

T H E A R T O F R E A S O N I N G I S N O T H I N G M O R E T H A N A L A N G U A G E W E L L A R R A N G E D .

É T I E N N E B O N N O T D E C O N D I L L A C , 1 7 9 0

T H E VA L I D I T Y O F A L L T H E I N D U C T I V E M E T H O D S D E P E N D S O N T H E A S S U M P T I O N

T H AT E V E R Y E V E N T, O R T H E B E G I N N I N G O F E V E R Y P H E N O M E N O N , M U S T H AV E

S O M E C A U S E ; S O M E A N T E C E D E N T, U P O N T H E E X I S T E N C E O F W H I C H I T I S

I N VA R I A B LY A N D U N C O N D I T I O N A L LY C O N S E Q U E N T.

J O H N S T U A R T M I L L , 1 9 1 1

I C A N ’ T B E A S C O N F I D E N T A B O U T C O M P U T E R S C I E N C E A S I C A N A B O U T B I O L -

O G Y. B I O L O G Y E A S I LY H A S 5 0 0 Y E A R S O F E X C I T I N G P R O B L E M S T O W O R K O N .

I T ’ S AT T H AT L E V E L .

D O N A L D K N U T H , 1 9 9 3

S H A W N T. O ’ N E I L

B I O / R E C U R S I O N
A N E X P L O R AT I O N I N R

—

Copyright © 2018 Shawn T. O’Neil

published by —

shawntoneil.com

First printing, February 2018

Contents

1 Programming in R 9

2 Recursive Structures 25

3 Searching and Sorting 39

4 Induction and Stacks 55

5 Hash Tables, Memoization, and Dynamic Programming 71

6 Alignment 83

7 Fast Alignment, Local Alignment 95

8 Hidden Markov Models 117

9 Turtle Drawing, L-Systems 133

Epilogue 153

7

Dedicated to:

Dr. Andrew A. Poe

a.k.a. “Captain Recursion”

1 Programming in R

The desire to economize time
and mental effort in
arithmetical computations,
and to eliminate human
liability to error is probably as
old as the science of arithmetic
itself.

Howard Aiken, 1937

While the contents of this book may be implemented in almost
any programming language, we’ll be implementing them in R. R (a
derivative of an earlier language called S) was originally designed
for statistical computing: producing linear models, analyses of
variance, that sort of thing. As we’ll see though, R supports a full
complement of programming techniques. It also includes some
additional easy-to-use features for visualization (via the ggplot2 and
TurtleGraphics libraries) which will be useful for this material. In
this chapter we’ll briefly introduce the R language and some basic
programming concepts; not enough to be considered a thorough
introduction to R specifically, or programming generally, but enough
for our own purposes.

For those with an existing background in programming, R can
be described as a dynamically typed, pass-by-value, multi-paradigm (but
largely functional), and vectorized language.1 1 For those without extensive programming

experience, don’t let these technical defini-
tions intimidate you. Feel free to read them
for their terminological value and focus on
the code samples later in this chapter.

• Dynamically typed: Variables holding data in R can change their
data (and the type of data they hold) over time; a <- 5 sets a

to be a “numeric” type, later a line like a <- "XB" can set it to a
“character” type (similar to “strings” in other languages). Further,
there is no need to indicate a variable’s type when it is first
created. This can be contrasted with Java’s int a = 5; String b

= "XB"; where a is forever destined to hold an integer and b can
only hold strings.

• Pass-by-value: Parameters given to functions effectively become
copies during the function call, meaning that changes made inside

10 bio/recursion

the function call are not saved after the call ends. If we con-
sider lines such as letters <- c("A", "b", "C") and answer <-

tolower(letters), then letters will still hold c("A", "b", "C")

while answer will hold c("a", "b", "c"). This is unsurprising–
the point is that the tolower() function couldn’t modify the
original letters data even if it wanted to. This is in contrast to
“pass-by-reference” languages like Python and Java, where func-
tions are free to modify the data underlying the parameters so
that those changes persist after the function ends.2 For exam-2 The terms “pass-by-value” and “pass-

by-reference” are historically laden and
indicate fairly specific behavior. In attempts
to avoid confusion, the Python community
uses the term “pass-by-name” and some
Java programmers use the tortured “pass-
by-value-of-the-reference” to specify what
amounts to slight variations on the basic
principle.

ple, it is possible to write a Python function where answer =

tolower(letters) results in letters being changed to ["a", "b",

"c"] and answer holding the number of changes made (2 in this
case).

• Multi-paradigm (but largely functional): Although R supports most
of the major programming paradigms, including object-oriented
(where collections of data and functions form “objects” meant to
represent real-world entities) and procedural (meaning we specify
how the computer should perform tasks in step-by-step terms),
its functional aspects edge out the others in typical usage. This
means that functions are assigned to variables like any other type
of data, and functions are free to take functions as parameters
and return functions as answers. (R also supports other advanced
functional concepts such as closures.) Because this book focuses
on recursion but also loop-based techniques, we’ll have a unique
opportunity to explore the transition points between traditional
procedural and more “functional” techniques.

• Vectorized: As a statistical language, R enforces vectorized opera-
tions as opposed to single-datapoint operations, a feature shared
with only a few other languages (e.g. MATLAB). For example, a
<- c(1, 2, 3, 4) stores in a a vector of four numbers, as does b

<- c(2, 4, 1, 7). The operation a * b returns the vector c(2, 8,

3, 28), while a < b returns the vector of logical values c(TRUE,

TRUE, FALSE, TRUE). In fact, even a <- 5 stores a vector in a,
where the vector contains only a single numeric element. We’ll
be making some use of this; given a vector like chars <- c("A",

"T", "G", "C"), we can get a subvector holding all but the last
element as subchars <- chars[1:(length(chars) - 1)], which
reduces to chars[1:3], returning the vector c("A", "T", "G").
This example highlights another difference between R and many
other languages–indices in R start at 1 rather than 0 (so chars[1]

holds "A", and there is no chars[0]).

R is a large language, and unfortunately one with many special
cases–although R functions are by default pass-by-value, it is possible
to pass some data by reference. As such, these definitions and the

programming in r 11

rest of this chapter constitute more of a rough field-guide to R than
a definitive reference.

1.1 Installing R

The most straightforward way to write and execute R programs is to
first download and install the R interpreter3 itself from http://r-project.org,

3 Interpreter: a program designed to inter-
pret, or read and execute lines of code. This
is in contrast to compiled languages, mean-
ing the code is translated into machine code
readable directly by the CPU.

and then download the RStudio Integrated Development Environ-
ment (IDE) from http://rstudio.org. While R itself handles the
execution of R code, RStudio provides a text editor aware of R’s
specialized syntax and facilitates sending R code to the R interpreter
for execution.

Figure 1.1: RStudio after initial installation.

When first opened, RStudio presents three panes (Figure 1.1). On
the left is the R interpreter itself–here we can type a line of R code
like print("Hello World") followed by the Enter key and that line
will be executed. The upper-right pane shows some of the variables
currently stored by the R interpreter; executing a line like a <- c(1,

2, 3, 4) will cause a to appear here. Later, a line like print(a) will
print the stored contents of a. The lower-right pane shows a file
browser, tab for help information, and a plots tab for the output of
graphical function calls.

None of these panes, however, are where we’ll be primarily
working. Rather than executing lines of R code one at a time, we
want to write R programs, or scripts: files containing many lines
of code that can be executed as a batch. To edit such a file, we can
select File ! New File ! R Script. This creates a new pane in the
upper-left portion of the window with a text editor for writing the
script (Figure 1.2).4

4 Actually, it is a good idea to create a
“Project” in RStudio, which is a simply a
folder that might contain multiple R scripts
and other files. RStudio also supports the
creation of “R Markdown” files: documents
containing human-readable text interleaved
with chunks of code and their output, which
can later be exported as reports in PDF or
HTML format.

