
ALEJANDRO SERRANO MENA

Book of monads

i

Copyright © 2017 - 2021 Alejandro Serrano Mena. All rights reserved.

Cover page
Blanca Vielva Gómez

Reviewers (1st edition)
Nicolas Biri
Harold Carr
John A. De Goes
Oli Makhasoeva
Steven Syrek

Reviewers (2nd edition)
Coming soon

ii

Contents

0 Introduction 1
0.1 Type Classes . 3
0.2 Higher-kinded Abstraction . 6
0.3 Haskell’s Newtype . 8
0.4 Language Extensions in Haskell . 9

I What is a Monad? 11

1 Discovering Monads 13
1.1 State Contexts . 13
1.2 Magical Multiplying Boxes . 18
1.3 Both, Maybe? I Don’t Think That’s an Option 20
1.4 Two for the Price of One . 24
1.5 Functors . 26

2 Better Notation 29
2.1 Block Notation . 30
2.2 Pattern Matching and Fail . 39

3 Lifting Pure Functions 41
3.1 Lift2, Lift3, ..., Ap . 41
3.2 Applicatives . 44
3.3 Applicative Style . 45
3.4 Definition Using Tuples . 49

iii

4 Utilities for Monadic Code 53
4.1 Lifted Combinators . 53
4.2 Traversables . 59

5 Interlude: Monad Laws 65
5.1 Laws for Functions . 65
5.2 Monoids . 69
5.3 Monad Laws . 71

II More Monads 75

6 Pure Reader-Writer-State Monads 77
6.1 The State Monad . 77
6.2 The Reader Monad . 80
6.3 The Writer Monad . 84
6.4 All at Once: the RWS Monad . 88
6.5 Bi-, Contra-, and Profunctors . 88

7 Failure and Logic 91
7.1 Failure with Fallback . 91
7.2 Logic Programming as a Monad . 96
7.3 Catching Errors . 100

8 Monads for Mutability 103
8.1 Mutable References . 103
8.2 Interfacing with the Real World . 106

9 Resource Management and Continuations 115
9.1 The Bracket Idiom . 115
9.2 Nicer Code with Continuations . 117
9.3 Early Release . 121

III Combining Monads 125

10 Functor Composition 127
10.1 Combining Monads by Hand . 127
10.2 Many Concepts Go Well Together . 131
10.3 But Monads Do Not . 133

11 A Solution: Monad Transformers 137
11.1 Monadic Stacks . 137
11.2 Classes of Monads, MTL-style . 145
11.3 Parsing for Free! . 154

iv

12 Generic Lifting and Unlifting 157
12.1 MonadTrans and Lift . 158
12.2 Base Monads: MonadIO and MonadBase 161
12.3 Lifting Functions with Callbacks . 163
12.4 More on Manipulating Stacks . 171

IV Rolling Your Own Monads 175

13 Defining Custom Monads 177
13.1 Introduction . 177
13.2 Final Style . 182
13.3 Initial Style . 185
13.4 Operational Style and Freer Monads 195
13.5 Transforming and Inspecting Computations 202

14 Composing Custom Monads 211
14.1 Final Style . 212
14.2 Initial and Operational Style . 213
14.3 Extensible Effects . 218

15 Performance of Free Monads 227
15.1 Left-nested Concatenation . 227
15.2 Left-nested Binds . 233

V Diving into Theory 241

16 A Roadmap 243

17 Just a Monoid! 245
17.1 Quick Summary . 245
17.2 Categories, Functors, Natural Transformations 248
17.3 Monoids in Monoidal Categories . 254
17.4 The Category of Endofunctors . 257

18 Adjunctions 261
18.1 Adjoint Functors . 261
18.2 Monads from Adjunctions . 264
18.3 The Kleisli Category . 267
18.4 Free Monads . 269

Bibliography 273

v

vi

0
Introduction

Welcome to the Book of Monads! My aim with this book is to guide you through
a number of topics related to one of the core — and at the same time one of the
most misunderstood — concepts in modern, functional programming. The choice
of topics is guided by pragmatic considerations, in particular what works and is
used by the community, with an occasional detour into theory. Other programming
concepts such as functors, applicatives, and continuations are introduced wherever
their relation to monads is interesting or leads to further insight.

Roadmap. As you have already seen, this book is divided into five sections.
Part I is concerned with generalities about monads — in other words, with those

elements that all monads and monadic computations share. Apart from these core
concepts, we discuss the special monadic notation that many functional languages
provide as well as generic functions that work on every monad.

Part II goes to the opposite end of the spectrum. Each of the chapters in
this part describes one specific monad that is frequently encountered in the wild:
Reader, Writer, State, Maybe or Option, Either, List ([] for Haskellers), IO, and
Resource, among others. Knowing which monads you have at hand is as important
as understanding the generic functionality that all monads share.

Part III describes one of the primary approaches for combining the functionality
of several monads, namely, monad transformers, along with their advantages and
shortcomings. One of the concerns with monad transformers is how lifting — in
short, injecting an operation from an individual into a combined, or higher-order,
monad — quickly becomes difficult.

Part IV will help you “transform” from a passive consumer of monads that others
have defined into an active producer of your own monadic types. We review all the
approaches — final, initial, and operational style — and how the common pattern
in each of them can be abstracted away to give rise to free and freer monads. This

1

is the part of the book in which we explore some new developments that compete
with monads, such as effects.

Part V has a more concrete goal: to give meaning to the phrase, “a monad is a
monoid in the category of endofunctors,” which has become a well-known meme
for functional programmers. To do so, we turn to the mathematical foundation
of monads, category theory. Finally, we look at the relation between monads and
another important categorical concept: adjunctions.

