
Congratulations, you've gained 8% more time which you
could theoretically use to be more productive. However,
scientific research papers prove that if you sleep less than
seven hours, you’ll become dumber and less healthy: you’ll
develop diabetes, heart disease, stroke, depression, and die
earlier [1]. Reducing your daily sleep intake will reduce your
productivity. So sleeping for eight hours is one of those low-
hanging fruits which you’d be crazy to ignore.

18



2.2. DON’T DO DRUGS 19

2.2 Don’t Do Drugs

While it’s hard to increase your intelligence, it’s very easy
to decrease it. Medical science shows that alcohol con-
sumption negatively correlates with IQQ measurements |20].
Chronic excessive drinkers are more likely to develop cog-
nitive deficits [26]. An extensive meta-study based on 21
research papers [8] shows that young people who consume
alcohol regularly have smaller volumes of grey and white
matter in specific brain areas. The volume of white matter
is known to be associated with reduced I1Q values |21].

Those studies indicate that alcohol consumption correlates
with reduced IQ values. Similar results can be observed for
other types of drugs. Consuming five joints of Marijuana
per week reduces your IQQ by 5.1 points as discovered in
a study on seventy young adults in their teens and twen-
ties |9]. But there’s good news: the negative effect on 1Q
seems to be only temporary—so if you’'d stop consuming
Marijuana now, you've got a good chance of recovering from
your reduced IQ level.

It’s, therefore, a no-brainer (literally) to remove all types
of drugs from your life. You’ll quickly observe a positive
effect on your daily intelligence and clarity of thinking.

2.3 Eat Brain Food

A 2017 study shows that high levels of Omega-3 improve
blood flow in your brain [2|. Thus, eating Omega-3 rich
foods such as fish and flax seeds may boost your brain func-
tion. A large body of research confirms that antioxidants
reduce your chance of developing Alzheimer’s and prevent
a reduction of your cognitive function with old age [25].



CHAPTER 2. HOW TO BOOST YOUR
20 INTELLIGENCE? 10 TIPS FROM SCIENCE

Consuming foods (fruits and vegetables) that are rich with
antioxidants has numerous other health benefits such as re-
ducing the degenerative impact of free radicals in your body
and, particularly, your brain [13]. A very robust research
finding is that lifelong coffee consumption reduces the neg-
ative effects of aging and prevents brain diseases such as
Alzheimer’s and Parkinson’s [22]. Roughly speaking, eat
more fruits, berries, vegetables, nuts, cocoa, coffee, and soy
products and lead a more intelligent life.

2.4 Meditate

There are many positive effects associated with meditation.
For example, meditation decreases your stress level and in-
creases your 1Q [32]. A study performed on 351 full-time
working adults showed that there’s a positive correlation
(causal or not) between emotional intelligence and medi-
tation [5]. Another study shows that a short meditation
course reduces depression, anxiety, and stress |28|. Yet an-
other study shows that meditation can reduce the decline of
fluid intelligence when aging [10]. Last but not least, medi-
tation is scientifically proven to improve your sleep quality
and has, therefore, positive effects on your cognitive abili-
ties in multiple dimensions [3]. So if you want to increase
your intelligent behavior while having a calmer and less
stressful life, why not meditate for twenty minutes every

day?

2.5 Exercise

Physical exercise has a (modest) positive correlation with
IQ [16]. But is it a causal relation or do intelligent people



2.6. READ MORE 21

simply exercise more? In fact, a 2012 study discovers a
causal relationship: people who exercise more can improve
their intelligence and reduce the cognitive decline with old
age |23|. With countless additional (health) benefits such
as increased life expectancy, health, and overall quality of
life [24], injecting a dose of physical exercise into your day
is another powerful ingredient towards a more intelligent
form of living.

2.6 Read More

People who read more books tap into the knowledge of the
world. For almost any problem you encounter in life, an-
other human being has already spent decades researching
it—and writing a book about how to solve it.

Imagine you’d start reading one book per week in your
field (say, you are a programmer). You don’t have to read
scientific studies to know that your work success will sky-
rocket. Because of this one habit, you’ll quickly become
one of the most knowledgeable workers in your field. Join-
ing the top 1% in your field will be highly profitable—it
doesn’t matter which field you are in. If you assume that
your pay is roughly proportional to your productivity (oth-
erwise, change your job or become self-employed), your in-
come will start to grow rapidly. Just by implementing this
one reading habit.