To execute lines in a script, we can either 1) highlight them (with
the mouse) and click the Run button, which sends them to the

22 bio/recursion

Figure 1.25: Parameters and variables created
inside functions with <- are local variables;
they shadow existing variables of the same
name and are removed when the function
call ends.

add_two_nums <- function(a, b) {
result <- a + b
return(result)
}

a <- "test a"
result <- "test result"
x <- 4
y <- 7
answer <- add_two_nums(x, y)
print(answer) # prints 11
print(a) # prints "test a"
print(result) # prints "test result"
print(b) # Error: object �b� not found

Figure 1.26: Global variables may be read
as any other (unless they are shadowed by
a local variable) and are written to with <<-.
Here we’re using capital letters only as a
reminder that they are global.

add_two_nums <- function(a, b) {
CALL_COUNTER <<- CALL_COUNTER + 1
result <- a + b
return(result)
}

CALL_COUNTER <<- 0 # initialize global
answer <- add_two_nums(2, 4)
print(CALL_COUNTER) # prints 1
answer <- add_two_nums(6, 5)
print(CALL_COUNTER) # prints 2

1.4 Packages

R packages are downloadable add-ons providing additional func-
tions. Most packages are stored in an online repository called the
Comprehensive R Archive Network, or CRAN. Installing a package
from CRAN is straightforward (assuming an active internet con-
nection is available). For example, to install the stringr package,
in the interpreter window (at the > prompt, not in the script), run
install.packages("stringr"). You may be you prompted via a
popup window to select the nearest download location.

Once the process is complete, there are two ways to utilize func-
tions provided by the package in a script. The first is to prefix the
function name with the package name and ::, as in greeting <-

stringr::str_c("hi", "there"). This line runs the str_c() func-
tion from stringr (which concatenates character vectors). Alter-
natively, one may first "load" the functions in a package by calling
library(); in this example we would first run library(stringr)

and then greeting <- str_c("hi", "there"). Usually these calls to
library() are located at the top of the script.

Throughout this book we will use functions from several pack-
ages. Rather than describe these functions and packages in detail

programming in r 23

> a <- c(4, 5, 6)
> a
[1] 4 5 6

Figure 1.27: Values or variables that are not
assigned are printed by default.

check_val <- function(val) {
if(val < 10) {
return()

}
print("Given value is at least 10.")

}

check_val(5) # prints NULL

Figure 1.28: A function which should do
nothing if a small value is given.

here, we’ll just summarize them and note on which pages they are
first introduced. Also, rather than prefix the function names, we will
assume all scripts load these libraries at the top (Figure 1.29).

library(stringr)
library(rstackdeque)
library(hash)
library(TurtleGraphics)
library(ggplot2)

Code below
...

Figure 1.29: Loading libraries needed for
scripts.

• stringr: This package provides a number of functions for work-
ing with character vectors and their elements. Many of these
functions have "regular" R equivalents–for example, str_c() from
stringr is very similar to the built-in paste()–but the functions
in stringr are more consistent in names and parameters. Func-
tions from stringr we’ll use include str_sub(), str_length(),
str_c(), and str_detect(); these are described on page 39.

• rstackdeque: While the various data structures built into R
(data frames, lists, matrices, etc.) are powerful, there are a
couple we’ll need that are not provided. The first are "stacks"
(page 59) rstackdeque provides these with functions rstack(),
insert_top(), without_top(), peek_top(), and empty(), as well
as helper conversion functions as.list() and as.data.frame().
Other structures provided by this package are queues, through
functions rpqueue(), insert_back(), without_front() and
peek_front(). The functions provided by rstackdeque are de-
scribed on page 69.

• hash: Another data structure we’ll make heavy use of is the hash
table. The hash package provides these through functions hash(),
has.key(), keys(), and values() (page 72).

24 bio/recursion

• TurtleGraphics: The TurtleGraphics package provides a sim-
ple interface for programmatic, line-based drawing. We’ll use
this only in the last chapter, where we’ll learn how some of
the techniques in other parts of the book can be visualized in
beautiful ways. Functions provided by TurtleGraphics include
turtle_init(), turtle_forward(), turtle_turn(), and several
others described on page 133.

• ggplot2: This package provides a powerful toolset for plotting
data stored in data frames. The main function provided by this
package is ggplot(), which works in coordination with others
like geom_line() and geom_tile(). Unfortunately, the ggplot2

package is large and a useful tutorial for it would be outside the
scope of this book, so we’ll present and use ggplot2 code without
explanation. Excellent resources abound, including the official
website http://docs.ggplot2.org, books such as ggplot2: Elegant
Graphics for Data Analysis by Hadley Wickham, and A Primer for
Computational Biology by Shawn T. O’Neil (yours truly) available
as an open-access resource and in print.

1.5 Getting Help

Because of R’s size and complexity, the official documentation and
other unofficial resources are extremely helpful. The most important
too in this is the help() function: when run at the interactive >

prompt it will show a help page on a given function name. For
example, help("length") will show information on the length()

function.17. To get help on an installed package like stringr, try17 A shortcut for help() is ?; so ?length is a
shortcut for help("length"). help(package = "stringr")

There also exist a number of excellent books and online resources.
For readers new to programming and R, I would recommend (nat-
urally) my own A Primer for Computational Biology, though many
other books recently on the market are good as well. For beginner to
intermediate programmers, I like The Art of R Programming by Norm
Matloff. For a deeper look at R, Advanced R by Hadley Wickham is
enlightening.

2 Recursive Structures

A fool sees not the same tree
that a wise man sees.

William Blake, 1793

Let’s consider a simple R list, as shown in Figure 2.1. Organizing
data into lists is one of the most common features of programming,
and R lists allow us to store any type of data in sequential order.

nums <- list(3, 5, 12)
Figure 2.1: A simple list of numbers.

How might a list like this be stored in the computer’s memory? It
might be stored simply as a contiguous sequence of binary numbers;
in this case if the numbers were stored in an 8-bit representation,
this could simply be 000000110000010100001100 (where 00000011 is
3, and so on).

Figure 2.2: Visualizing the “ad-
dress” model for lists. Here we
are indicating that individual data
element may occur anywhere in
memory by distributing them
visually in the figure.

Unfortunately, a strategy like
this won’t work for more gen-
eral types of data. What if we
wanted to store a list of more com-
plicated objects, as in names <-

list("Mary", "Joe", "Allison")?
In this case, what might be stored
is again a series of integers, but
this time those integers indicate
the “address” or location of the
data in memory. Thus, a list like
100111000010110100101101 would
indicate that "Mary" exists at ad-
dress 156 (10011100), "Joe" at address 45 (00101101), and so on
(Figure 2.2).1 These address elements are sometimes known as “ref-

1 Most modern computers use 64 bits to store
a simple integer; some programming lan-
guages like R define their own representation
using many more to allow for much larger
numbers. Using more bits for addresses
also allows the computer to reference more
places in memory; this is one of the primary
advantages of using a 64-bit processor over a
32-bit processor.erences” (though references also often keep track of the type of data

at the given address). The primary advantage of a system like this
is that data elements of arbitrary size can be “referenced” by the list
elements.

Now, what if we desire to append a new element, say "Katie",
to the list? This would require creating the new data element for

26 bio/recursion

"Katie" (which gets stored in memory anywhere it will fit by the
interpreter working in conjunction with the operating system),
and appending to the list the new address for it.2 Let’s assume2 Although we’re discussing lists in terms

of R lists, in reality R lists and other data
structures use a combination of these
techniques and others mentioned later in this
chapter.

it is fairly easy for the system find a sufficiently large chunk of
memory, somewhere, for the new data element. But what about
appending the new address? If the next few bits of memory (after
the current list of addresses) are unused, then they can simply be
written at the end of the current list and some bookkeeping updated
to indicate the new length of the list. Frequently, however, we run
into a situation where the next few bits of memory are already being
used for some other important data!