Conventions. Throughout this book, we show many snippets of code. Most of them
feature both Haskell and Scala code and occasionally other functional program-
ming languages. We follow a color convention to distinguish among the different
languages:

data Bool = True | False -- a simple data type
-- Define conjunction
or :: Bool -> Bool -> Bool
or True _ = True
or False x = x
sealed abstract class Boolean // a simple case class
case object True extends Boolean
case object False extends Boolean
// Define conjunction
def or(x: Boolean, y: Boolean) = x match {
case True => True
case _ => y

}
Sometimes, the code blocks are too long. In those cases, we usually show only the
Haskell version, except when we want to highlight something specific in Scala or
another language.

Exercise 0.1. Think about the precise way in which the beginning of all exer-
cises in this book are labeled Exercise.

Prerequisites. In order to follow along with this book, you only need to have a
basic command of statically-typed functional programming, as found in languages
such as Haskell, Scala, F#, or OCaml. In particular, we assume that you know about
algebraic data types, pattern matching, and higher-order functions. If you need
to refresh your memory, there is a wide range of beginner books such as Practical
Haskell [Serrano Mena, 2019] (from the same author of this book), Programming
in Haskell [Hutton, 2016], Learn You a Haskell for Great Good! [Lipovača, 2011], Get

2

Programming with Haskell [Kurt, 2018], Haskell Programming from First Princi-
ples [Allen and Moronuki, 2015], and Essential Scala [Gurnell and Welsh, 2015]. In
the rest of this chapter, we discuss some intermediate topics that are important
for understanding the contents of this book.

0.1 Type Classes

Almost every programming language provides a feature for declaring that a certain
operation exists for a given type. The archetypal example is stating that a type
has a notion of equality, in other words, that we can compare two values of that
type to check whether they are equal. Numbers and strings usually provide that
functionality, for example, whereas functions cannot be compared, in most cases.

Object-oriented languages use inheritance to declare such operations. Haskell
takes another approach, using type classes and instances.* A type class declaration
introduces a name and a set of functions (sometimes called methods) that a
member of that class must provide. Our example of equality looks like this:

class Eq a where
(==) :: a -> a -> Bool

One difference between this style and that of other languages is that a variable —
a in this case — is introduced in the header of the class to refer to any possible
instance of that variable in the methods. Another important difference is that a
function such as (==) not only requires its arguments to support equality, but
those arguments must also be of the same type, since the same a is used in both
positions.

If you now use (==) in a function, it reflects the constraint that some of the
types used in that function must be members of the Eq type class. Take, for example,
the function that compares two lists for equality:

eqList :: Eq a => [a] -> [a] -> Bool
eqList [] [] = True
eqList (x:xs) (y:ys) = x == y && eqList xs ys
eqList _ _ = False
This function works over two lists of the same type — since both arguments are
of type [a] – where the type of their elements supports equality. It returns a true
value only when the two lists contain exactly the same elements in the same order.

We can now define functions that work generically over any Eq type. But how do
we declare that any given type provides that functionality? We define an instance,
as follows:
*Confusingly, these terms have a different meaning in Haskell than they do in common object-oriented
languages. In Scala, classes and type classes are unrelated.

3

instance Eq Bool where
True == True = True
False == False = True
_ == _ = False

The header of the instance looks similar to that of the class. The difference is that
the type variable is replaced by the actual type we are dealing with — Bool in this
case. Instead of the type signature of the methods, we provide the corresponding
implementation. Once we do this, we may use eqList to compare lists of Booleans.

One of the cool features of type classes is that instances may depend on the
availability of other instances. We have just defined a way to compare two lists,
but it only works if the elements themselves are comparable. We can turn this idea
into an actual instance for lists, where the constraint on elements is also present:

instance Eq a => Eq [a] where
(==) = eqList

The link between the instance we are declaring — Eq for lists — and the prerequisites
is given by means of shared type variables, a in this case.

Exercise 0.2. Define the Eq instance for tuples (a, b). In case you need
more than one prerequisite in the declaration, the syntax is:

instance (Prereq1, Prereq2, ...) => Eq (a, b)

0.1.1 Type Classes in Scala: Implicits and Givens

Scala, in contrast to Haskell, provides many different ways to abstract common
functionality. One common way is using object-oriented features such as classes
and traits. In Scala 2 we can use implicits to model type classes within the language;
this is usually called the type class pattern. This pattern has “graduated” in Scala 3,
in which contextual abstractions provide a similar functionality.

When using the type class pattern, the declaration of which functionality each
type should provide is given in the form of a trait. Such a trait always takes a type
parameter, which represents the type we will be working with. The reason is that we
want to stay away from inheritance. By using implicits, we can mimic the instance
resolution of Haskell instead:*

trait Eq[A] {
def eq(x: A, y: A): Boolean

}
*Braces are optional in Scala 3.

4

Similarly to the Haskell version, by sharing a single type parameter, we require the
types of the two arguments to eq to coincide.

Now, if you require an implementation of a trait in a given function, you just
include it as an additional argument. In the body of the function, you can use the
trait argument to access every operation on it:*

def eqList[A](xs: List[A], ys: List[A], eq: Eq[A])
: Boolean = ???

