

Bitesize Android KitKat
a review of Android KitKat for developers, in 6 bite-sized
chunks

Sam Davies

This book is for sale at http://leanpub.com/bitesizekitkat

This version was published on 2014-04-01

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2014 Sam Davies

http://leanpub.com/bitesizekitkat
http://leanpub.com
http://leanpub.com/manifesto

Also By Sam Davies
iOS7 Day by Day

http://leanpub.com/u/sammyd
http://leanpub.com/ios7daybyday

Contents

Full Screen Apps . 1
Introduction . 1
The different full-screen experiences . 1
Conclusion . 8

Full Screen Apps
Introduction

Full-screen apps allow the user to get fully engrossed with whatever content they are viewing
or interacting with. Examples include e-book readers, video players, games and drawing apps.
Before KitKat, although there was support for a fullscreen mode, KitKat introduces 2 new
immersive modes.

In this chapter we’ll take a look at 3 different full-screen modes, and discuss times when you
might want to use them. There’s an accompanying app which demonstrates how to use the
different modes and what they might be used for. The source code is available on Github
github.com/ShinobiControls/bitesize-kitkat¹, and is a gradle project which has been tested on
Android Studio 0.4.4.

The different full-screen experiences

We’re going to take a look at 3 different full-screen modes:

• Leanback This is the mode that was available pre-KitKat and is suited to video players.
• Immersive New to KitKat. Suitable for eBook reader - most of the time is spent in full-
screen mode, but occasionally it’s necessary to interact with other UI elements.

• Sticky Immersive New to KitKat. Suitable for games or a drawing app, where nearly all
the workflow happens in full-screen mode.

First up, leanback mode.

Leanback

In leanback mode, the chrome such as the status bar, the activity bar and any UI controls will
disappear after a period without user interaction. Whilst they are not visible then any interaction
with the screenwill cause them to reappear, and the touches won’t be passed on to the underlying
view. This means that any user interaction can only occur whilst the UI chrome is visible. This
behavior is exactly the behavior you might expect from a video player - the user doesn’t need to
be able to interact with the content, instead they will expect some controls to appear when they
touch the screen.

Android doesn’t provide a UI visibility mode which performs exactly as we would want here, so
we have to create it ourself.

We set the mode using a combination of flags and the setSystemUiVisibility()method on the
decor view. The following flags are of interest for leanback mode:

¹https://github.com/ShinobiControls/bitesize-kitkat

https://github.com/ShinobiControls/bitesize-kitkat
https://github.com/ShinobiControls/bitesize-kitkat

Full Screen Apps 2

• SYSTEM_UI_FLAG_LAYOUT_STABLE provide a stable layout size to fitSystemWindows()

method. This means that as the appearance of transient chrome changes then the layout
of the underlying content should remain stable.

• SYSTEM_UI_FLAG_FULLSCREEN hide the status bar, action bar and other non-critical screen
adornments.

• SYSTEM_UI_FLAG_HIDE_NAVIGATION if the device has navigation buttons (e.g. back, home
etc) then hide them.

• SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION lay the screen out as if the navigation is
hidden, but don’t necessarily hide it. This means that when the navigation does become
hidden then the layout won’t have to redraw itself.

• SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN in a similar manner to the previous flag, lay the
screen out as if it is in fullscreen mode.

The following method is used to enable/disable fullscreen mode:

1 protected void enableFullScreen(boolean enabled) {

2 int newVisibility = View.SYSTEM_UI_FLAG_LAYOUT_STABLE

3 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION

4 | View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN;

5

6 if(enabled) {

7 newVisibility |= View.SYSTEM_UI_FLAG_FULLSCREEN

8 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION;

9 }

10

11 // Set the visibility

12 getDecorView().setSystemUiVisibility(newVisibility);

13 }

Irrespective of whether we’re ‘leaning back’, or allowing the user to interact with the app, we
need to set the layout to assume we’re hiding the navigation and using full-screen. This means
that when we enter leanback mode, there isn’t a noticeable jerk as the view re-lays itself out.