Figure 2.3: An example layout of memory. In
this case, we can’t easily append to the names
list because not enough unused space exists
at the end of it.

In this situation, there are a few options. First, lists (even lists
of addresses) could be allowed to stretch over non-contiguous
segments of memory, which would also require extra bookkeeping
to manage where each portion of a list resides and how long it is.
Second, the system might look for a new, larger segment of unused
memory, and simply copy all of the addresses to that location so the
append can be completed.33 This copy-when-out-of-room strategy

is used by R vectors, which can result in
obnoxious amounts of copying for vectors
that are appended to frequently. In general,
it is not a good idea to “grow” native R types
like vectors, lists, matrices, and data frames
via many append operations for this reason.

As programmers, we can help the system out by considering a
third, rather unusual option. Rather than keep lots of bookkeeping
for lists split over arbitrary-sized pieces, or copy data when we run
out of room, we can simply restrict lists to be of a given size, say two.
If we know that a list will never have more than two elements, we
can avoid the problem altogether!44 Although the examples in this section all

consider data as simple strings like "Mary"
and "A", they could very well be more
important data elements like DNA strings
(e.g. "CTAGAC") or even collections of multiple
pieces of information (e.g. list("CTAGAC", 6,
0.23)).

Perhaps you are thinking, “how can lists restricted to holding
only two elements possibly be of any use?” The answer involves the
addressing strategy described above, which allows lists to hold data
of arbitrary size and type (including other lists!) as elements. Thus,
we can represent a list of "A", "B", "C", and "D" as shown in Figure
2.4.

Figure 2.4: Storing an arbitrary number of
elements in lists restricted to length two.

In this example, we are using nested lists in a “element, rest”
structure: the first element of the list is the first data element, and
the second element stores the “rest” of the list. We use the special
data type NULL for the rest to indicate a list which has no elements
(Figure 2.5). We’re following our “rule” just fine: each list in the
nested structure above has exactly two elements. For some general-

recursive structures 27

ity, we’ll represent an empty list with something like chars <- NULL;
thus a list either a “element, rest” pair, or NULL (empty).

Figure 2.5: An “element, rest” list containing
four data elements.

Now, for the interpreter and operating system, appending a new
piece of data like "E" simply requires finding some free space for a
two-element list (list("E", NULL)) and modifying the address of
the innermost NULL to address it instead.

Accessing a given element of this structure directly can be
quite tedious. For example, we can access the third element as
chars[[2]][[2]][[1]]. Soon we’ll see more elegant ways to access
individual elements. But first, what if we wanted to print all of the
data elements in order? The first straightforward method is shown
in Figure 2.6. In this strategy, we create a “working copy” of the
data in a variable called data. In a loop, we’ll print the first element
of data, and then set data to the second element of data (so that it then
contains the rest of the list). The output of this bit of code reliably
prints "A", "B", "C", and "D" (not shown).

data <- chars
while(!is.null(data)) {

el <- data[[1]]
print(el)
data <- data[[2]]

}

Figure 2.6: Printing a nested-list structure
with a loop.

Figure 2.7 shows a more sophisticated strategy that uses a func-
tion to accomplish the same task.

print_list <- function(data) {
if(is.null(data)) {
return(invisible())

}
el <- data[[1]]
rest <- data[[2]]
print(el)
print_list(rest)

}

Figure 2.7: Recursive method for printing the
elements of a nested list in order.

Now this function is a bit trickier. In analyzing how it works,
we should remember that the input to the function should be any
list of the right “structure;” data could be list("A", NULL), or
list("A", list("B", NULL)), or even just NULL. First, it checks
to see if the input list is NULL (representing an empty list). If so,
no work needs to be done at all, and the function can simply
return(invisible()), ending the function execution. Otherwise,
it extracts the first element as el and the rest list; it prints el and
then calls print_list(rest)! What would happen if print_list(rest)

was called before print(el)? Could the
behavior be replicated easily using a looping
strategy as above?

This works because data is a local variable in the function, mean-
ing each execution of the function works with its own data as
passed to it, independent of any other data that might exist for other

36 bio/recursion

Figure 2.24: Storing an ordering “key” and
corresponding “value” in a tree. simple_tree <- list(NULL, list("C", 4.7), NULL)

Figure 2.25: Using a key/value tree, ordered
by keys. simple_tree <- list(NULL, list("C", 4.7), NULL)

simple_tree <- insert_tree(simple_tree, list("A", 9.2))
simple_tree <- insert_tree(simple_tree, list("D", 5.6))
print_tree(simple_tree)

[1] "A 9.2"
[1] "C 4.7"
[1] "D 5.6"

Figure 2.26: Output for code in Figure 2.25.

Now, why are structures of this type known as binary search
trees? Primarily because we can efficiently search for data by key
(an operation also supported by hash tables, discussed in later
chapters).

Figure 2.27: Retrieving a value by key.
get_value <- function(data, key) {

if(is.null(data)) {
return(NA) # not present

}

left <- data[[1]]
el <- data[[2]]
right <- data[[3]]

if(key == el[[1]]) { # found it!
return(el[[2]]) # return the value

}

if(key < el[[1]]) {
answer <- get_value(left, key) # look left
return(answer)

} else {
answer <- get_value(right, key) # look right
return(answer)

}
}

print(get_value(simple_tree, "C")) # prints 4.7
print(get_value(simple_tree, "Q")) # prints NA

In Figure 2.27, get_value() is a recursive function that returns
the value associated with a given tree. It operates similarly to the
insert_tree() function, but with an extra case. First, it checks to see
if the tree being searched in is empty; if so, it can simply return NA,
the standard value for “unknown” in R. Otherwise, it extracts the
left, el, and right; if the key being searched for is the key being
held in el at this node in the tree, it can simply return the value.
If el is not the right value, the function can recurse left, or right,
depending on whether the key being searched for is less than the
central element or not.

Of particular interest is how quickly we can retrieve a value
this way from very large tree. The number of steps is equal to the

recursive structures 37

number of recursive calls, which is at most the largest depth of the
tree, since recursive calls are mode on left or right nodes (but not
both) at each level (Figure 2.28). If we are lucky, our tree will be very
wide and not very deep. What is the smallest depth we can hope

Figure 2.28: A tree of depth 6; data and arrows pointing to
NULL have been removed for clarity. The search path to "I" is
highlighted in blue: "E" is less than "I", so the call is made
on right, then "F" is less than "I", so the call is made on
right again, and so on.

for? Consider a “full” tree, where all leaf nodes are at
the same depth and every node has two children (Figure
2.29).

Surely such a tree can’t be made less deep. In this case,
at every level the size of the sub-tree in consideration is
reduced by approximately half; if at the start the number
of nodes in consideration for the search is n, at the next
level it is n/2, then n/4, and so on. How many times
can a number be divided in half until 1 is reached? The
answer is log2(n), which grows much slower then n itself
(Figure 2.30).

Note that essentially the same search process occurs
for inserting an element, except in this case the search
always goes to a leaf, and so for a “full” tree the time to
insert an element is also approximately log2(n).

Figure 2.29: A “full” binary search tree with
31 elements (data elements not shown).

0

5

10

15

20

0 250000 500000 750000 1000000
n

lo
g 2
(n
)

Figure 2.30: A plot of log2(n). For even
very large values of n the value of log2(n) is
small.

Unfortunately, not all trees are full. If elements are inserted
more or less randomly, the resulting tree will be quite likely to
be close to full. But if elements are inserted in order, then they
will stack up along the right (Figure 2.31, top). This can result in
insertions or lookups to run in time much slower than log2(n).
More sophisticated tree types ensure that after every insertion
or removal the tree stays “balanced,” for example AVL trees may
“rotate” triplets of nodes to ensure balance (Figure 2.31 bottom).
There are a number of tree types that ensure balance and thus
guarantee log2(n)-behavior, with names like 2-3 trees, red-black
trees, and the aforementioned AVL trees.