Just doing this would result in an explosion of code, however. Every time you call
eqList, you would need to provide that eq argument. Luckily, the Scala compiler
provides either implicits (in Scala 2) or using clauses (in Scala 3) to solve that exact
problem. If we mark one or more arguments using the aforementioned features,
then whenever the function is called, the compiler searches the current scope for
the right eq implicit value:

// Scala 2 uses implicits
def eqList[A](xs: List[A], ys: List[A])(implicit eq: Eq[A])

: Boolean = ???
// Scala 3 uses contextual abstractions
def eqList[A](xs: List[A], ys: List[A])(using eq: Eq[A])

: Boolean = ???
Note that not every value will be included in the search, only those explicitly
marked. This is done by annotating the value with the implicit or using keyword,
depending on the language version:

// Scala 2 uses 'implicit'
implicit val eqBoolean: Eq[Boolean] = new Eq[Boolean] {
def eq(x: Boolean, y: Boolean): Boolean = (x, y) match {
case (True, True) => True
case (False, False) => True
case _ => False

}
}
// Scala 3 uses 'given'
given eqBoolean: Eq[Boolean] with {
def eq(x: Boolean, y: Boolean): Boolean = (x, y) match {
case (True, True) => True
case (False, False) => True
case _ => False

}
}
*It is customary in Scala to use the value ??? of type Nothing to mark code that has yet to be written.

5

Furthermore, if the declaration itself has implicit or contextual parameters, those
are searched for recursively. In this way, we can make membership to a class
depend on some further constraints, as we did for lists in Haskell:

// Scala 2 uses the same keyword
implicit def eqList[A]
(implicit eqElement: Eq[A]): Eq[List[A]] = ???

// Scala 3 uses two different keywords
given eqList[A](using eqElement: Eq[A]): Eq[List[A]] = ???

Exercise 0.3. Define the function notEq, which returns False if the given
arguments are not equal. You should use the Eq trait defined above.

Exercise 0.4. Write the implicit or given required to create Eq for tuples.

This description only touches the tip of the iceberg of defining type class-like
hierarchies in Scala; when using Scala 2, you would also define some companion
objects to make working with them much easier. Scala 3 greatly improves the
ergonomics of type classes, but even in Scala 2 the excellent Simulacrum library
provides a @typeclass macro that generates most of the boilerplate for you. In the
rest of the book, in order to make our descriptions more concise, we will assume
that the concrete monad types implement the core operations as part of the class,
so we do not need to pass implicit parameters all the time.

0.2 Higher-kinded Abstraction
Containers are also useful abstractions that we can form using a wide variety of
types. For example, lists, sets, queues, and search trees are all generally defined
with the ability both to insert an element into an existing data structure of the
corresponding type and to create a new, empty structure:*

[] :: [a]
empty :: Set a
empty :: Tree a
empty :: Queue a

(:) :: a -> [a] -> [a]
insert :: a -> Set a -> Set a
insert :: a -> Tree a -> Tree a
push :: a -> Queue a -> Queue a

One peculiarity of these containers is that the same set of operations is available
irrespective of the types of the elements they contain. The only restriction is that if
a container starts its life with a given type of element, only more elements of that
type can be inserted, as the types of insert and push show.
*Here is our first example of the obsessive behavior of Haskellers to line things up in order to see
the commonalities among types.

6

If we want to create a type class encompassing all of these types, the abstraction
is not in the elements. The moving parts here are [], Set, Tree, and Queue. One
property that they share is that they require a type argument to turn them into real
types. We say that they are type constructors. In other words, we cannot have a
value or parameter of type Set — we need to write Set Int or Set[Int].

The definition of a Container type class in Haskell does not obviously reflect
that we are abstracting over a type constructor. The only way we can notice this
fact is by observing how the variable c is used — in this case, c is applied to yet
another type a, which means that c must be a type constructor:

class Container c where
empty :: c a
insert :: a -> c a -> c a

Scala is more explicit, in this respect. If a trait is parametrized by a type constructor,
it has to be marked as such. Given that type application in Scala is done with
square brackets, as in Set[Int], the need for a type argument is declared by one
or more underscores between square brackets:

trait Container[C[_]] {
def empty[A]: C[A]
def insert[A](x: A, xs: C[A]): C[A]

}
In Scala, in contrast to Haskell, every type argument must be explicitly introduced.
This makes it easier to identify where each type variable is coming from. In the
previous code, C refers to the container type we are abstracting over, whereas A
refers to the element type we use in each function.

Exercise 0.5. Write the List instance, implicit value, or given for the Con-
tainer type class.

Abstraction over type constructors is also known as higher-kinded abstraction.
This form of abstraction is fundamental to the rest of this book. Almost every new
structure we introduce, including monads, is going to abstract some commonality
over several type constructors. Haskell (and its derivatives such as PureScript) and
Scala are the only mainstream languages with built-in support for higher-kinded
abstraction, although you can encode it via different tricks in languages such as F#
and Kotlin — this is the reason our code blocks are mostly written in Haskell and
Scala.

7

0.3 Haskell’s Newtype
The most common way to write a Container instance for lists is to use them as
stacks, that is, to insert new elements at the beginning of a list:

instance Container [] where
empty = []
insert x xs = x:xs
-- or insert = (:)

But there are many other ways to abide by this interface. For example, the inserted
elements could go at the end of the list, simulating a queue:

instance Container [] where
empty = []
insert x xs = xs ++ [x] -- (++) is concatenation

If you try to include (or even import) both definitions in the same piece of code, the
compiler complains about overlapping instances. The problem is that Haskell uses
the type of the data to decide which instance to use. But consider the following
code:

insertTwice :: a -> [a] -> [x]
insertTwice x xs = insert x (insert x xs)
It is not possible to know which of the previous instances the programmer is
referring to, since both apply to a list of values xs. Whereas Scala offers more
control when searching for implicits, Haskell takes the simpler path and rejects
programs with multiple instances that might be applicable for the same type (unless
you enable the OverlappingInstances language extension, which is usually a bad
idea).