In the case where we are enabling fullscreen mode (i.e. leaning back) then we want to actually
hide the navigation and enable full-screen.

We set the new visibility on the decor view, which is supplied by the getDecorView() method:

1 private View getDecorView() {

2 return getWindow().getDecorView();

3 }

Now, once this has been called (with true as an argument) then the chrome will disappear. If the
user interacts with the screen, then it’ll automatically cause the chrome to reappear, the initial
touch being absorbed by the OS. In order to get the leanback experience of the UI disappearing
again after a period of time then we we will listen for UI visibility changes and start a hide timer
when one occurs:

Full Screen Apps 3

1 public class LeanBackActivity extends AbstractFullScreenLayoutActivity

2 implements View.OnSystemUiVisibilityChangeListener {

3

4 @Override

5 protected void onCreate(Bundle savedInstanceState) {

6 ...

7 getDecorView().setOnSystemUiVisibilityChangeListener(this);

8 }

9 ...

10 }

and provide an implementation for the onSystemUiVisibilityChange() method:

1 @Override

2 public void onSystemUiVisibilityChange(int visibility) {

3 if((mLastSystemUIVisibility & View.SYSTEM_UI_FLAG_HIDE_NAVIGATION) != 0

4 && (visibility & View.SYSTEM_UI_FLAG_HIDE_NAVIGATION) == 0) {

5 resetHideTimer();

6 }

7 mLastSystemUIVisibility = visibility;

8 }

Here, we’re checking to find out whether the change in visibility represents the appearance of
the navigation (i.e. from hidden to visible), and if it is then we start a timer to make the chrome
hide again:

1 private void resetHideTimer() {

2 // First cancel any queued events - i.e. resetting the countdown clock

3 mLeanBackHandler.removeCallbacks(mEnterLeanback);

4 // And fire the event in 3s time

5 mLeanBackHandler.postDelayed(mEnterLeanback, 3000);

6 }

where mLeanBackHandler and mEnterLeanback are defined as follows:

1 private final Handler mLeanBackHandler = new Handler();

2 private final Runnable mEnterLeanback = new Runnable() {

3 @Override

4 public void run() {

5 enableFullScreen(true);

6 }

7 };

If the user interacts with the UI then we don’t want the timer firing and hiding the controls
away from underneath them. If you have some custom buttons then you could add a call to
resetHideTimer() as part of the tap handler, but since we don’t have any controls here, we’ll
add a ClickListener to the main content view:

Full Screen Apps 4

1 protected void onCreate(Bundle savedInstanceState) {

2 ...

3 getMainView().setOnClickListener(this);

4 }

And reset the timer when a click is performed:

1 @Override

2 public void onClick(View v) {

3 // If the `mainView` receives a click event then reset the leanback-mode c\

4 lock

5 resetHideTimer();

6 }

This approach completes the leanback mode, and if you run it up you’ll see behavior like the
following:

Leanback mode example

Immersive mode

Immersive view is new to KitKat, and allows users to interact with the view whilst in full-screen
mode, in contrast to leanback mode, which shows the system UI as soon as interaction begins.
This approach is ideal for ebook readers, where whilst reading the user would want to be able

Full Screen Apps 5

to see the entire page of content, but will need to be able to get back at the controls to change
books and the suchlike.

The same flags are of interest - with the addition of:

• SYSTEM_UI_FLAG_IMMERSIVE enter immersive mode, where the view is fullscreen, and
touches are sent through to the content - i.e. are not intercepted and treated as visibility
change triggers.