Figure 2.31: Top: an unbalanced tree result-
ing from elements being inserted in order.
Bottom: the result of re-balancing the right
sub-tree via rotation.

Exercises

1. Write a recursive function that returns the number of elements in
a binary search tree.

2. Write a function that computes the depth of a tree, defined as the
length of the longest path from the root to a leaf.

3. One problem with the key/value binary search tree we’ve imple-

38 bio/recursion

mented is that it allows duplicate keys to be stored in the tree,
even if they are associated with different values. If duplicate keys
are added, which entry will be returned by a search? Write a
function that checks to see if a tree contains duplicate keys; it
should return TRUE if it does, and FALSE if not. (You might first
want to also implement min_item() and max_item() functions that
return the smallest (resp. largest) items stored in a tree.)

4. Modify the insert_tree() function such that it refuses to insert a
duplicate value and prints a warning if the user tries to do so.

5. The binary search trees discussed here are persistent, just like
the nested linked lists of the last section. When performing an
insertion, how many new nodes are created for the new tree, and
how many are shared with the old version? You may want to
draw a picture of node relationships before and after insertion, as
in Figure 2.12 or Figure 2.13.

3 Searching and Sorting

One essential object is to
choose that arrangement
which shall tend to reduce to a
minimum the time necessary
for completing the calculation.

Ada Lovelace, 1843

To ground the discussion from the last chapters a bit, let’s con-
sider a common problem in bioinformatics, the substring search
problem: given a long string (such as the DNA sequence for a
chromosome, perhaps around 100 million letters), find matching
locations of a short string (such as a DNA “read” produced from a
sequencing machine, usually on the order of 100 letters).

Figure 3.1: A small instance of the substring
search problem.

To tackle this problem in R, we’ll need to know about a few
functions for working with character data, many of which are
available in the stringr package. First, it’s important to recall that
in R the elements of a “character” vector are strings; if names <-

c("Johnny", "Marilyn"), then names[1] returns the string "John".
Often, we’ll be interested in vectors of a single string and working
with substrings of it. The str_sub() function returns substrings
of all elements of the vector: str_sub(names, 2, 5) returns the
vector c("ohnn", "aril"), and if name <- "Marilyn" (which is just
a character vector of length one) then str_sub(name, 2, 5) returns
"aril" (another length-one vector).1 1 Recall from Chapter 1 that the simplest

form of data in R is the vector, and most
functions take and return vectors.

Other useful functions in stringr include str_length() which re-
turns the number of characters in a string, for example str_length("Mary")

returns 4. The str_c() function concatenates strings using a
given separator: str_c("Mary", "O’Connor", sep = "_") returns
"Mary_O’Connor" while str_c("Mary", "O’Connor") returns "MaryO’Connor".

40 bio/recursion

The str_detect() function returns TRUE if a pattern is found
in a string, and FALSE otherwise; to detect a pattern at the start
or end of a string, we can use the regular expression patterns
ˆ and $. str_detect("abracadabra", "ˆcad") returns FALSE be-
cause "cad" does not occur at the start of "abracadabra", while
str_detect("abracadabra", "abra$") returns TRUE since "abra"

occurs in the string at the end.22 Regular expressions are a specialized and
powerful syntax for finding patterns in
strings. We’ll be using only ˆ and $ from this
syntax. Returning to substring search, a straightforward way to

solve this problem is to simply scan along the long sequence look-
ing for matches with the shorter (or even using something like
str_detect()). But this would be relatively slow, as it requires
scanning over the entire longer string. For matching a single short
sequence this might not be bad, but in practice we often have mil-
lions of short sequences (produced by the sequencing machine)
that we wish to match against the chromosome. Better would be to
“index” the large sequence in some way, potentially spending extra
time up front to make each search go faster.

We’ll start by indexing our chromosome via a binary search
tree. Suppose we know that we’ll never want to search for short
sequences longer than, say, 10 characters. (In real life the number
would be larger; we’ll also use the 50 character sequence shown in
Figure 3.1 as our genome.) Thus, we’ll consider every 10-character
substring of the genome, and store it in the binary tree as a key,
along with the location of that substring as the value (Figure 3.2).

Figure 3.2: Adding substrings of the genome
to a binary search tree. genome <- "AGAGCCTAGAGCGAGAGTCCGTGAGACGACGAGAGACCCTGGACGAGACCG"

tree <- NULL

for(index in seq(1:str_length(genome))) {
subseq <- str_sub(genome, index, index+9)
element <- list(subseq, index)
tree <- insert_tree(tree, element)

}

print_tree(tree)

[1] "ACCCTGGACG 36"
[1] "ACCG 48"
[1] "ACGACGAGAG 26"
[1] "ACGAGACCG 43"
[1] "ACGAGAGACC 29"
[1] "AGACCCTGGA 34"
[1] "AGACCG 46"
[1] "AGACGACGAG 24"
[1] "AGAGACCCTG 32"
[1] "AGAGCCTAGA 1"
[1] "AGAGCGAGAG 8"
[1] "AGAGTCCGTG 14"

Figure 3.3: Partial output for code shown in
Figure 3.2.

Figure 3.3 shows the printed output, where entries are printed
in dictionary order according to the sequences, along with the
locations of those sub-sequences in the longer genome sequence.
(Sub-sequences near the end are truncated to an appropriate length
automatically by the str_sub() function, saving us from having to
consider those as special cases.)

Given this tree, how can we find all locations where the short
sequence "ACGA" occurs? Well, consider a tree (or sub-tree) with a
root node holding the key "AGAGCCTAGA" and value 1 (Figure 3.4).

searching and sorting 41

This sequence does not start with "ACGA", so "ACGA" does not occur
at position 1 of the original sequence. Furthermore, "ACGA" is less
than "AGAGCCTAGA" ("ACGA" < "AGAGCCTAGA" returns TRUE), and so if
any nodes are to start with "ACGA" then they must be somewhere in
the left sub-tree. (The same rules apply for query sequences greater,
which would be found in the right sub-tree).

print_subseq_matches <- function(data, subseq) {
if(is.null(data)) {
return(invisible())

}

left <- data[[1]]
el <- data[[2]]
right <- data[[3]]
pattern <- str_c("^", subseq) # for str_detect at start of key

if(!str_detect(el[[1]], pattern)) { # no match
if(subseq < el[[1]]) { # continue search right

print_subseq_matches(left, subseq)
} else { # continue search left

print_subseq_matches(right, subseq) # continue search left
}

} else { # match!
print(str_c(el[[1]], el[[2]], sep = " "))
print_subseq_matches(left, subseq) # continue search left
print_subseq_matches(right, subseq) # AND right

}
}

print_subseq_matches(tree, "ACGA")

Figure 3.5: Finding matches for short se-
quences in the tree-index genome sequence.

Figure 3.4: A key/value binary search tree, with subse-
quences of a long string indexing their locations within the
string.

On the other hand, if the sequence did start with
"ACGA", then the value needs to be printed since "ACGA"

occurs at that location. Further, in this case more matches
might be found in both the left and right sub-trees, so the
search must continue in both directions. Of course, if the
tree is empty (NULL) then nothing needs to be done at all
(Figure 3.5). This code will reliably indicate that "ACGA"
occurs at positions 26, 29, and 43 of the original sequence.