The solution to this problem is to turn one of the instances into its own data
type. For this purpose, we only need one constructor with one field, which holds
the data:

data Queue a = Queue { unQueue :: [a] }
In the eyes of the compiler, Queue is completely different from []. Thus, we can
write an instance for it without fear of overlapping with the previous one. The
downside is that now we have to pattern match and apply the constructor every
time we want to access or build the contents of the Queue type. For example, the
implementation of the instance reads:

instance Container Queue where
empty = Queue []
insert x (Queue xs) = Queue (xs ++ [x])
-- or using the field accessor unQueue
insert x xs = Queue (unQueue xs ++ [x])

8

This pattern is so common in Haskell code that the compiler includes a specific
construct for data types like Queue, above: one constructor with one field. Instead
of using data, we can use the newtype keyword:

newtype Queue a = Queue { unQueue :: [a] }
The compiler then ensures that no extra memory is allocated other than that which
is used for the single, wrapped value. Furthermore, all uses of the constructor for
pattern matching are completely erased in the compiled code. A newtype is merely
a way to direct the compiler to choose the correct instance.

0.4 Language Extensions in Haskell

The Haskell programming language is defined in a standard, the current incarnation
of which is Haskell 2010 (the previous one was Haskell 98). This standard defines
the minimum set of constructions that ought to be recognized for a compiler to
call itself “a Haskell compiler.” In practice, though, just about everybody uses the
Glasgow Haskell Compiler — GHC for short — and we follow that practice in this
book.

GHC extends the language in many different directions. By default, however,
it only allows constructions defined in the standard. To use the rest of them, you
need to use different language extensions. Each extension provides additional
syntax, new elements for the language, or richer types.

Let us assume you want to enable the MultiParamTypeClasses extension
(which provides the ability for type classes to have more than one parameter).
How to enable an extension depends on whether you want to do it in a file or in an
interactive session. In the former case, you need to add the following line at the
top of your file, even before the module declaration:

{-# LANGUAGE MultiParamTypeClasses #-}
If you need to enable more than one extension, you can either add additional
LANGUAGE lines or put all of the extensions on one line, separating them with
commas. The other case is enabling an extension in the GHC interpreter. To do that,
you need to enter the following at the REPL prompt:

> :set -XMultiParamTypeClasses
Note that the name of the extension to enable is preceded by -X. You can also turn
off an extension by using -XNo before its name. Be aware that not all extensions
can be disabled without restarting the interpreter.

Required extensions for GHC 8. The following extensions are required for different
parts of this book, although not all of them will be required at the same time. Note

9

that the name and restrictions of each extension may differ depending on your
version of GHC, so if you are following the book with an older or more recent
compiler, you may need to adjust them:

• Extensions related to type classes: MultiParamTypeClasses,
FunctionalDependencies, TypeSynonymInstances, FlexibleContexts,
FlexibleInstances, InstanceSigs, UndecidableInstances.

• Extensions to the type system: GADTs, RankNTypes, PolyKinds,
ScopedTypeVariables, DataKinds, KindSignatures, TypeApplications.

• Extensions to the language syntax: LambdaCase, TypeOperators.
• Extensions related to monads: MonadComprehensions, ApplicativeDo.
• Extensions to the deriving functionality: DeriveFunctor,
GeneralizedNewtypeDeriving.

• Only for part V: ConstraintKinds, TypeInType (not required anymore since
GHC 8.6).

It’s time. The world of monads awaits after a mere turn of the page. Get ready!

10

Part I

What is a Monad?

11

1
Discovering Monads

Monad is an abstract concept, which we programmers discovered after many at-
tempts to refactor and generalize code. One way to introduce monads is to state
the definition and derive information from it — a mathematical, deductive style.

In this chapter, however, we will try to arrive at the concept of a monad by
means of a series of examples. In order to help you cultivate an intuition for it,
words such as “context” or “box” are used throughout the chapter. Feel free to
ignore those parts that do not make sense to you in order to come to your own
understanding of what a monad is.

1.1 State Contexts
Take a simple type representing binary trees that stores information in its leaves.
This can be represented as an algebraic data type in Haskell as follows:

data Tree a = Leaf a | Node (Tree a) (Tree a)
In Scala, the declaration of binary trees is similar:

sealed abstract class Tree[A] // binary trees
case class Leaf[A](value: A) extends Tree[A]
case class Node[A](left: Tree[A], right: Tree[A]) extends Tree[A]

As a brief reminder of what each part of this declaration represents:

• The first step is declaring the data type itself and how many type parameters
it takes. In this case, a Tree is parametrized by yet another type, which means
that Tree cannot stand on its own as the type of an argument to a function.
Rather, we need to specify the type of its elements as Tree Int in Haskell or
Tree[String] in Scala.

13

In the case of Haskell, this information appears right after the data keyword,
and each subsequent type parameter starts with a lowercase letter. In Scala,
the declaration is decoupled as a set of classes. The parent class is Tree[A],
and it declares one type parameter between square brackets.

• In Haskell, after the equals sign, we find two constructors separated by a
vertical bar. Those are the functions that are used to build new elements of
the data type. They are also the basic patterns you use to match on a Tree
in a function definition.
The first constructor is called Leaf and holds one piece of information of
the type given as the argument to Tree. For example, Leaf True is a value
of type Tree Bool, since True is of type Bool. The second constructor, Node,
represents an internal node. This constructor is recursive, since it holds two
other trees inside of it.
The same information is represented in Scala by a series of case classes that
extend the previously defined Tree[A]. These classes are treated in a special
way by the compiler — in particular, they enable the use of pattern matching.
In contrast to Haskell, fields in a case class must be given a name.