Successful leaders read multiple books per month: Warren
Buffett, Bill Gates, Mark Zuckerberg, Jeff Bezos. Reading
books for success, achievement, and self-development may
easily be one of the main differentiating factors between the
rich and the poor [6]. But even pleasure reading has been



CHAPTER 2. HOW TO BOOST YOUR
22 INTELLIGENCE? 10 TIPS FROM SCIENCE

shown to have a positive impact on academic performance
137].

You may argue that you don’t have a lot of time reading
books. But this is unlikely to be true: today’s youth spends
2-3 hours per day watching television and playing games on
the computer [4]. So why not replace 30-40 minutes of your
screen time with reading books in your field (or listen to
audiobooks while being in commute)? This simple habit
will bring great success in your life.

2.7 Set Goals

Here’s another factor for success: set goals. A wildly pop-
ular psychological research paper [18] investigated the per-
formance of tens of thousands of people with different ages,
nationalities, and varying demographic factors. The re-
sult: setting goals is a robust predictor of many success
measures—especially monetary and production-related goals.

It doesn’t matter how you approach goal-setting. Simply
decide now for one goal-setting approach and keep doing it
for the rest of your life. For example, every morning when
you start with your work, write down your life goals, 5-
year goals, 1-year goals, 1-month goals, and daily goals. A
powerful strategy for success and a great way of fostering
intelligent behavior in your everyday life!

2.8 Focus

No matter how smart you are, if you spread your focus,
you’ll reduce your intelligent behavior and problem-solving
skills. Say your goal is to become a great coder. But you



2.9. PLAY YOUR STRENGTHS 23

also want to learn the piano, play football and chess, study
four different languages, become a master cook, have five
kids, and travel the world. At the same time, your friend
Alice focuses on coding only. She will outperform you while
you won't reach mastery level in any of your endeavors: in
every single field, there will be people who focus on this field
and this field only. Those people will crush it while you’ll
become average at best. Alice spends ten hours every day
studying code, and you can invest only one or two hours
per day given your diverse focus. Time is your scarcest
resource. There’s a famous Russian saying: if you chase
two rabbits, you will catch neither one.

So what to do? The answer is simple: focus on one thing.
Any great master focuses their time and energy on one field.
Focus on one career, one marriage, one life. Studies con-
firm that increased focus leads to a higher level of creative
performance [30]. Focus is a powerful predictor of success
for individuals who push forward companies, open-source
projects, and social media presence [34]. The intelligent
professional focuses on one thing: becoming a more intelli-
gent human-being by implementing these tips.

2.9 Play Your Strengths

There is more to be gained by improving your strengths
than by mitigating your weaknesses. Why? Because you've
got a lot more weaknesses than strengths. If you try to
overcome all weaknesses, you’ll become average in some of
them. Does this sound like a strategy for success and intel-
ligent behavior? Follow the advice of management genius
Peter Drucker: perform from your strengths [7|. Strength-
based training approaches are usually employed when train-



CHAPTER 2. HOW TO BOOST YOUR
24 INTELLIGENCE? 10 TIPS FROM SCIENCE

ing mental toughness of high-performance athletes [31].

Playing strengths is good advice for organizations, too. An
organization where people can play their strengths devel-
ops a higher level of collective intelligence than organiza-
tions where each person must compensate for their own
weaknesses. In the former organization, there’s always an-
other person who compensates your weaknesses with their
strengths—this is the source of synergy. There’s nothing
as powerful as a group of people compensating for each
other’s weaknesses with each person’s strengths. This way,
one plus one can truly become three.

2.10 Play Brain Games

Brain games can improve fluid intelligence as discovered in
a highly popular 2008 article [12]. The article has had a
lasting impact on the science of brain games— thousands
of follow-up articles discussed the extent of the concrete
benefits of brain games. While there hasn’t been a con-
clusive study about how much brain games improve fluid
intelligence, it is undisputed that brain games improve per-
formance on tasks that are similar to the ones that are

trained [19].

Millions of people today solve brain games to keep their
brain fit while having fun in the process. A large part of the
performance improvement addresses cognitive performance
in specific tasks (these improvements are non-transferable).
However, these specific tasks are often not important for
practical matters. After all, how does it help you in practice
to be able to solve Sudokus? This book channels the non-
transferable part of improvement towards a specific task



2.10. PLAY BRAIN GAMES 25

with high-value: programming. By tapping into computa-
tional intelligence in combination with improving your in-
dividual intelligence, you’ll experience meaningful benefits
in your life.



