Bitemporality in Go
Burke Carter

_— >
|
I
I
I
I
I
\Y%

Copyright © 2025 by Burke Carter

All rights reserved. No part of this book may be
reproduced, stored, or transmitted in any form without the
prior written permission of the publisher.

First Edition: February 2025
Published by Burke Carter
Library of Congress Control Number: 2025903203

The information provided is for educational purposes only
and does not constitute professional advice. The author
has endeavored to eliminate as many bugs as possible, but
it is unlikely that they have all been squashed.

Foreword

Databases aren't magic, but they sometimes seem to be.
From those that hold all of their data in only a single file on
your local disk to those that store data on a network of
machines that spans the globe, there seems to be a
database for every niche. What they have in common is
that in fractions of a second, a single record among
millions - or even billions, or even more! - of others can be
retrieved, modified, or even erased. During the process,
other records - and even other queries - can be affected or
unaffected depending on the guarantees of the software. |
am endlessly fascinated by that software.

If you were to ask a contemporary software engineer to
name a few types (not versions or vendors) of databases,
you would probably hear a fairly consistent list: relational,
NoSQL, key-value, or maybe even columnar. Missing from
that list is the enormously clever model called the
bitemporal model, which is arguably on a different axis
than the others but is nevertheless just as important in its
own domain. | would go so far as to argue that the
bitemporal model is more distinct from the others than is
row store from column store. It takes some time to learn to
think bitemporally, but it's time well spent for the queries
that can be so elegantly expressed this way.

Working on databases is great fun. | hope that you enjoy
working on this one as much as | have.

Table of contents

10.

11.

Why bitemporal data
Server API

Server Modules
Server Frontend
Orchestrator

WAL

AttrStore

IndexStore

Client

Generator

Example

Chapter 1: Why
bitemporal data

Rarely is data static. Our knowledge of the world changes
continuously, and we continuously make decisions based
on that data. Different data compels us to make different
decisions in the present, but that doesn't change the state
of the world as we knew it in the past, nor does it change
the decisions that we made at that time. In order to
preserve the historical record and to understand why what
now seems foolhardy was once reasonable, we need to
maintain that history. This is the raison d'étre of bitemporal
data.

Let's illustrate what | mean with a simple example.
Suppose that our HR application keeps track of employees
and the department in which they work:

ID First name Last name Department
1 Alice Andrews IT

2 Ben Baker Operations

3 Clara Campbell R&D

It would be easy enough in a relational model! to count
how many employees work in each department:

SELECT department, COUNT ()
FROM employess
GROUP BY department;

That's a perfectly good point-in-time snapshot. How about
transferring an employee to a different department?

UPDATE employees
SET department = 'Operations'
WHERE id = 3;

That works, but it also causes data loss: we no longer know
Clara's previous department! There are at least three
cumbersome solutions to this problem:

» Keep both an old_department and a

current_department field. This accurately tracks the
first transfer an employee makes, but not the second
(or the third, or ...) move. To track an arbitrary number
of transfers, we would have to add an arbitrary
number of columns.

» Keep department as a sorted list of the employee's

history such that the first (or last) entry in the list is
the employee's current department. This keeps the full
history, but it is cumbersome to query and may
require a very wide column if employees frequently
change departments. For completeness, one would
probably also like the dates associated with each
move, further expanding the column.

» Keep a "history table" with the employee's ID, their old
department, the date of their transfer, and their new
department. So long as the main employees table is
kept in sync with the history table, this does not lose
information. However, some queries, such as "which
department had the most employees on date X?*"
become difficult to answer because the state of the

2

world on date X must be carefully reconstructed from
the history.

But there's an even worse problem with the third
cumbersome solution above: what if the transfer was
effective as-of date d; but was recorded on a later date d,?
Suddenly, it's not clear what is meant by X in "which
department had the most employees on date X?" Do we
mean to ask how many employees were effectively in the
department on date X, or do we mean to ask how many
employees were known to be in the department on date X?
Perhaps it's not immediately obvious that this distinction
matters. To see the significance, you need only imagine
that if Clara's transfer to the Operations department would
increase her salary, then she would certainly want the
increase to begin on d; < d,, perhaps requiring backpay
that would be paid on d,

The right solution is to model this data bitemporally by
assigning four extra fields to each piece of data:

Field Significance

When the data was first recorded by the

tt_from
database

When the data was first invalidated by the

tt_to
B database

vt _from When the data became true in the real world

When the data stopped being true in the real

vt_to
B world

In our example, the tt_from would be d,, since that's
when Clara's transfer was recorded in the database, and
the vt_from would be d;, since that's when her transfer

became effective in the real world. Both tt_to and vt_to
are initially set to infinity since when we write a record, we
don't know how (or even if) that record will change in the

future. Note that while the vt_from is set by the user, the

tt_from is always chosen by the database and is
monotonically increasing so that history cannot be
overwritten. As we'll see, even though data initially
extends to infinity, we cannot read it after the 1sqt , or
"last safe query time," which is the latest time at which all
writes have either completed or failed such that the data
up to that time will never change. Together, these two rules
mirror two principles of life: you cannot change the past,
and you cannot see the future.