As a first example, let us write a function that counts the number of leaves in a
binary tree:

numberOfLeaves :: Tree a -> Integer
numberOfLeaves (Leaf _) = 1
numberOfLeaves (Node l r) = numberOfLeaves l + numberOfLeaves r
def numberOfLeaves[A](t: Tree[A]): Int = t match {
case Leaf(_) => 1
case Node(l, r) => numberOfLeaves(l) + numberOfLeaves(r)

}
This function works in a recursive fashion: the output of the function numberOfLeaves
applied to the subtrees of a node is enough to compute the result for the node itself.
To declare how each constructor or case in the data type ought to be handled, we
make use of pattern matching. In Scala, this functionality needs an explicit keyword,
match, whereas in Haskell the patterns can be declared as a set of equations.

Things get a bit hairier for our second example: relabeling the leaves of the tree
left-to-right. If you start with a tree t, the result of relabel should contain the same
elements, but with each one paired with the index it would receive if the leaves
of t were flattened into a list starting with the leftmost leaf and ending with the
rightmost one, as shown in Figure 1.1. We can spend a long time trying to implement
this function in a simple recursive fashion, as we did for numberOfLeaves, only to
fail. This suggests that we must hold onto some extra information throughout the
procedure.

14

*
*

x y
z

Ñ *
*

(1,x) (2,y)
(3,z)

Figure 1.1: Example of left-to-right relabeling

Let us look at the problem more closely, focusing on how we would implement
the following:

relabel :: Tree a -> Tree (Int, a)
relabel (Leaf x) = (???, x)
The missing information that we mark with ??? is the index to be returned. But
every Leaf should be relabeled with a different index! A straightforward solution is
to get this information from the outside, as an argument:

relabel :: Tree a -> Int -> Tree (Int, a)
relabel (Leaf x) i = Leaf (i, x)

The next step is thinking about the case of Nodes. In order to relabel the whole
tree, we should relabel each of the subtrees. For the left side, we can just reuse
the index passed as an argument:

relabel (Node l r) i = Node (relabel l i) (relabel r ???)
The problem now is that we do not know which index to use in relabeling the right
subtree. The naı̈ve answer would be to use i + 1. Alas, this does not give a correct
result, since we do not know in advance how many Leafs the left subtree has. What
we can do is return that information in addition to the relabeled subtree:

relabel :: Tree a -> Int -> (Tree (Int, a), Int)
relabel (Leaf x) i = (Leaf (i, x), i+1)
relabel (Node l r) i = let (l', i1) = relabel l i

(r', i2) = relabel r i1
in (Node l' r', i2)

def relabel[A](t: Tree[A], i: Int): (Tree[(Int, A)], Int) = t match {
case Leaf(x) => (Leaf((i, x)), i + 1)
case Node(l, r) => {
val (ll, i1) = relabel(l, i)
val (rr, i2) = relabel(r, i1)
(Node(ll, rr), i2)

}
}

15

This relabel function works, but it would be rather ugly in the eyes of many
functional programmers. The main issue is that you are mixing the logic of the
program, which is simple and recursive, with its plumbing, which handles the index
at each stage. Passing and obtaining the current index is quite tedious and, at the
same time, has terrible consequences if it’s wrong — if we accidentally switch i1
and i2, this function would return the wrong result.

In order to separate out the plumbing, we can introduce a type synonym for
functions that depend on a counter:

type WithCounter a = Int -> (a, Int)
type WithCounter[A] = Int => (A, Int)
This way, the type of relabel becomes Tree a -> WithCounter (Tree a).

Now, let us look at the patterns that we find in the Node branch. The first one is
the nesting of let expressions (or val declarations, depending on the language):

let (r, newCounter) = ... oldCounter
in nextAction ... r ... newCounter

Using the power of higher-order functions, we can turn this pattern into its own
function:

next :: WithCounter a -> (a -> WithCounter b) -> WithCounter b
f `next` g = \i -> let (r, i') = f i in g r i'

In Scala we prefer to use next in infix position. Instead of the following code:

next(relabel(l)) { ll => ??? /* the next thing to do */ }
We would rather have the the plumbing operation, next, moved from the top-level
role to a secondary status:

relabel(l) next { ll => ??? /* next thing to do */ }
There is a problem, though, WithCounter is defined as a function type, and we
have no control over that type. That means that we cannot add our desired method
next directly. In Scala 2 we need to define an implicit class:

implicit class RichWithCounter[A](f: WithCounter[A]) {
def next[B](g: A => WithCounter[B]): WithCounter[B] = i => {
val (r, i1) = f(i)
g(r)(i1)

}
}

16

Under the hood, the Scala compiler rewrites the code above using next to
introduce a conversion to RichWithCounter:

RichWithCounter(relabel(l)).next({ ll => ??? /* next thing to do */ })
This (somehow convoluted) pattern is no longer required in Scala 3. In this case

you simply use an extension method:

extension (f: WithCounter[A]) {
def next[B](g: A => WithCounter[B]): WithCounter[B] = i => {
val (r, i1) = f(i)
g(r)(i1)

}
}
We will assume for the rest of the book that such implicit classes or extensions are
defined whenever required.