_3_

Absolute Computer Science Basics for

Non-Coders

3.1 What is Program Code?

Program code is a list of instructions stored in files and ex-
ecuted by a computer. You need to write these instructions
in a language that computers understand. So, which lan-
guage do computers speak? It’s called binary: every word
is nothing but a sequence of 0 and 1. For example, the bi-
nary representation of word ’Python’ is 01010000 01111001
01110100 01101000 01101111 01101110. Because the word
>Python’ consists of six letters, there are six blocks of 0
and 1, each encoding one letter. For example, the binary
sequence 01010000 encodes the character *P’. We call this
binary code ASCII.

Rather than writing program code in binary, we use high-
level programming languages. The compiler translates your
code, written in a programming language, into executable
binary code. Over the years many programming languages
have been developed, each one with its special purpose. Yet,

26



3.2. HOW TO READ PROGRAM CODE? 27

Python has come to be the most popular one on the planet.
In the last years, it has seen enormous growth due to its
simplicity and wide range of applications such as machine
learning.

3.2 How to Read Program Code?

Reading program code is easy and since you are reading
a book, you already know the basics. Just like text, you
read program code from top left to bottom right, line by
line. Each line contains instructions that use certain key-
words defined by the programming language. For exam-
ple, some Python keywords are: if, else, int, while,
def, class, float. To get you on track as fast as pos-
sible, we focus only on the keywords used in the puzzles
in this book. But first, we have to look at three broader
concepts.

3.3 Variables

Imagine a variable as a box in which you can put things. In
programming these things are values like 1, 2, 3 or *word”’.
Of course, the computer doesn’t store these values in boxes
but in the memory. We say: A wvariable points to a memory
(RAM) address that stores a value. Now, let’s write all this
as Python code:

my_variable = 1
my_other_var = 3

What exactly is happening here? The first variable named
my_variable contains the value 1. The second variable



CHAPTER 3. ABSOLUTE COMPUTER SCIENCE
28 BASICS FOR NON-CODERS

named my_other_var contains the value 3. To fill the vari-
able boxes with values, we use the = operator and write
the variable’s name on the left and the value on the right.
Programmers say: we assign a value to a variable. Con-
gratulations, you just read your first two lines of code!

Variable can have different types, depending on the val-
ues stored in them. For example, the variables from the
previous example are both integer variables since they hold
integer values. Python defines the type of a variable as soon
as you assign a value to it. In the following code snippet,
we define three variables with different types.

float_var = 3.1415
string_var = 'this is text'
bool_var = True

We call the type of float_var float as indicated by the
decimal point, the dot, in the number. We call the type
of string_var string as it contains strings of characters.
A string of characters can be a single character like ’a’,
b2, 12, 27’ entire words or even a whole text. We call
type of bool_var Boolean. Such a variable contains either
True or False. For this book, this is the most important
type. Therefore, we will go more into depth about Boolean
variables later.

You can also assign values to several variables in a single
line as shown in the following code snippet:

a, b, ¢ = True, False, True

This is a short version of:



3.4. CONTROL FLOW 29

a = True
b = False
c = True

We use this single line assignment of multiple variables
throughout the book so make sure to get it.

3.4 Control Flow

Sometimes you need to repeat an instruction several times.
Other times you need to execute an instruction only un-
der certain conditions. For this purpose programming lan-
guages have control flow instructions which you will get to
know next.

We use the keyword if to execute code only under certain
circumstances. The Python syntax is: if <condition>:.
In the following lines, you write the code you want to exe-
cute if the condition is True, for example, if 5 > 1:

Note that we indent the code by four white spaces: the
whole indented block executes only under the given con-
dition. To make this more tangible, imagine that you are
working in a company ’SaferStreets Inc.”. Your goal is to
develop a street sign which shows different colors based on
the speed of passing cars. As long as the speed doesn’t sur-
pass 80 the sign shows green, only if the car drives faster
than 80, the sign turns red. So you would write the follow-
ing code:

speed = 50
color 'green'’



CHAPTER 3. ABSOLUTE COMPUTER SCIENCE
30 BASICS FOR NON-CODERS

if speed > 80:
color = 'red'

There are two variables speed and color. The former con-
tains an integer and the latter a string. In case the integer
value is larger than 80 we execute the code in the if state-
ment which assigns the value >red’ to variable color. Let’s
consider a more advanced example:

speed = 90
color = 'unknown'

if speed < 30:

color = 'green'
elif speed < 80:

color = 'orange'
else:

color = 'red'