Now, the most important question is, how much work
is required to find these matches? This recursive function
is not nearly as simple as the previous ones we’ve seen,
which always branch left or right–this function sometimes branches
left or right, and sometimes branches both ways. This means the
amount of work could be larger. As an extreme example, consider
a tree built from the sequence "AAAAAAAAAAAAA" and the search
sequence "A". Here the query will match at every node, and the
branching will always be to both sides; every node will be visited

searching and sorting 51

done. But what about if n > 1? The run time depends on how
long it takes to perform the steps listed above. First, in step one, a
random element is selected; presented without argument, R uses
O(1) time for this simple operation. In step 2, elements are extracted
in comparison with the pivot. This requires comparing each element
with the pivot, and so this step takes O(n) time. The third step
performs two recursive calls, on vectors of size (by simplifying
assumption) n/2. Since we don’t have any way to describe this
runtime other than via T(), we’ll say this is 2T(n/2). Finally, the
three sub-lists must be concatenated; R performs this in O(n) time
since each element must be included in the answer. Thus, the total
time in the recursive case is O(1) + O(n) + 2T(n) + O(n), or just
2T(n/2) + O(n).

T(n) =

8
<

:
2T(n/2) + O(n), if n > 1,

O(1), otherwise.

It is possible to come up with a simple solution for recurrence
relations like this, using a process not too dissimilar from recur-
sion. First, we start by replacing T(n/2) according to the definition
T(n/2) = 2T(n/4) + O(n/2):

T(n) =2T(n/2) + O(n)

=2 (2T(n/4) + O(n/2)) + O(n)

=4T(n/4) + 2O(n/2) + O(n)

=4T(n/4) + O(n) + O(n) .

Similarly, we can replace T(n/4) with 2T(n/8) + O(n), and with
some rearrangement obtain

T(n) = 8T(n/8) + O(n) + O(n) + O(n) .

This process will continue, until we get an equation like xT(n/x) +
O(n) + O(n) + · · ·+ O(n). How many steps can we do this, until
n/x is approximately 1 (wherein T(n) = O(1) will apply)? Since x is
being doubled at each iteration, the number of steps is log2(n), thus
there will be O(log2(n)) terms of O(n) in the entire series.

T(n) = O(1) + O(n) + O(n) + · · ·+ O(n)| {z }
O(log2(n)) terms

.

Thus, the total runtime for the algorithm under the given assump-
tions is T(n) = O(n log2(n)), significantly better than the O(n2) of
bubblesort (Figure 3.20).6

6 We are taking some liberties in notation
here, particularly in simplifying expressions
like 2O(n/2) to O(n). A more rigorous
approach would not use order notation, but
use variables for constants as in

T(n) =

(
2T(n/2) + c1n + c2, if n > 1,
c3, otherwise.

You might try solving this recurrence
yourself to verify it results in the same
solution.

Figure 3.20: A plot of n2 (red) and n log2(n)
(green) for values of n from 1 to 1,000.

Another interesting way to get a handle on the runtime of this
function is with a visual diagram (Figure 3.21). We can illustrate
the function calls as nodes in a “tree,” wherein each node is sized

52 bio/recursion

Figure 3.21: A “weighted call tree” for quicksort, under
the assumption that every pivot splits lessthan and
greaterthan (here represented by lt and gt, bc stands
for “base case”) into two roughly-equal halves. The
blue line traces the path of execution: in any node
a local greaterthan and lessthan are created, then
lessthan is sorted recursively followed by greaterthan
before the answer is concatenated and returned. In this
path, going down a level represents a call, and going
up a level represents a return.

according to the amount of work done at that call (not count-
ing the work done in recursive calls). Thus, the top node
represents the O(n) work done by the initial call, and this
node calls two sub-nodes representing O(n/2) work each;
each of these make calls representing O(n/4) work, and so
on. But, at the level where each node requires O(n/4) work,
there are 4 such nodes; a similar argument applies to every
level. The main question then is, how many levels are there?
Notice the similarity to a balanced binary tree: there are
O(log2(n)) levels, for a total amount of work of O(n log2(n)).

We’ve made a pretty big assumption here, which is that
the randomly-chosen pivot is the median and always divides
the input vector exactly in half. This will be true on average,
but what happens if we get unlucky? Let’s consider the
case where the pivot always happens to be the smallest (or
perhaps second-smallest) element of the list. In this case,
lessthan will always be empty (and so sorting it will be an
instance of the base case), and greaterthan will have n � 1
elements. The recurrence relation for this case is

T(n) =

8
<

:
T(n � 1) + O(n), if n > 1,

O(1), otherwise.

Figure 3.22: A “call tree” for quicksort, where the pivot
is always the smallest or nearly the smallest element.

The corresponding graphical call-tree representation is
shown in Figure 3.22. Now the amount of work at each level
decreases incrementally, so it takes many more levels to reach
the bottom. The total amount of work is n + (n � 1) + (n �
2) + · · ·+ 1 = n(n + 1)/2, which is O(n2) indicating that in
the worst case quicksort, despite its name, can be as slow as
bubblesort.

As we said, on average a randomly selected pivot will
split the vector in half, and indeed it has been shown that
with very high probability quicksort will run in O(n log2(n))
time. It is notable that quicksort does use random choices
to guarantee this no matter the order of the input: any de-
terministic rule could result in O(n2) runtime if the data
are “stacked against the rule.” (For example, if the data are
already sorted, always using the first element as the pivot is
equivalent to being unlucky enough to always choosing the
smallest element.)

Much as there are self-balancing binary trees that give
strong guarantees on O(log2(n)) operations, there are other
recursive sorting methods that guarantee O(n log2(n)) run-
time without using randomization. Examples include merge-
sort and treesort (when using a balanced binary tree), which

searching and sorting 53

will be covered in the exercises.

Exercises

1. Mergesort operates in a similar fashion as quicksort: the input
vector is split into two equal-sized sub-vectors, these are sorted
recursively, and then the answers are combined into the final
answer. The main difference is in how the list is split in half.

Mergesort requires a small auxiliary function called merge()

which takes two sorted vectors and returns a single sorted vector
with all of the elements. Write this function and argue that in
runs in O(n) time.

With the merge() function written, mergesort() is simple: the
base case is the same as for quicksort(), but otherwise split
the input vector in two pieces called first_half (containing
the first ⇡ n/2 elements) and second_half (containing the rest).
Recursively call mergesort() on these halves, and use merge() to
merge the sorted sub-vectors into a single answer to return. Since
this method guarantees an equal split, its runtime is a guaranteed
O(n log2(n)).

2. Treesort simply inserts all the elements of a vector into a binary
search tree, and uses a recursive method to re-extract them to
a vector (or list) in order. Argue that for a balanced binary tree,
the runtime for treesort is also O(n log2(n)), and implement a
treesort using the binary search trees discussed earlier.

3. A colleague thinks that if splitting the input vector into two parts
works well for mergesort, then splitting into three (and recursing
three times) must be even better. What would be the runtime of
this modified sort? Is it in principle better, worse than, or equal
to regular split-in-half version? Why? (It will help to have solved
problem 5 on page 44.)

4 Induction and Stacks

I have deeply regretted that I
did not proceed far enough at
least to understand something
of the great leading principles
of mathematics, for men thus
endowed seem to have an
extra sense.

Charles Darwin, 1876

Figure 4.1: The family tree of a male bee.

Bees have an interesting biology. As you may know, a single female,
the queen, lays eggs producing most of the male worker bees in
a hive. These males have no father and are clones of the queen.
Female (queen) bees on the other hand are rarer, and have both a
mother and a father. The family tree for a male bee is illustrated
in Figure 4.1. If we consider the number of ancestors of the bee
at each generation (including himself as his “first” generation, as
we’ll count generations backward through time) then the sequence
goes 1, 1, 2, 3, 5, 8, 13, and so on. You might recognize this as the
famous Fibonacci sequence, after the 11th century mathematician
who studied it. (Leonardo Fibonacci was also largely responsible for
moving Europe away from the Roman Numeral counting system
to the Arabic system we use today.) Apparently, the number of
bees at a given generation n, which we’ll call bees(n) (and is often
annotated as f ib(n), since the same equation describes the Fibonacci
sequence), is the sum of the number of bees of the previous two
generations (1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, and so on):

bees(n) =

8
>><

>>:

1, if n = 1,

1, if n = 2,

bees(n � 1) + bees(n � 2), otherwise.