The second pattern that we find is returning a value with the counter unchanged:

pure :: a -> WithCounter a
pure x = \i -> (x, i)
def pure[A](x: A): WithCounter[A] = i => (x, i)

This is all the plumbing we need to make relabel shine!

relabel (Leaf x) = \i -> (Leaf (i,x), i + 1)
relabel (Node l r) = relabel l `next` \l' ->

relabel r `next` \r' ->
pure (Node l' r')

def relabel[A](t: Tree[A]): WithCounter[Tree[(A, Int)]] = t match {
case Leaf(x) => i => (Leaf((x, i)), i + 1)
case Node(l, r) => relabel(l) next { ll =>

relabel(r) next { rr =>
pure(Node(ll, rr)) } }

}
Note that even though we now describe the type of relabel as Tree a -> With-
Counter (Tree (a, Int)), once we expand the synonyms we get a plain Tree a
-> Int -> (Tree (a, Int), Int). In particular, to call the function we simply
use the following without any additional ceremony:

relabel myTree a
relabel(myTree)(0)

17

Throughout this book, we will use this technique of hiding some details of our types
in a synonym and only unveil some of those details in particular circumstances.

The previous example uses a concrete type, WithCounter, to maintain an index
in combination with an actual value. But in the same vein, we can keep other kinds
of state and thread them through each of a series of computations. The following
type synonym has two type variables — the first one is the state itself, and the
second is the value type:

type State s a = s -> (a, s)
type State[S, A] = S => (A, S)
In fact, our old WithCounter is nothing other than State Int!

Exercise 1.1. Rewrite the definitions of pure and next to work with an arbitrary
stateful computation State s a. Hint: you only need to change the type
signatures.

In the functional world, we refer to the pattern that State embodies in several
ways. We say that State adds a context to a value. An element of type State s a is
not a single value but rather a transformation of a given state into a new state and
a result value. We also say that next makes State work in a sequential fashion:
the result of one computation is fed to the next computation in the sequence.

1.2 Magical Multiplying Boxes
Binary trees are simple data structures, but in Haskell there is a simpler and more
essential container: lists. The special syntax for lists is baked into the compiler,
but we can think of the type [a] or List[A] as being defined in the following way:

data [a] = [] | a : [a]
In Scala, there is no built-in syntax for linked lists, but they are defined similarly:

sealed abstract class List[+A] // your usual lists
case object Nil extends List[Nothing]
case class ::[A](hd: A, tl: List[A]) extends List[A]
The + before the A in List[+A] declares the List type to be covariant in the element
type. This points to the interplay between functional and object-oriented features
in Scala: if we have a List[Cat], we want to be able to use it wherever we require
a List[Mammal]. Subtyping plays no role in this book, however. We will encounter
variance annotations only when describing built-in classes.

The first techniques that a functional programmer learns when working with
lists are pattern matching — defining different branches for the empty list and the

18

cons, with a head and a tail — and recursion — using the result of the same function
on the tail of the list to build the result for the whole. As a reminder, here is how
you compute the length of a list:

length :: [a] -> Integer
length [] = 0
length (_:xs) = 1 + length xs
def length[A](lst: List[A]) : Int = lst match {
case Nil => 0
case _ :: xs => 1 + length(xs)

}

Exercise 1.2. Write a function (++) that takes two lists and returns its concate-
nation. That is, given two lists l1 and l2, l1 ++ l2 contains the elements of
l1 followed by the elements of l2.

This is such a boring way to look at lists! I prefer to think of them as magical
devices, incredible boxes with not one but a series of objects of the same type.
Clearly, you do not want to open the boxes, because the magic might fade away.
Fear not! The device comes with several spells — usually referred to as functions —
that allow us to manipulate its contents.

The best-known spell for lists is map. This function receives a description of
how to treat one element — that is, yet another function — which is then applied
to all the elements in the list. Its type shows that information in a clear way:

map :: (a -> b) -> [a] -> [b]
def map[A, B](f: A => B, lst: List[A]): List[B]

Exercise 1.3. Do you remember how map is defined? Try it out!

The second spell is less well-known but much simpler. The singleton function
takes one value and, using energy coming from black holes in outer space, packs it
into a list. Well, I guess I am being too literal — a singleton list is actually just a list
with one element!

singleton :: a -> [a]
singleton x = [x] -- or x : []
def singleton[A](x: A): List[A] = ::(x, Nil)
// Using the built-in List class, you can write List(x) instead

19

Note the similarity of the type with that of pure as defined for state contexts, a ->
State s a. In both cases, we get a pure value and “inject” it into either a context
or a magical box.

The third spell is my favorite, concat. Let me first show its type and definition:

concat :: [[a]] -> [a]
concat [] = []
concat (x:xs) = x ++ concat xs
-- alternatively
concat = foldr (++) []
// This operation is called flatten in the built-in List class
def concat[A](lst: List[List[A]]): List[A] = lst match {
case Nil => Nil
case ::(x, xs) => x ++ concat(xs)

}
What is so magical about this function? Well, it takes a list of lists and somehow
manages to turn it into one flattened list. I picture leprechauns obsessively opening
the inner boxes and throwing their contents back into the outer box.

Jokes aside, this is another point of view that is useful for understanding these
concepts. A list is a kind of “box” that supports three operations: (1) mapping a
function over all the elements contained in it; (2) creating a box from a single
element; and (3) flattening nested boxes of boxes into a single layer.