You just developed a new version of the digital street sign
with an extra color! If speed is below 30, it shows green.
If speed between 30 and 79, it shows orange. And only if
speed is above 80, it turns red. That’s great! And here
comes your boss and asks you to remove the orange state
from the digital street sign. So, you remove the elif part
from the code. Now it looks like this:

speed = 90
color

"unknown'

1f speed < 30:
color = 'green'



3.4. CONTROL FLOW 31

else:
color = 'red'

You can even simplify this further to:

speed = 90
color 'red'

if speed < 30:
color = 'green'

Can you see that the last two snippets do the same thing?
To sum it all up, let’s put it more abstractly:

1f condition_1:

# execute 1f condition 1 1s true
elif condition_2:

# execute 1f condition 2 1s true
else

# execute 1f conditions are false

# execute im any case

You may ask: what’s the meaning of the hashtags? A hash-
tag in Python marks a comment line. It’s not part of the
code and the computer won’t execute it. Still, comments
are useful to explain your code to others (and to your future
self reading the code in a year or so).

You can also nest if statements, like this:

speed = 50
age = 24



CHAPTER 3. ABSOLUTE COMPUTER SCIENCE
32 BASICS FOR NON-CODERS

color = 'unknown'

if speed > 100:
if age < 21:
# too young
color = 'red'
elif age > 8b5:
# too old
color = 'red'
else:
color

'orange'

else:
# 100 and less 1s ok for everybody
color = 'green'

# prints the value of color
print(color)

After the first couple of puzzles, this will become easy for
you, almost like speaking your mother tongue.

To find out, what the last code snippet would print, proceed
like this:

e Replace the variable names with their values (speed
-> 50).

e Replace all comparisons with their truth values (True,
False).

e Follow the True values through the code.

Do you know the output of the code snippet above?

Solution: ’green’



3.5. FUNCTIONS 33

3.5 Functions

Every programming language has functions. You can reuse
those code snippets wherever you want in your code. For
example, to write the text ’my text’ to the computer’s
screen, you call the function print (’my text’). The val-
ues you pass to a function between the parenthesis are the
function’s arguments. There are many other such func-
tions in Python. For this book, you only need to know the
print () function and the functions any() and all().

So what do functions any () and all() do? Function all()
checks if all Boolean values passed to it are True and any ()
checks if at least one value is True. Both functions expect
a list argument. In Python you create a list with the no-
tation [...]. For example, the expression [True, False,
False] creates a list of three Boolean values. You won’t
need this for the puzzles in this book. But if you dive deeper
into Python programming, you’ll see this all the time. If
youread all([a, b, c]) in the puzzles, think of it as: Are
all the variables a, b, ¢ True”

Let’s look at an example:

a, b, ¢ = True, True, False

d = all([a, b, c])
# d 2s False

any([a, b, c])
# e 18 True

o
I

Variable d contains the value False because not all values
passed to the all() function are True. On the other hand,



CHAPTER 3. ABSOLUTE COMPUTER SCIENCE
34 BASICS FOR NON-CODERS

variable e contains the value True because at least one value
passed to the any () function is True. Now, check if you got
this. Look at the puzzle below and try to find out which
values variables d and e contain at the end.

# Puzzle
a, b, ¢ = True, True, False

d
e

all([a, bl)
any([c])

Solution: Variable d is True and variable e False.

3.6 Boolean Operators

We use Boolean operators to connect conditions or Boolean
variables. Before you freak out, don’t worry, you use Boolean
operators all the time in everyday language. For example,
when you say: If it rains and it’s cold, I won’t come to the
party. There we have two Boolean variables, A - it rains -
and B - it’s cold. These two variables are connected with
the Boolean operator and. So, if it rains but the weather is
still warm, this gives us A = True and B = False. Let’s
consider 'I won’t come to the party’ as another variable,
say C. Now, we can define the variable C as A AND B. Since
A is True and B is False, C is also False. So, you have
to do what? You have to come to the party! The following
tables show the truth values for the operators AND, OR and
NOT. Keep these truth tables in mind throughout the whole
book!



3.7. TRUTH TABLES 35

3.7 Truth Tables

The connection of two Boolean variables with the AND op-
erator returns True only if both inputs are True. In any
other case this returns False. In formal logic, it is very
common to represent such things as truth tables. A truth
table has at least two columns, one for the input and one
for the output. But in general, there are two or more inputs
and one output. Since a truth table has to show the output
for any combination of the inputs, for n inputs it has 2"
rows. Look at the following tables. The NOT table has one
input value which can be either True or False and, there-
fore, it has two rows. If there are two different input values,
such as in the case of AND and OR, the table has four rows.
How many rows are in a table with three input values?

