
Bitemporality in Go

Burke Carter

^ ^
| |
| |
| |------>
|
|--------->

Copyright © 2025 by Burke Carter

All rights reserved. No part of this book may be

reproduced, stored, or transmitted in any form without the

prior written permission of the publisher.

First Edition: February 2025

Published by Burke Carter

Library of Congress Control Number: 2025903203

The information provided is for educational purposes only

and does not constitute professional advice. The author

has endeavored to eliminate as many bugs as possible, but

it is unlikely that they have all been squashed.

Foreword

Databases aren't magic, but they sometimes seem to be.

From those that hold all of their data in only a single file on

your local disk to those that store data on a network of

machines that spans the globe, there seems to be a

database for every niche. What they have in common is

that in fractions of a second, a single record among

millions – or even billions, or even more! – of others can be

retrieved, modified, or even erased. During the process,

other records – and even other queries – can be affected or

unaffected depending on the guarantees of the software. I

am endlessly fascinated by that software.

If you were to ask a contemporary software engineer to

name a few types (not versions or vendors) of databases,

you would probably hear a fairly consistent list: relational,

NoSQL, key-value, or maybe even columnar. Missing from

that list is the enormously clever model called the

bitemporal model, which is arguably on a different axis

than the others but is nevertheless just as important in its

own domain. I would go so far as to argue that the

bitemporal model is more distinct from the others than is

row store from column store. It takes some time to learn to

think bitemporally, but it's time well spent for the queries

that can be so elegantly expressed this way.

Working on databases is great fun. I hope that you enjoy

working on this one as much as I have.

Table of contents

1. Why bitemporal data

2. Server API

3. Server Modules

4. Server Frontend

5. Orchestrator

6. WAL

7. AttrStore

8. IndexStore

9. Client

10. Generator

11. Example

1

Chapter 1: Why

bitemporal data

Rarely is data static. Our knowledge of the world changes

continuously, and we continuously make decisions based

on that data. Different data compels us to make different

decisions in the present, but that doesn't change the state

of the world as we knew it in the past, nor does it change

the decisions that we made at that time. In order to

preserve the historical record and to understand why what

now seems foolhardy was once reasonable, we need to

maintain that history. This is the raison d'être of bitemporal

data.

Let's illustrate what I mean with a simple example.

Suppose that our HR application keeps track of employees

and the department in which they work:

ID First name Last name Department

1 Alice Andrews IT

2 Ben Baker Operations

3 Clara Campbell R&D

It would be easy enough in a relational model
1
 to count

how many employees work in each department:

SELECT department, COUNT(*)

FROM employess

GROUP BY department;

2

That's a perfectly good point-in-time snapshot. How about

transferring an employee to a different department?

UPDATE employees

SET department = 'Operations'

WHERE id = 3;

That works, but it also causes data loss: we no longer know

Clara's previous department! There are at least three

cumbersome solutions to this problem:

Keep both an old_department and a

current_department field. This accurately tracks the

first transfer an employee makes, but not the second

(or the third, or ...) move. To track an arbitrary number

of transfers, we would have to add an arbitrary

number of columns.

Keep department as a sorted list of the employee's

history such that the first (or last) entry in the list is

the employee's current department. This keeps the full

history, but it is cumbersome to query and may

require a very wide column if employees frequently

change departments. For completeness, one would

probably also like the dates associated with each

move, further expanding the column.

Keep a "history table" with the employee's ID, their old

department, the date of their transfer, and their new

department. So long as the main employees table is

kept in sync with the history table, this does not lose

information. However, some queries, such as "which

department had the most employees on date X?"

become difficult to answer because the state of the

3

world on date X must be carefully reconstructed from

the history.

But there's an even worse problem with the third

cumbersome solution above: what if the transfer was

effective as-of date d1 but was recorded on a later date d2?

Suddenly, it's not clear what is meant by X in "which

department had the most employees on date X?" Do we

mean to ask how many employees were effectively in the

department on date X, or do we mean to ask how many

employees were known to be in the department on date X?

Perhaps it's not immediately obvious that this distinction

matters. To see the significance, you need only imagine

that if Clara's transfer to the Operations department would

increase her salary, then she would certainly want the

increase to begin on d1 < d2, perhaps requiring backpay

that would be paid on d2.

The right solution is to model this data bitemporally by

assigning four extra fields to each piece of data:

Field Significance

tt_from
When the data was first recorded by the

database

tt_to
When the data was first invalidated by the

database

vt_from When the data became true in the real world

vt_to
When the data stopped being true in the real

world

4

In our example, the tt_from would be d2, since that's

when Clara's transfer was recorded in the database, and

the vt_from would be d1, since that's when her transfer

became effective in the real world. Both tt_to and vt_to

are initially set to infinity since when we write a record, we

don't know how (or even if) that record will change in the

future. Note that while the vt_from is set by the user, the

tt_from is always chosen by the database and is

monotonically increasing so that history cannot be

overwritten. As we'll see, even though data initially

extends to infinity, we cannot read it after the lsqt , or

"last safe query time," which is the latest time at which all

writes have either completed or failed such that the data

up to that time will never change. Together, these two rules

mirror two principles of life: you cannot change the past,

and you cannot see the future.