1.3 Both, Maybe? I Don’t Think That’s an Option
One of the more widely-advertised features of functional languages — but in fact
coming from their support for algebraic data types — is how they avoid the “billion
dollar mistake,” that is, having a null value that fits into every type but which raises
an error when you try to access it.*

Since creating new data types is so cheap, and it is possible to work with them
polymorphically, most functional languages define some notion of an optional value.
In Haskell, it is called Maybe, in Scala it is Option, in Swift it is called Optional,
and even in C# we find Nullable. Regardless of the language, the structure of the
data type is similar:

data Maybe a = Nothing -- no value
| Just a -- holds a value

sealed abstract class Option[+A] // optional value
case object None extends Option[Nothing] // no value
case class Some[A](value: A) extends Option[A] // holds a value
*Its inventor, Sir Tony Hoare, apologized in 2009 for the creation of null using those same words.

20

A primary use case for optional values is the validation of user input. For
example, let’s suppose we have a small record or class representing a person:

type Name = String
data Person = Person { name :: Name, age :: Int }
type Name = String
case class Person(name: Name, age: Int)
In this case, we might want to check some properties of the name and age be-
fore creating a value. Suppose that those checks are factored into two different
functions:

validateName :: String -> Maybe Name
validateAge :: Int -> Maybe Int
def validateName(s: String): Option[Name]
def validateAge(n: Int): Option[Int]

How do we compose those functions to create validatePerson? This is our
first attempt:

validatePerson :: String -> Int -> Maybe Person
validatePerson name age
= case validateName name of

Nothing -> Nothing
Just name' -> case validateAge age of

Nothing -> Nothing
Just age' -> Just (Person name' age')

def validatePerson(s: String, n: Int): Option[Person]
= validateName(s) match {

case None => None
case Some(name) => validateAge(n) match {

case None => None
case Some(age) => Some(Person(name, age))

}
}

This solution clearly does not scale. As we introduce more and more validations,
we need to nest the branches more and more, as well. Furthermore, we need to
repeat the following code over and over again:

Nothing -> Nothing -- in Haskell
case None => None // in Scala

21

So, as we did for State, let us look at the common pattern in this code:

case v of
Nothing -> Nothing
Just v' -> nextAction ... v' ...

Using the power of higher-order functions, we can turn it into its own function:

then_ :: Maybe a -> (a -> Maybe b) -> Maybe b
then_ v g = case v of

Nothing -> Nothing
Just v' -> g v'

sealed class Option[A] {
def then[B](f: A => Option[B]): Option[B] = this match {
case None => None
case Some(x) => f(x)

}
}
And rewrite validatePerson without all the nesting:

validatePerson name age
= validateName name `then_` \name' ->
validateAge age `then_` \age' ->
Just (Person name' age')

def validatePerson(s: String, n: Int) = validateName(s) then { name =>
validateAge(n) then { age =>
Some(Person(name, age)) }

}
Let us compare the types of the previously defined next for state contexts and

the new then_ for optional values. Their similarity is a bit obscured by the fact that
State takes an additional type argument in the first position, but you should take
State s as a single block:

next :: State s a -> (a -> State s b) -> State s b
then_ :: Maybe a -> (a -> Maybe b) -> Maybe b
def next[S, A, B](s: State[S, A], f: A => State[S, B]): State[S, B]
def then[A, B](o: Option [A], f: A => Option [B]): Option [B]
They look fairly similar, right? In some sense, being optional is also a context, but
instead of adding the ability to consume and modify a state, it allows failure with
no value, in addition to returning a value. In a similar fashion, then_ sequences
computations, each of them possibly failing, into one complete computation.

Maybe (or Option) may also work as a box that is either empty or filled with
one value. We can modify such a value, if one is present, as follows:

22

map :: (a -> b) -> Maybe a -> Maybe b
map f Nothing = Nothing
map f (Just x) = Just (f x)
def map[A, B](f: A => B, o: Option[A]): Option[B] = o match {
case None => None
case Some(x) => Some(f(x))

}
Or we can create a box with a single value:

singleton :: a -> Maybe a
singleton = Just
def singleton[A](x: A): Option[A] = Some(x)
But what is more interesting, we have an operation to flatten a box that is inside
another box. If either the inner box or the outer box is empty, there is actually no
value at all. Only if we have a box containing a box containing a value can we wrap
it in a single box:

flatten :: Maybe (Maybe a) -> Maybe a
flatten (Just (Just x)) = Just x
flatten _ = Nothing
def flatten[A](oo: Option[Option[A]]): Option[A] = oo match {
case Some(Some(x)) => Some(x)
case _ => None

}
Let us play a game with boxes and contexts.* Is it possible to flatten two layers

of boxes by using just then_? Following the types points us in the right direction:

then_ :: Maybe a -> (a -> Maybe b) -> Maybe b
flatten :: Maybe (Maybe c) -> Maybe c
We need to make a equal to Maybe c and b equal to c to make the types match. In
turn, this means that we need to provide then_ with a function of type Maybe c
-> Maybe c. Wait a minute! We can use the identity function!

flatten oo = then_ oo id
Exercise 1.4. Convince yourself that the two definitions of flatten are equiv-
alent by expanding the code of then_ in the second one.

Now, dear reader, you may be wondering whether we can go in the opposite
direction. The closest type to then_ is map with its arguments reversed:
*Spanish-speaking readers might think of trileros at this point.

23

then_ :: Maybe a -> (a -> Maybe b) -> Maybe b
flip map :: Maybe c -> (c -> d) -> Maybe d
Imagine that we have a function f :: a -> Maybe b supplied for then_, but we
give it by mistake to flip map. In response, the type variable d in the type of flip
map is instantiated to Maybe b. This implies that flip map f o has type Maybe
(Maybe d) — not exactly what we aimed for. Is there any way to flatten those two
layers? This is exactly what flatten does:

then_ o f = flatten (fmap f o)

1.4 Two for the Price of One
The definition of flatten in terms of then_, and vice versa, does not depend on any
specifics of Maybe or Option. These are just particular usages of those functions.
This suggests that we could do the same for the other two data types introduced
in this chapter.