Now, it’s easy to see that the functions any () and all() are
shorthand for connecting all given parameters with OR or
AND. For example, all ([True, True, False]) is the same
as writing True AND True AND False. Both expressions
return False.

The Negation Operator NOT

Truth table for the NOT operator.

A NOT A
True False
False True

Table 3.1: The NOT operator



CHAPTER 3. ABSOLUTE COMPUTER SCIENCE

36 BASICS FOR NON-CODERS
The AND Operator

Below you find the truth table for the AND operator.

A B A AND B
True True True
True | False False
False | True False
False | False False

Table 3.2: The AND operator

Columns A and B show all the possible combinations of
inputs. When you connect both of the inputs with the and
operator you get the result displayed in the last column.

The OR Operator

The following table shows the truth values for the OR oper-
ator.

A B A OR B
True True True
True | False True

False | True True
False | False False

Table 3.3: The OR operator

Again, we give all possible combinations of input values
in columns A and B. The last column shows the result of
the or operator with the given inputs. Note that or is
also True if both input values are True. When you say ’or’



3.8. ADVANCED BOOLEAN OPERATORS 37

in everyday language, in general you mean either of both.
So, in this case, the or operator is different from everyday
language.

3.8 Advanced Boolean Operators

There are more than the three basic Boolean operators you
saw in the previous section. Yet, we can emulate all opera-
tors not discussed here by combining the three basic opera-
tors. The advanced operators are not used in the puzzles in
this book. However, we want to give you a short overview.

The Exclusive-Or (xor) Operator

First, there is the xor. xor represents: either A or B. In
every day language this is mostly what you mean when you
say 'or’. Asyou can see in the truth tables, or is is also True
when both inputs are True, not so the xor. xor returns
True only if exactly one input is True. We can translate
this into: (A and not B) or (not A and B). Try to draw
the truth tables and compare them.

Here you can see the truth table for the XOR operator. This
is the way you probably use ’or’ in everyday language.

A B A XOR B
True True False
True | False True
False | True True
False | False False

Table 3.4: The XOR operator



CHAPTER 3. ABSOLUTE COMPUTER SCIENCE
38 BASICS FOR NON-CODERS

Other advanced Boolean operators are the implication, writ-
ten as =>, and equivalency, written as <=>. The equivalency
is an implication in both directions. Or in a more formal
way: A <=> B is the same as A => B and B => A. Using
only basic operators, the implication can be written as not

A or B.

The Implication

In this truth table, you see how the implication works.

A B A=>8B
True True True
True | False False
False | True True
False | False True

Table 3.5: The Implication

3.9 Boolean Operators Precedence

As you know, multiplication and division precede addition
and subtraction in calculus. Similarly, there are precedence
rules for Boolean operators. The operator not always goes
first, then comes and and or comes last. Let’s take an
example to make this clearer:

A or B and not C

is the same as

(A or (B and (not C))).

If you want to change the order or precedence you have to
use parenthesis.



3.10. HAPPY PUZZLE SOLVING! 39

3.10 Happy Puzzle Solving!

After this brief introduction to the basics of computer sci-
ence, you are good to go! Whenever you have doubts, you
can use this chapter as a reference and come back. Happy
puzzle solving!



_4_

Kindergarten Logic

When my two-year-old daughter started to form her first
sentences, she already knew how to leverage basic if-then-
else logic to get what she wanted. While I am not too fond
of buying ice cream for my kids—because it contains un-
healthy amounts of sugar—my daughter used to present her
conditional logic so convincingly (if I don’t get ice cream,
I’ll cry) that she regularly got what she wanted.

In this chapter, we start slowly with some basic if-then-else
logic puzzles. I want to highlight that those puzzles are
not hard to solve, but even advanced coders often need a
lot of time to solve them. If you’re slow in reading and
understanding basic code snippets, this may easily be the
one thing that holds you back the most. So, remove this
barrier now!

For readability, we present you the solution for each puzzle
on the subsequent page to prevent you from accidentally
looking up the solution without thinking for yourself first.

40



41

# PUZZLE

a, b, ¢ = False, True, False

if not b and a:
print ('python')
else:
print('42')




42 CHAPTER 4. KINDERGARTEN LOGIC

# RESULT

11

42

[

# Your mew Elo = Your old Elo +/- 12

# PUZZLE

a, b, ¢, d = True, False, True, True

if d or b and not d:
print('love')
else:

print('yes')