Graphically, the data exist in the bitemporal plane where

the tt -axis is the x-axis and the vt -axis is the y-axis. On

Clara's start date, her bitemporal space would look like

this, with the * showing the (tt, vt) at which she began

her career:

5

 ^ ^

 | |

 | |

 | |

 | |

 | |

 | | Rectangle 1

 | | First name: Clara

 | | Last name: Campbell

 | | Department: R&D

 | *-->

 |

 --->

To record her transfer at **, rectangle 1 is split so that

instead of its tt extending to infinity, it now extends only

to Y. Rectangle 2 is created with the same data as

rectangle 1, and it extends from tt = Y to tt = infinity

with the same vt_from as rectangle 1 vt_to = X . Finally,

rectangle 3 is created with the new data with both

tt_to = infinity and vt_to = infinity .

 ^ ^ ^

 | | | Rectangle 3

 | | | First name: Clara

 | | | Last name: Campbell

 | | | Department: Operations

X | | **---------------------->

 | | Rectangle 1 | Rectangle 2

 | | First name: Clara | First name: Clara

 | | Last name: Campbell | Last name: Campbell

 | | Department: R&D | Department: R&D

 | *-->

 |

 --->

 Y

6

Now, we can ask questions like, "as of

(* ≤ tt < Y, vt == X) , what was Clara's department?"

Restating this question, "at * ≤ tt < Y , what did we think

was Clara's department starting at vt == X ?" In the image

above, we can see that these temporal coordinates fall

inside the rectangle labeled 1, so the answer is the R&D

department. If we were to modify the question slightly and

ask, "at tt == Y , what did we think was Clara's

department starting at * ≤ vt < X ?" These temporal

coordinates fall inside rectangle 2, so the answer is again

the R&D department. Finally, we can ask, "at tt == Y ,

what did we think was Clara's department starting at

vt == X ?" That falls inside rectangle 3, so the answer is

the Operations department, the department to which Clara

transferred.

Why this book

There are plenty of resources available that will tell you

what bitemporality is, but until now, there has been no

comprehensive guide to teach you how to build a database

and client that inherently support bitemporality. By the end

of this book, not only will you have a working knowledge of

the core concepts, but also you will know how to program

in that model, and you will have some ideas for additional

features that you may want or need.

This book is structured as both a guide and an

implementation. If you follow along, you'll implement a

server and a client for a bitemporal object database.

7

Throughout the book, you'll also read about alternatives

that would provide different properties and trade-offs. It's

up to you to decide how to extend the provided source

code to match your specific use case. For brevity, most of

the thousands of lines of tests are omitted from the book

and exist only in the source code itself. Most of the non-test

code appears in the book in short snippets with

accompanying explanations. At times, the code is broken

into shorter functions than usual in order to avoid functions

longer than a single page. Likewise, the physical pages of a

book are more narrow than a large monitor with an IDE, so

some code that would appear on a single line in an IDE is

broken into multiple lines.

8

Dependencies

The main dependency is Go, the

programming language that we will use

throughout this book. Its combination of

clarity, performance, and ease-of-use

make it the ideal language for this

endeavor. To build a faster version, you

could use Rust or C++, but as a language

for teaching, Go wins with simplicity.

Along the way, we will also use some open

source libraries such as Protocol Buffers.

We'll use Go version 1.24.0, but we won't use any

advanced features specifically from that release. A slightly

older version should also work.

$ go version

go version go1.24.0 linux/amd64

https://go.dev/
https://www.rust-lang.org/
https://stroustrup.com/C++.html
https://protobuf.dev/

9

The most surprising dependency might be

SQLite. This book is not about how to

implement a storage engine, but rather

how to implement a bitemporal database

on top of your existing storage—after all,

most projects already have a traditional or

general-purpose database, and the piece

that they're missing is bitemporality.

Because of the architecture that we'll use,

it would be possible after reading this

book to swap the storage with, say,

PostgreSQL, or any other storage of your

choice.

We'll use SQLite version 3.49.0. As with our choice of Go

version, we won't use any advanced features specifically

from that release, so a slightly older version should also

work.

$ sqlite3 --version

3.49.0 2025-02-06 11:55:18 \

 4a7dd425dc2a0e5082a9049c9b4a9d4f199a71583d014c24b4cfe276c5a77cde (64-bit)

For hermetic builds, we'll use Bazel, and

to make generating BUILD files easier,

we'll use Gazelle.

We'll use a bazel version manager called bazelisk with

version 1.18.0, bazel version 7.3.2, and gazelle version

0.35.0.

https://www.sqlite.org/
https://www.postgresql.org/
https://bazel.build/
https://github.com/bazelbuild/bazel-gazelle
https://github.com/bazelbuild/bazelisk

10

$ bazelisk version

Bazelisk version: v1.18.0

$ bazelisk --version

bazel 7.3.2

// WORKSPACE

http_archive(

 name = "bazel_gazelle",

 integrity = \

 "sha256-MpOL2hbmcABjA1R5Bj2dJMYO2o15/Uc5Vj9Q0zHLMgk=",

 urls = [

 "https://mirror.bazel.build/github.com/" + \

 "bazelbuild/bazel-gazelle/releases/download/" + \

 "v0.35.0/bazel-gazelle-v0.35.0.tar.gz",

 "https://github.com/bazelbuild/bazel-gazelle/" + \

 "releases/download/v0.35.0/" + \

 "bazel-gazelle-v0.35.0.tar.gz",

],

)

1. The examples in this book use vanilla SQL, but any similar query

language should suffice. ↩