But, is it enough to simply assert this relationship? That the num-
ber of bees at a given generation is equal to the sum of the previous
generations? Perhaps not. We’ve based this only on observation of a
small number of cases, and we could envision an obstinate observer

56 bio/recursion

who might not agree that bees(36) = bees(35) + bees(34) without a
ridiculous extension of the drawing (there would be over 14 million
bees in the figure at the 36th generation!) Rather, we should argue
the relationship analytically by producing a proof.

Proof. Based on simple observation, we can argue conclusively that
bees(1) = 1 and bees(2) = 1.

For any other n, let’s assume, for the moment, that bees(n � 1)
gives the correct number of ancestors at generation n � 1 according
to the formula, as does bees(n � 2) for generation n � 2. If these
facts are true (see discussion below), then all we need show is that
bees(n � 1) + bees(n � 2) gives the correct answer for generation n
(since this is equated to bees(n)).

Figure 4.2: A sketch of the proof for
bees(n) = bees(n � 1) + bees(n � 2). The
logic for f emales(n � 1) uses the same
argumentation as for f emales(n).

1. First, bees(n) = f emales(n) + males(n), the number of females and
males at generation n, respectively.

2. Consider f emales(n): in the family tree, every bee (male and
female) has exactly one mother. Further, every female in the tree
gives birth to exactly one bee in the tree. Thus, the very rules of
bee biology dictate that f emales(n) = males(n � 1) + f emales(n �
1), which in turn equals bees(n � 1).

3. Now consider males(n). Every male at generation n in the tree
mates to contribute to exactly one female offspring at generation
n � 1 (in this family tree at least). Further, every female at gen-
eration n � 1 has exactly one male parent at generation n. Thus,
males(n) = f emales(n � 1).

4. By the same logic as step 2 above, f emales(n � 1) = bees(n � 1).

Finally, we have that:

bees(n) = f emales(n) + males(n) (step 1)

= bees(n � 1) + males(n) (step 2)

= bees(n � 1) + f emales(n � 1) (step 3)

= bees(n � 1) + bees(n � 2) (step 4) .

The steps above will work fine for any given n, so long as
we can actually assume that the formula produces good numbers
for bees(n � 1) and bees(n � 2) as we did. Our simple observations
showed that this is true for the first two generations, which means
that the proof must hold for n = 3; that is, that bees(3) = bees(2) +
bees(1) (2 = 1 + 1). This shows that the formula is further correct for
bees(3), and thus that the proof holds for n = 4 as well (bees(4) =

induction and stacks 57

bees(3) + bees(2)). In a sense, our “proof” is an infinite series of sub-
proofs, each relying on the correctness of the previous two (Figure
4.3).

Figure 4.3: Dependency of sub-proofs. We
show the truth of n = 1 and n = 2 by
observation, and these imply the truth of
n = 3 by argumentation. Similarly, n = 2 and
n = 3 imply the truth of n = 4, and so on.

This strategy of proving a “cascade of correctness” is known as
induction. You might remember mathematical induction from a class
in mathematics, for example to prove an identity like 1 + 2 + · · ·+
n = n(n + 1)/2 (Figure 4.4). In simple mathematical induction, there
is a base case where the identity is shown for a small value, and an
inductive case where the cascade is described mathematically.

Figure 4.4: A sketch of the proof for 1 +
2 + · · ·+ n = n(n + 1)/2 by mathematical
induction.

In the case of our bees, we’re reasoning more generally about
structures that exist in nature (or computer programs). We still have
a base case (or cases), and we still have an inductive case (or cases).
But we call this more general form of proof structural induction, as it
relies on more than mere manipulation of formulae.

4.1 Computing the Fibonacci Sequence

At this point, rather than using bees(n), let’s switch to f ib(n) to
emphasize that the sequence of numbers we’re describing is indeed
the Fibonacci sequence. How might we write a program to compute
the nth Fibonacci number? We can use recursion, and the code itself
nearly mirrors the definition. Indeed, the contents of the else block
in Figure 4.5 could simply be return(fib(n-1) + fib(n-2)).

fib <- function(n) {
if(n == 1) {
return(1)

} else if(n == 2) {
return(1)

} else {
a <- fib(n - 1)
b <- fib(n - 2)
answer <- a + b
return(answer)
or simply: return(fib(n - 1) + fib(n - 2))

}
}

print(fib(8)) # prints 21
Figure 4.5: A function for computing the nth

Fibonacci number.

The reason this code produces correct answers is due to the way
functions and local variables work, as in the recursive functions
from previous chapters. Here, we called fib(8), an instance of the

80 bio/recursion

case, the fact that fib(1000) is a ridiculously large number is a
limitation in itself.)

Exercises

1. An earlier exercise (page 58) asked you to program a pair of
recursive functions for a predator/prey model. Your task now
is to memoize these functions with a pair of global hash tables.
Your “key” should be a string that identifies all of the parameters,
as in this skeleton code:

predators <- function(n, r, b, c, d) {
this_call <- str_c(n, ";", r, ";", b, ";", c, ";", d)
...

2. Next, create a dynamic programming solution for the preda-
tor/prey model. This will require two tables of the right design
(or, alternatively, a matrix with two rows). You may need to draw
a diagram of the subproblems and their dependencies: what does
predators(n) depend on? What about prey(n)?

3. Complete the hash table example, by first adjusting append_end()

so that duplicate keys cannot be stored within the same nested
list, and if a user attempts to do so the value for that key is
overwritten. Further, implement a has_key() method which takes
a list of buckets, and returns TRUE if a given key is present, and
FALSE otherwise. Try using your custom hash table to memoize
fib().

5.2 Notes on Software Engineering

Many programmers dislike the use of global variables that are
updated across function calls, and for good reason: they add com-
plexity and “state” within the program for the programmer to keep
track of. A function that reads and writes global data can no longer
be thought of as a black box that only turns given parameters into
required outputs. Even our relatively benign memoization caches
will be cumbersome, since we need to remember to initialize them
before using them.

Functional languages like R provide some unique tricks to help
manage this complexity. As you’ve perhaps surmised, functions in
R are types of data like any other, and their names are the variables
holding the data. Consider the syntax for our fib() function: fib <-

function(n) Here, fib is a variable name that we’ve assigned
data (the function) to using <-. This allows us to do interesting

hash tables, memoization, and dynamic programming 81

things like pass function as parameters to other functions–we saw
an example of this when we wrote nested_lapply() in Chapter 2.

Additionally, we know that variables assigned to within a func-
tion with <- are local, meaning they are unique to that function call
and disappear when the call ends. This important feature not only
enables recursion, but also keeps code clean and manageable.

Combining these two facts, we find that we can define local
functions within other functions. Figure 5.16 show an outer function
definition, and within it an inner function definition.

fib <- function(n) {

fib_inner <- function(n_inner) {
if(n_inner == 1 | n_inner == 2) {

answer_inner <- 1
return(answer_inner)

} else {
answer_inner <- fib_inner(n_inner - 1) +

fib_inner(n_inner - 2)
return(answer_inner)

}
}

answer <- fib_inner(n)
return(answer)

}

print(fib(20)) # 6765

Figure 5.16: A function defined locally
within another.

Here, fib() defines a local variable fib_inner (which happens to
be a function), and then later calls fib_inner() to produce answer. If
we call fib(), the inner function fib_inner() will be created, but it
will only exist as long as the outer fib() is executing.

Perhaps you can see where we’re headed: we’re going to memo-
ize fib_inner(), and the cache will be a local variable of the outer
fib() (Figure 5.17).

