

[image: Bitesize Android KitKat]

 Bitesize Android KitKat

 a review of Android KitKat for developers, in 6 bite-sized chunks

 Sam Davies

 This book is for sale at http://leanpub.com/bitesizekitkat

 This version was published on 2014-04-01

 [image: publisher's logo]

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2014 Sam Davies

Table of Contents

 	
 Full Screen Apps

 	
 Introduction

 	
 The different full-screen experiences

 	
 Conclusion

Full Screen Apps

Introduction

Full-screen apps allow the user to get fully engrossed with whatever content they
are viewing or interacting with. Examples include e-book readers, video players,
games and drawing apps. Before KitKat, although there was support for a
fullscreen mode, KitKat introduces 2 new immersive modes.

In this chapter we’ll take a look at 3 different full-screen modes, and discuss
times when you might want to use them. There’s an accompanying app which
demonstrates how to use the different modes and what they might be used for. The
source code is available on Github
github.com/ShinobiControls/bitesize-kitkat,
and is a gradle project which has been tested on Android Studio 0.4.4.

The different full-screen experiences

We’re going to take a look at 3 different full-screen modes:

	Leanback This is the mode that was available pre-KitKat and is suited to
video players.

 	Immersive New to KitKat. Suitable for eBook reader - most of the time is
spent in full-screen mode, but occasionally it’s necessary to interact with other
UI elements.

 	Sticky Immersive New to KitKat. Suitable for games or a drawing app, where
nearly all the workflow happens in full-screen mode.

First up, leanback mode.

Leanback

In leanback mode, the chrome such as the status bar, the activity bar and any
UI controls will disappear after a period without user interaction. Whilst they
are not visible then any interaction with the screen will cause them to reappear,
and the touches won’t be passed on to the underlying view. This means that any
user interaction can only occur whilst the UI chrome is visible. This behavior
is exactly the behavior you might expect from a video player - the user doesn’t
need to be able to interact with the content, instead they will expect some
controls to appear when they touch the screen.

Android doesn’t provide a UI visibility mode which performs exactly as we would
want here, so we have to create it ourself.

We set the mode using a combination of flags and the setSystemUiVisibility()
method on the decor view. The following flags are of interest for leanback mode:

	SYSTEM_UI_FLAG_LAYOUT_STABLE provide a stable layout size to
fitSystemWindows() method. This means that as the appearance of transient
chrome changes then the layout of the underlying content should remain stable.

 	SYSTEM_UI_FLAG_FULLSCREEN hide the status bar, action bar and other non-critical
screen adornments.

 	SYSTEM_UI_FLAG_HIDE_NAVIGATION if the device has navigation buttons (e.g.
back, home etc) then hide them.

 	SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION lay the screen out as if the navigation
is hidden, but don’t necessarily hide it. This means that when the navigation does
become hidden then the layout won’t have to redraw itself.

 	SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN in a similar manner to the previous flag, lay
the screen out as if it is in fullscreen mode.

The following method is used to enable/disable fullscreen mode:

 1 protected void enableFullScreen(boolean enabled) {
 2 int newVisibility = View.SYSTEM_UI_FLAG_LAYOUT_STABLE
 3 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION
 4 | View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN;
 5
 6 if(enabled) {
 7 newVisibility |= View.SYSTEM_UI_FLAG_FULLSCREEN
 8 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION;
 9 }
10
11 // Set the visibility
12 getDecorView().setSystemUiVisibility(newVisibility);
13 }

Irrespective of whether we’re ‘leaning back’, or allowing the user to interact
with the app, we need to set the layout to assume we’re hiding the navigation
and using full-screen. This means that when we enter leanback mode, there isn’t
a noticeable jerk as the view re-lays itself out.

In the case where we are enabling fullscreen mode (i.e. leaning back) then we want
to actually hide the navigation and enable full-screen.