Let us begin with the version of flatten for State:

flatten :: State s (State s a) -> State s a
flatten ss = next ss id
To understand what is going on, we can replace next with its definition:

flatten ss = \i -> let (r, i') = ss i in id r i'
-- in other words

= \i -> let (r, i') = ss i in r i'
In summary, we use the initial state i to unwrap the first layer of State. The result
of this unwrapping is yet another State computation and some change in the state.
This second state is what we use to execute the unwrapped computation.

The corresponding operation for lists is a bit better known than flatten for
State computations. The signature of this function is:

f :: [a] -> (a -> [b]) -> [b]
def f[A, B](xs: List[A], g: A => List[B]): List[B]
This function is known in Haskell circles as concatMap and in the Scala base library
as flatMap. That name makes sense, since by translating the definition of then_
in terms of flatten (called concat in the case of lists) and map, we reach:

concatMap xs f = concat (map f xs)
def flatMap[A, B](xs: List[A], g: A => List[B]): List[B]
= concat(map(g, xs))

24

To understand what concatMap does, let us look at a concrete example:

> concatMap [1,10] (\x -> [x + 1, x + 2])
[2,3,11,12]
The result shows that for each value in the first list [1,10], the function is executed,
and all the results are concatenated into the final list. This example suggests
another view of the list type not as a box but as a context: in the same way that
Maybe/Option adds the possibility of not returning a value, []/List adds the
ability to return multiple values.

The fact that you can always define a “box-like” interface from a “context-like”
one, and vice versa, shows that those two interfaces are just two sides of the same
coin. In a bit fewer than 10 pages, we have been able to find three data types —
State s a, [a], and Maybe a — that share a common abstraction. This common
interface is what we call a monad!

At this point, Haskell and Scala diverge in the names assigned to the generic
functions defining a monad. In fact, the two main categorically-inspired libraries
for Scala (Scalaz and Cats) do not agree, either:

• The “singleton” operation (building a monadic value from a pure one) is
called return or pure in Haskell and point, pure, or unit in Scala.

• The “sequence” operation is sometimes called bind (this is how Haskellers
pronounce their symbolic (>>=)), whereas the Scala standard library leans
toward flatMap.

• The “flatten” operation is known as either join or flatten.

For the sake of consistency in terminology, the rest of this book assumes that the
monadic interface is available through a Monad type class (in the case of Haskell)
or a Monad trait (in the case of Scala), which may be defined in the following ways:

-- Monad as a context
class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b)

-> m b

-- Monad as a box
class Monad m where

return :: a -> m a
fmap :: (a -> b) -> m a -> m b
join :: m (m a) -> m a

trait Monad[M[_]] {
def point[A](x: A): M[A]
def bind[A, B](x: M[A])
(f: A => M[B]): M[B]

}

trait Monad[M[_]] {
def point[A](x: A): M[A]
def map[A, B](x: M[A])(f: A => B): M[B]
def join[A](xx: M[M[A]]): M[A]

}
The definition of the generic interface of the monad highlights an important

point: monads are a higher-kinded abstraction. Being a monad is not a property

25

of a concrete type (like Int or Bool) but of a type constructor (like Maybe or List).
Haskell’s syntax hides this subtle point, but Scala is explicit: we need to write M[_]
to tell the compiler that members of this interface have a “type hole” that may vary
in its different methods.

As an example, here is the implementation of the interface for Maybe/Option.
In the Scala code, we use the type class pattern as described in Section 0.1:

instance Monad Maybe where
return = Just
(>>=) = then_

object Option {
implicit val optionMonad: Monad[Option] = new Monad[Option] {
def point[A](x: A) = Some(x)
def bind[A, B](x: Option[A])(f: A => Option[B])
: Option[B] = then(x, f)

}
}

1.5 Functors

Before closing this first chapter, we should remark that part of our definition of
monad comes from a more generic abstraction called a functor. Functors encompass
the simplest notion of a “magic box” that we can only inspect by means of functions
but never unwrap or generate anew. In other words, a functor provides a function
fmap — think “functor map” — but nothing comparable to the monadic return:

class Functor f where
fmap :: (a -> b) -> f a -> f b

trait Functor[F[_]] {
def map[A, B](x: F[A])(f: A => B): F[B]

}
As explained above, for every monad, we can write a map operation. This implies
that every monad is also a functor, and thus by using monads, we also gain the
capabilities of functors.

The type signature of fmap leads to another intuition, if we sprinkle in some
parentheses:

fmap :: Functor f => (a -> b) -> (f a -> f b)
26

By calling fmap over a function g, you turn it into a new function that operates on
elements contained in the functor. This is called lifting, since we “lift” g to operate
at a higher-level of abstraction. For example, \x -> x + 1 is a humble function
that operates on numbers and thus might have the type Int -> Int. If we write
fmap (\x -> x + 1), this function may now map [Int] -> [Int] (by executing
the function on every element), or Maybe Int -> Maybe Int (by modifying the
value, only if there is one), or even State s Int -> State s Int (by changing
the value to be returned from the computation but keeping the state untouched).

In fact, this way of looking at Functor leads us to the discovery of another
interesting structure, the applicative functor. But for that you need to wait until
Chapter 3, dear reader.

27