Now when we call fib(), it 1) defines a local fib_inner() func-
tion, 2) defines a local fib_cache hash table, and 3) calls fib_inner(),
which makes use of the cache as a “global” variable. How does this
work, given that earlier in the book we said that <<- assigns to a
global variable, but now we are assigning to a local variable of the
outer function? Actually, we fibbed a bit earlier. What <<- really
does is assign “up” the hierarchy of calls (up the variables in the call
stack!) Even if we are deep within a nest of calls, <<- will assign to
the first outer variable of that name that it can find.

Thus, from the perspective of outside the main fib() call, there
are no global variables and no extra state to keep track of; fib()
itself handles initializing the cache, using it, destroying it when

82 bio/recursion

Figure 5.17: Memoizing an inner function.
fib <- function(n) {

fib_inner <- function(n_inner) {
key <- str_c("n_inner: ", n_inner)
if(has.key(key, fib_cache)) {

return(fib_cache[[key]])
}

if(n_inner == 1 | n_inner == 2) {
answer_inner <- 1
fib_cache[[key]] <<- answer_inner
return(answer_inner)

} else {
answer_inner <- fib_inner(n_inner - 1) +

fib_inner(n_inner - 2)
fib_cache[[key]] <<- answer_inner
return(answer_inner)

}
}

fib_cache <- hash()
answer <- fib_inner(n)
return(answer)

}

print(fib(20)) # 6765

done. In fact, if we are comfortable enough with local variables
shadowing external variables, we don’t even need the awkward
names of fib_inner, n_inner, and answer_inner (which we used
purely for clarity). We could replace these with fib, n, and answer

and the code would work identically.
In future chapters we won’t be encapsulating our memoized func-

tions along with their caches in outer functions. We’ll instead opt to
keep the code simpler–but potentially more difficult to manage–by
using global variables and focusing on the theoretical topics at hand.

6 Alignment

Beware of bugs in the above
code; I have only proved it
correct, not tried it.

Donald Knuth, 1977

The topics covered in the previous chapters–recursion, induction,
memoization, dynamic programming–are important and powerful,
but using them to compute Fibonacci numbers isn’t that useful. In
this chapter we’ll bring these ideas together to solve one of the most
important problems in bioinformatics: sequence alignment. The
problem is defined as follows: given two DNA strings a and b of
length n and m, produce a “good” alignment of these by inserting
"-" (“gap”) characters so that they are the same length. As an
example, consider Figure 6.1; the output produces modified versions
of a and b by inserting gaps.

Figure 6.1: An example sequence alignment.

Figure 6.2: Sequence divergence over evo-
lutionary time. Modern species shared
common ancestors in the past, and thus also
common DNA sequences. Over time the
species diverged (and some went extinct),
and so did the sequence, leaving us to find
only a and b.

What makes a “good” alignment? Intuitively, a good alignment
produces a large number of matches (four in this example). But this
is not the only possible criteria, and the details of defining goodness
depend on what the goal is. We are often interested in aligning
DNA sequences because we want to compare their sequences after
evolutionary divergence. Consider the hemoglobin protein, which
carries oxygen in red blood cells. This protein is defined by an
A/C/G/T DNA sequence in animal genomes, from fish to humans
to mice. All of these animals share a common ancestor, and this an-
cient ancestor also had an “original” hemoglobin sequence. As time
passed and species diverged, the hemoglobin sequence changed via
mutation in different ways for different species, and some of these
changes were kept or lost by evolutionary pressures (Figure 6.2).

84 bio/recursion

So, we would expect the hemoglobin sequence to be very similar,
but not identical, between humans and mice. Further, we now know
certain things about how DNA sequences mutate over time. For
example, the loss of a DNA base (which would require inserting
a gap in the alignment) is rarer than a DNA-base switch. As such,
we should prefer alignments with fewer gaps even if in some cases
it means accepting more mismatches. In practice this means align-
ments are evaluated based on a scoring scheme: for example, +2
points for a match, �3 for a mismatch, and �4 for a gap.1 With

1 Determining scoring rules that match
evolutionary history is a large area of
study in itself. For example, we also know
that A/T and C/G switches are more
common than others, so we might score
those mismatches slightly higher. In protein
sequences we have strings of 20 letters (e.g.
"LPEAF...") with varying probabilities of
switching. Large sets of genes are analyzed
to determine these probabilities empirically,
and the scoring points are determined from
them.

these rules in place, the goal is to produce an alignment that maxi-
mizes the score. We call such an alignment optimal with respect to
the scoring scheme. (There may be a number of different optimal
alignments with the same score; we’re interested in finding any
one.2)2 Computer scientists and mathematicians

use the term “optimal” precisely: it is almost
exclusively used to describe the best possible
solution, or an algorithm that provably
delivers one.

It should be noted that a scoring scheme like this makes sense
only if matching bases are worth more than mismatches and gaps:
gap score < mismatch score < 0 < match score. (Imagine what
would happen if the gap score was +2 and the others were �2: the
score could be maximized by adding millions of gap characters!)

Figure 6.3: Easy cases of the sequence
alignment problem: when both are only a
single character, or one sequence is empty.

In very simple cases, finding an optimal alignment is easy. Be-
cause gaps are scored lower than mismatches (scored lower than
matches), if a and b are only one character each, then the optimal
alignment is simply the two inputs. Although odd to consider, if
one of the sequences is “empty” (i.e. ""), then the optimal alignment
simply pads out the empty sequence with gaps to make it the same
length as the other (Figure 6.3).

Figure 6.4: Any alignment can only end in
one of three possible ways.

What about more complex cases? Consider some optimal align-
ments as shown in Figure 6.4 (which we’ve perhaps computed by
hand). In all three cases, the end of the alignments have either a gap
(-) or the last base of one or both of the input sequences. And after
all, how could they be anything else?

In fact, if we go so far as to say that all sequences begin with an
identical common character like @, then even some of the simple
cases become complex cases. For example, aligning just "A" with
just "T" can be recast as aligning "@A" with "@T", a complex case. We
consider this now as it will make the code later much simpler, as we
have only two types of cases to deal with: simple cases (where one
or both of the sequences are just "@") and complex ones (all others,
Figure 6.5). For scoring purposes, we’ll assume that "@" aligned
with "@" has a score of 0.

For convenience, let’s create some definitions. Given two strings
a and b, let pa be the “prefix” of a (containing all but the last char-
acter), and ea be the “end” of a (the last character). Define pb and eb

similarly for b (Figure 6.6). We’ll also define a function S() that rep-
resents the score of an alignment or a pair of characters as defined

alignment 85

by whatever scoring scheme we’re using.

Figure 6.5: With the appropriate representa-
tion, “simple” cases of the alignment prob-
lem are those where at least one sequence
is just "@"; all others can be considered as a
complex case.

Figure 6.6: Definitions for pa, pb, ea and eb

for sequences a and b.

Based on the observation above about how alignments can end,
there are three possibilities for the alignment of a and b and their
scores, based on sub-alignments that we’ll call le f t, center, and right
for reasons that will become clearer in a bit:

pa aligned w/

pbeb

!

| {z }
le f t

ea

� ,
score = S(le f t) + S(ea,�)

pa aligned w/

pb

!

| {z }
center

ea

eb ,
score = S(center) + S(ea, eb)

paea aligned w/

pb

!

| {z }
right

�
eb ,

score = S(right) + S(�, eb)

(6.1)

The optimal alignment (the answer) is thus the best scoring of
these three options, if the le f t, center, and right sub-alignments are
themselves optimal. This relationship is often written in a more
obtuse (but precise) mathematical notation:

S(a1,i, b1,j) = max

8
>><

>>:

S(a1,i�1, b1,j) + S(ai, -),

S(a1,i�1, b1,j�1) + S(ai, b j),

S(a1,i, b1,j�1) + S(-, b j),

where S() is the scoring function, Xa,b represents the subsequence
of X from position a to position b, and Xi is just the ith base of
sequence X.