Graphically, the data exist in the bitemporal plane where
the tt -axis is the x-axis and the vt -axis is the y-axis. On
Clara's start date, her bitemporal space would look like
this, with the * showing the (tt, vt) at which she began
her career:

Rectangle 1

First name: Clara
Last name: Campbell
Department: R&D

¥ — —— — — —— — —

To record her transfer at **, rectangle 1 is split so that
instead of its tt extending to infinity, it now extends only
to Y. Rectangle 2 is created with the same data as
rectangle 1, and it extends from tt = Y to tt = infinity

with the same vt_from as rectangle 1 vt_to = X . Finally,
rectangle 3 is created with the new data with both
tt_to = infinity and vt_to = infinity .

| Rectangle 3

| First name: Clara

| Last name: Campbell

| Department: Operations
*ok >

Rectangle 1 | Rectangle 2

First name: Clara | First name: Clara
Last name: Campbell | Last name: Campbell
Department: R&D | Department: R&D

¥ —— — — — —— — —

Now, we can ask questions like, "as of
(x = tt <Y, vt == X) , what was Clara's department?"

Restating this question, "at *x = tt < Y, what did we think

was Clara's department starting at vt == X ?" In the image
above, we can see that these temporal coordinates fall
inside the rectangle labeled 1, so the answer is the R&D
department. If we were to modify the question slightly and
ask, "at tt == Y, what did we think was Clara's

department starting at * = vt < X ?" These temporal
coordinates fall inside rectangle 2, so the answer is again
the R&D department. Finally, we can ask, "at tt == v,
what did we think was Clara's department starting at

vt == X ?" That falls inside rectangle 3, so the answer is
the Operations department, the department to which Clara
transferred.

Why this book

There are plenty of resources available that will tell you
what bitemporality is, but until now, there has been no
comprehensive guide to teach you how to build a database
and client that inherently support bitemporality. By the end
of this book, not only will you have a working knowledge of
the core concepts, but also you will know how to program
in that model, and you will have some ideas for additional
features that you may want or need.

This book is structured as both a guide and an
implementation. If you follow along, you'll implement a
server and a client for a bitemporal object database.

Throughout the book, you'll also read about alternatives
that would provide different properties and trade-offs. It's
up to you to decide how to extend the provided source
code to match your specific use case. For brevity, most of
the thousands of lines of tests are omitted from the book
and exist only in the source code itself. Most of the non-test
code appears in the book in short snippets with
accompanying explanations. At times, the code is broken
into shorter functions than usual in order to avoid functions
longer than a single page. Likewise, the physical pages of a
book are more narrow than a large monitor with an IDE, so

some code that would appear on a single line in an IDE is
broken into multiple lines.

Dependencies

_—w The main dependency is Go, the

N programming language that we will use
throughout this book. Its combination of
clarity, performance, and ease-of-use
make it the ideal language for this
endeavor. To build a faster version, you
could use Rust or C++, but as a language
for teaching, Go wins with simplicity.
Along the way, we will also use some open
source libraries such as Protocol Buffers.

We'll use Go version 1.24.0, but we won't use any
advanced features specifically from that release. A slightly
older version should also work.

$ go version
go version gol.24.0 linux/amdés

https://go.dev/
https://www.rust-lang.org/
https://stroustrup.com/C++.html
https://protobuf.dev/

%QLRB

The most surprising dependency might be
SQLite. This book is not about how to
implement a storage engine, but rather
how to implement a bitemporal database
on top of your existing storage—after all,
most projects already have a traditional or
general-purpose database, and the piece
that they're missing is bitemporality.
Because of the architecture that we'll use,
it would be possible after reading this
book to swap the storage with, say,
PostgreSQL, or any other storage of your
choice.

We'll use SQLite version 3.49.0. As with our choice of Go
version, we won't use any advanced features specifically
from that release, so a slightly older version should also

work.

$ sqglite3 —-version

3.49.0 2025-02-06 11:55:18 \
4a7dd425dc2a0e5082a9049c9b4a9d4f199a71583d014c24bscfe276c5a77cde (64-bit)

For hermetic builds, we'll use Bazel, and
to make generating BUILD files easier,
we'll use Gazelle.

We'll use a bazel version manager called bazelisk with
version 1.18.0, bazel version 7.3.2, and gazelle version

0.35.0.

https://www.sqlite.org/
https://www.postgresql.org/
https://bazel.build/
https://github.com/bazelbuild/bazel-gazelle
https://github.com/bazelbuild/bazelisk

$ bazelisk version
Bazelisk version: v1.18.0

$ bazelisk —--version
bazel 7.3.2

// WORKSPACE

http_archive(
name = "bazel_gazelle",
integrity = \
"sha256-MpOL2hbmcABjA1R5Bj2dIMY02015/Uc5Vj9Q0zHLMgk=",

urls = [
"https://mirror.bazel.build/github.com/" + \
"bazelbuild/bazel-gazelle/releases/download/" + \
"v0.35.0/bazel-gazelle-v0.35.0.tar.gz",
"https://github.com/bazelbuild/bazel-gazelle/" + \
"releases/download/v@.35.0/" + \
"bazel-gazelle-v0.35.0.tar.gz",

] 1

1. The examples in this book use vanilla SQL, but any similar query
language should suffice. «

10