We set the new visibility on the decor view, which is supplied by the getDecorView()
method:

1 private View getDecorView() {
2 return getWindow().getDecorView();
3 }

Now, once this has been called (with true as an argument) then the chrome will
disappear. If the user interacts with the screen, then it’ll automatically cause
the chrome to reappear, the initial touch being absorbed by the OS. In order to
get the leanback experience of the UI disappearing again after a period of time
then we we will listen for UI visibility changes and start a hide timer when one
occurs:

 1 public class LeanBackActivity extends AbstractFullScreenLayoutActivity
 2 implements View.OnSystemUiVisibilityChangeListener {
 3
 4 @Override
 5 protected void onCreate(Bundle savedInstanceState) {
 6 ...
 7 getDecorView().setOnSystemUiVisibilityChangeListener(this);
 8 }
 9 ...
10 }

and provide an implementation for the onSystemUiVisibilityChange() method:

1 @Override
2 public void onSystemUiVisibilityChange(int visibility) {
3 if((mLastSystemUIVisibility & View.SYSTEM_UI_FLAG_HIDE_NAVIGATION) != 0
4 && (visibility & View.SYSTEM_UI_FLAG_HIDE_NAVIGATION) == 0) {
5 resetHideTimer();
6 }
7 mLastSystemUIVisibility = visibility;
8 }

Here, we’re checking to find out whether the change in visibility represents the
appearance of the navigation (i.e. from hidden to visible), and if it is then we
start a timer to make the chrome hide again:

1 private void resetHideTimer() {
2 // First cancel any queued events - i.e. resetting the countdown clock
3 mLeanBackHandler.removeCallbacks(mEnterLeanback);
4 // And fire the event in 3s time
5 mLeanBackHandler.postDelayed(mEnterLeanback, 3000);
6 }

where mLeanBackHandler and mEnterLeanback are defined as follows:

1 private final Handler mLeanBackHandler = new Handler();
2 private final Runnable mEnterLeanback = new Runnable() {
3 @Override
4 public void run() {
5 enableFullScreen(true);
6 }
7 };

If the user interacts with the UI then we don’t want the timer firing and hiding
the controls away from underneath them. If you have some custom buttons then you
could add a call to resetHideTimer() as part of the tap handler, but since
we don’t have any controls here, we’ll add a ClickListener to the main content
view:

1 protected void onCreate(Bundle savedInstanceState) {
2 ...
3 getMainView().setOnClickListener(this);
4 }

And reset the timer when a click is performed:

1 @Override
2 public void onClick(View v) {
3 // If the `mainView` receives a click event then reset the leanback-mode c\
4 lock
5 resetHideTimer();
6 }

This approach completes the leanback mode, and if you run it up you’ll see
behavior like the following:

 [image: Leanback mode example]Leanback mode example

Immersive mode

Immersive view is new to KitKat, and allows users to interact with the view whilst
in full-screen mode, in contrast to leanback mode, which shows the system UI as
soon as interaction begins. This approach is ideal for ebook readers, where whilst
reading the user would want to be able to see the entire page of content, but will
need to be able to get back at the controls to change books and the suchlike.

The same flags are of interest - with the addition of:

	SYSTEM_UI_FLAG_IMMERSIVE enter immersive mode, where the view is fullscreen,
and touches are sent through to the content - i.e. are not intercepted and treated
as visibility change triggers.

The following demonstrates the use of these flags to set visibility:

 1 protected void enableFullScreen(boolean enabled) {
 2 int newVisibility = View.SYSTEM_UI_FLAG_LAYOUT_STABLE
 3 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION
 4 | View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN;
 5
 6 if(enabled) {
 7 newVisibility |= View.SYSTEM_UI_FLAG_FULLSCREEN
 8 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION
 9 | View.SYSTEM_UI_FLAG_IMMERSIVE;
10 }
11
12 getDecorView().setSystemUiVisibility(newVisibility);
13 }

Calling this method with enabled set as true will cause the navigation buttons,
the status bar and the action bar to animate out. In order to get them to reappear,
the user must swipe downwards from the top of the screen, and as such, the first
time immersive mode is entered in an app, the user will be presented with the
following bubble:

 [image: Immersive Bubble]Immersive Bubble

This disappears after a couple of seconds, and allows the user to interact with
the full screen display as they might want to.

Once the user swipes down from the top, then immersive display is canceled, and
the system UI chrome will reappear. This will involve a call to onSystemUiVisibilityChanged()
of the relevant listener. In the accompanying demo app, we use this as an opportunity
to display a button which allows the user to re-enter immersive mode:

 1 @Override
 2 public void onSystemUiVisibilityChange(int visibility) {
 3 Button immersiveButton = (Button)findViewById(R.id.enableImmersiveButton);
 4 if((visibility & View.SYSTEM_UI_FLAG_HIDE_NAVIGATION) != 0) {
 5 // Hide button
 6 immersiveButton.setVisibility(View.INVISIBLE);
 7 } else {
 8 immersiveButton.setVisibility(View.VISIBLE);
 9 }
10 }

With the click handler simply calling our enableFullScreen() method:

1 public void immersiveButtonClickHandler(View view) {
2 enableFullScreen(true);
3 }

 [image: Enable immersive button]Enable immersive button

Note that the control flow of the system UI visibility change listener will hide
the immersive button as the app enters immersive mode.