The following demonstrates the use of these flags to set visibility:

1 protected void enableFullScreen(boolean enabled) {

2 int newVisibility = View.SYSTEM_UI_FLAG_LAYOUT_STABLE

3 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION

4 | View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN;

5

6 if(enabled) {

7 newVisibility |= View.SYSTEM_UI_FLAG_FULLSCREEN

8 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION

9 | View.SYSTEM_UI_FLAG_IMMERSIVE;

10 }

11

12 getDecorView().setSystemUiVisibility(newVisibility);

13 }

Calling this methodwith enabled set as truewill cause the navigation buttons, the status bar and
the action bar to animate out. In order to get them to reappear, the user must swipe downwards
from the top of the screen, and as such, the first time immersive mode is entered in an app, the
user will be presented with the following bubble:

Full Screen Apps 6

Immersive Bubble

This disappears after a couple of seconds, and allows the user to interact with the full screen
display as they might want to.

Once the user swipes down from the top, then immersive display is canceled, and the system UI
chromewill reappear. This will involve a call to onSystemUiVisibilityChanged() of the relevant
listener. In the accompanying demo app, we use this as an opportunity to display a button which
allows the user to re-enter immersive mode:

1 @Override

2 public void onSystemUiVisibilityChange(int visibility) {

3 Button immersiveButton = (Button)findViewById(R.id.enableImmersiveButton);

4 if((visibility & View.SYSTEM_UI_FLAG_HIDE_NAVIGATION) != 0) {

5 // Hide button

6 immersiveButton.setVisibility(View.INVISIBLE);

7 } else {

8 immersiveButton.setVisibility(View.VISIBLE);

9 }

10 }

With the click handler simply calling our enableFullScreen() method:

Full Screen Apps 7

1 public void immersiveButtonClickHandler(View view) {

2 enableFullScreen(true);

3 }

Enable immersive button

Note that the control flow of the system UI visibility change listener will hide the immersive
button as the app enters immersive mode.

Sticky Immersive mode

The second new visibility mode added to KitKat is sticky immersive, and as you might expect
it’s very closely related to immersive mode. Whereas immersive mode is canceled when the
user swipes down from the top of the screen, sticky immersive mode will automatically re-enter
immersive mode after a short period of time. In this respect it is very much like a cross between
immersive and lean-back. This makes it ideally suited for apps which may occasionally require
the user to navigate around, but the main focus of the app is very much on the content - for
example games or a drawing app.

Immersive sticky introduces one more visibility flag:

• SYSTEM_UI_FLAG_IMMERSIVE_STICKY enables immersive sticky mode. Importantly this flag
will not be removed from the visibility mask when the user swipes down, and it will return
to immersive mode after a short time.

Therefore, our enableFullScreen() method becomes the following:

Full Screen Apps 8

1 @Override

2 protected void enableFullScreen(boolean enabled) {

3 int newVisibility = View.SYSTEM_UI_FLAG_LAYOUT_STABLE

4 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION

5 | View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN;

6

7 if(enabled) {

8 newVisibility |= View.SYSTEM_UI_FLAG_FULLSCREEN

9 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION

10 | View.SYSTEM_UI_FLAG_IMMERSIVE_STICKY;

11 }

12

13 getDecorView().setSystemUiVisibility(newVisibility);

14 }

Calling this method with true as the enabled argument will enter sticky immersive, and this
will remain until the system’s UI visibility is changed elsewhere.

It has the following appearance:

Sticky Immersive

Conclusion

KitKat introduces a couple of new approaches for displaying full-screen content which makes it
easier to get the behavior users expect from different app experiences.

Full Screen Apps 9

The app that we’ve built here demonstrates how to use 3 popular full-screen modes, and you
can play around with them to decide which will work best for your app. The code is available
on Github github.com/ShinobiControls/bitesize-kitkat² and if you have any questions/comments
then let me know below, on Github or via twitter @iwantmyrealname³.

²https://github.com/ShinobiControls/bitesize-kitkat
³https://twitter.com/iwantmyrealname

https://github.com/ShinobiControls/bitesize-kitkat
https://twitter.com/iwantmyrealname
https://github.com/ShinobiControls/bitesize-kitkat
https://twitter.com/iwantmyrealname

	Table of Contents
	Full Screen Apps
	Introduction
	The different full-screen experiences
	Conclusion