Sticky Immersive mode

The second new visibility mode added to KitKat is sticky immersive, and as you
might expect it’s very closely related to immersive mode. Whereas immersive mode
is canceled when the user swipes down from the top of the screen, sticky immersive
mode will automatically re-enter immersive mode after a short period of time. In
this respect it is very much like a cross between immersive and lean-back. This
makes it ideally suited for apps which may occasionally require the user to
navigate around, but the main focus of the app is very much on the content - for
example games or a drawing app.

Immersive sticky introduces one more visibility flag:

	SYSTEM_UI_FLAG_IMMERSIVE_STICKY enables immersive sticky mode. Importantly
this flag will not be removed from the visibility mask when the user swipes down,
and it will return to immersive mode after a short time.

Therefore, our enableFullScreen() method becomes the following:

 1 @Override
 2 protected void enableFullScreen(boolean enabled) {
 3 int newVisibility = View.SYSTEM_UI_FLAG_LAYOUT_STABLE
 4 | View.SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION
 5 | View.SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN;
 6
 7 if(enabled) {
 8 newVisibility |= View.SYSTEM_UI_FLAG_FULLSCREEN
 9 | View.SYSTEM_UI_FLAG_HIDE_NAVIGATION
10 | View.SYSTEM_UI_FLAG_IMMERSIVE_STICKY;
11 }
12
13 getDecorView().setSystemUiVisibility(newVisibility);
14 }

Calling this method with true as the enabled argument will enter sticky
immersive, and this will remain until the system’s UI visibility is changed
elsewhere.

It has the following appearance:

 [image: Sticky Immersive]Sticky Immersive

Conclusion

KitKat introduces a couple of new approaches for displaying full-screen content
which makes it easier to get the behavior users expect from different app
experiences.

The app that we’ve built here demonstrates how to use 3 popular full-screen
modes, and you can play around with them to decide which will work best for your
app. The code is available on Github
github.com/ShinobiControls/bitesize-kitkat
and if you have any questions/comments then
let me know below, on Github or via twitter @iwantmyrealname.

OEBPS/images/leanpub_error.png

OEBPS/images/leanpub_discussion.png

OEBPS/images/leanpub_leanpub_logo.png
Leanpub

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_information.png

OEBPS/images/leanpub_question.png

OEBPS/images/leanpub_tip.png

OEBPS/images/immersive_sticky.png
Immersive Sticky

Immersive sticky ides th system Ul and allows nteraction
withthe main vew. Swiping downwards from the top of the
screen will show the system UL Aftera shor ime the system Ul
willisappear again. As with immersive mode, the userwilbe
shown a bubble o explain how it works the st time an app.
eners immersive mode.

OEBPS/images/leanpub_exercise.png

OEBPS/images/leanback.png
Leanback

‘Socalled lean back mode s the it of ulscreen actvties
preKitkat. This mode allows the ser 0 seea ullscreen
activity,but all nteactions with the sreen when in fulfscreen
mode are absorbed by the system, which icks the actvity out
of flkscreen mode. The developer has toset up a process of
showing/hiding the system Ul s appropriate

OEBPS/images/chapter1----immersive.png
Immersive eraction
with the main view. Swiping downwards from the top of the
screen will show the system Ul ag an app
goes into immersive mode, the us bubble
which explains how to get the system chrome to reappear.

OEBPS/images/chapter1----immersive_enable.png
>ACBN

(I&! Immersive

with the main view. Swiping downwards from the top of the
screen will show the system Ul again. The first time an app
goes into immersive mode, the user will be shown a bubble
which explains how to get the system chrome to reappear.

Enable Immersive

OEBPS/images/leanpub-logo.png
Leanpub
EYy—33

OEBPS/images/title_page.png
Bitesize
Android KitKat

a review of Android KitKat for developers,
in 6 bite-sized chunks