There is a similarity here between solving the alignment prob-
lem and the “bees” problem of previous chapters. We’ve identified
the patterns that we think we can use, in terms of very simple cases
and more complex ones that depend on solving subcases (left, center,
and right). In fact, what we have is a recursive definition! The argu-
ment we’ve put together for the solution of the problem is pretty
strong. But does it constitute a proof? Could there be some outside
possibility that using a recursive method in this way won’t generate
optimal alignments in the sense of maximizing the score? To be thor-
ough, we can provide a proof-by-induction for this methodology.

alignment 91

base_case <- function(a_in, b_in) {
answer <- list(a_in = a_in, b_in = b_in,

a_out = "", b_out = "", score = 0)

if(length(a_in) == 1 & length(b_in) == 1) { # empty/empty
answer$a_out <- "@"
answer$b_out <- "@"

} else if(length(a_in) == 1) { # a_in is just @
answer$a_out <- rep("-", length(answer$b_out))
answer$b_out <- b_in
answer$a_out[1] <- "@"

} else { # b_in is just @
answer$a_out <- a_in
answer$b_out <- rep("-", length(answer$a_out))
answer$b_out[1] <- "@"

}

answer$score <- score_aln(answer$a_out, answer$b_out)
return(answer)

}

str(base_case(char_vec("@"), char_vec("@")))
str(base_case(char_vec("@"), char_vec("@A")))
str(base_case(char_vec("@TAC"), char_vec("@")))

Figure 6.11: A function that computes an
answer for simple base-cases: those where
either one or both input sequences are
empty.

List of 5
$ a_in : chr "@"
$ b_in : chr "@"
$ a_out: chr "@"
$ b_out: chr "@"
$ score: num 0
List of 5
$ a_in : chr "@"
$ b_in : chr [1:2] "@" "A"
$ a_out: chr [1:2] "@" "-"
$ b_out: chr [1:2] "@" "A"
$ score: num -4
List of 5
$ a_in : chr [1:4] "@" "T" "A" "C"
$ b_in : chr "@"
$ a_out: chr [1:4] "@" "T" "A" "C"
$ b_out: chr [1:4] "@" "-" "-" "-"
$ score: num -12

Figure 6.12: Output for Figure 6.11, showing
base-case answers encoded as named R lists.

With the necessary tools in place, now we can work on
the fun part: the main recursive function. Like base_case(), it will
take in two character vectors a_in and b_in, and return an answer
list containing the alignment and its score. We’ll call our recursive
function global_aln(). The first thing it can do is check to see if the
inputs represent a base case: if so, then the answer can simply be
returned from the base_case() function (Figure 6.13.1).

global_aln <- function(a_in, b_in) {
if(length(a_in) == 1 | length(b_in) == 1) {
return(base_case(a_in, b_in))

}
to be continued...

Figure 6.13.1: The start of the recursive
alignment function. If the inputs represent
a simple base case, then the answer from
base_case() can be returned.

If the inputs aren’t a base case, we need to follow the recursive
pattern by extracting pa, ea, pb, and eb, which we’ll call p_a_in,
e_a_in, p_b_in, and e_b_in (Figure 6.13.2). (The syntax x[l:m]

returns the sub-vector of x from index l to index m, inclusive.)

p_a_in <- a_in[1:(length(a_in) - 1)]
e_a_in <- a_in[length(a_in)]
p_b_in <- b_in[1:(length(b_in) - 1)]
e_b_in <- b_in[length(b_in)]
to be continued...

Figure 6.13.2: Extracting pa, ea, pb, and eb

from a and b.

92 bio/recursion

Let’s revisit our recursive definition from Equation 6.1:

pa aligned w/
pbeb

!

| {z }
le f t

ea

� ,
score = S(le f t) + S(ea,�)

pa aligned w/

pb

!

| {z }
center

ea

eb ,
score = S(center) + S(ea, eb)

paea aligned w/

pb

!

| {z }
right

�
eb ,

score = S(right) + S(�, eb)

We need to produce the sub-alignments left, center, and right

recursively. For left, for example, we do this by aligning pa against
pbeb, which is also the entirety of b. We could do this by simply
using b_in, or we could concatenate the pieces we’ve already pro-
duced with c(p_b_in, e_b_in). To stick with our notation, we’ll
choose the latter, even though re-concatenating the vectors is less
efficient (Figure 6.13.3).

Figure 6.13.3: Recursive calls for computing
le f t, center, and right sub-alignments. left <- global_aln(p_a_in, c(p_b_in, e_b_in))

center <- global_aln(p_a_in, p_b_in)
right <- global_aln(c(p_a_in, e_a_in), p_b_in)
to be continued...

Just as in the fib() function, notice the similarity between our
code and the conceptual definition! Now, we can use the answers
for these sub-alignments to produce three potential overall answers
for the problem, accessing parts of the answers to sub-problems as
needed using $-notation (Figure 6.13.4).

Figure 6.13.4: Computing three potential
answers to aligning a and b according to the
recursive definition.

answer_left <- list(a_in = a_in, b_in = b_in,
a_out = c(left$a_out, e_a_in),
b_out = c(left$b_out, "-"),
score = left$score +

score_pair(e_a_in, "-"))
answer_center <- list(a_in = a_in, b_in = b_in,

a_out = c(center$a_out, e_a_in),
b_out = c(center$b_out, e_b_in),
score = center$score +

score_pair(e_a_in, e_b_in))
answer_right <- list(a_in = a_in, b_in = b_in,

a_out = c(right$a_out, "-"),
b_out = c(right$b_out, e_b_in),
score = right$score +

score_pair("-", e_b_in))
to be continued...

alignment 93

All that is left is to determine which of these three (answer_right,
answer_center, or answer_left) is the best, defined as having the
largest score, and return it. We can do this in a straightforward
manner, and of course we need to include the final brace that closes
our function (Figure 6.13.5).

best <- answer_left
best_score <- answer_left$score
if(answer_center$score > best_score) {
best <- answer_center
best_score <- answer_center$score

}
if(answer_right$score > best_score) {
best <- answer_right
best_score <- answer_right$score

}

return(best)
}

Figure 6.13.5: Determining and returning
the best answer by selecting the one with the
largest score.

And that’s it! We’ve turned our recursive definition (which we
also proved correct via induction) into a recursive algorithm. (The
full function is simply the concatenation of Figures 6.13.1, 6.13.2,
6.13.3, 6.13.4, and 6.13.5.) Figure 6.14 shows a usage attempt, and
Figure 6.15 reveals the printed output.

a <- char_vec("@TATCGG")
b <- char_vec("@TTCG")
answer <- global_aln(a, b)
str(answer) # See margin
print(unvec_char(answer$a_out)) # @TATCGG
print(unvec_char(answer$b_out)) # @T-TCG-

Figure 6.14: Using the recursive alignment
function.

List of 5
$ a_in : chr [1:7] "@" "T" "A" "T" ...
$ b_in : chr [1:5] "@" "T" "T" "C" ...
$ a_out: chr [1:7] "@" "T" "A" "T" ...
$ b_out: chr [1:7] "@" "T" "-" "T" ...
$ score: num 0
[1] "@TATCGG"
[1] "@T-TCG-"

Figure 6.15: Output for Figure 6.14.

Exercises

1. Implement the code in this chapter, but modify the scoring rules
such that A/T and C/G mismatches are scored at -2 rather than
-3.

2. What is the maximum depth of the call stack in relation to
length(a_in) and length(b_in) for global_aln()? Prove that
your answer is correct.

3. Prove the correctness of the recursive definition in equation 6.2,
and implement the recursive method it describes. You may need
to create an alternate representation as well, since in this case
a sequence like "TAGC" should be represented the vector c("T",

"A", "G", "C", "@").

7 Fast Alignment, Local Alignment

Scientists often have a naïve
faith that if only they could
discover enough facts about a
problem, these facts would
somehow arrange themselves
in a compelling and true
solution.

Theodosius Dobzhansky, 1962

In the previous chapter we developed and proved correct a
recursive method for computing what are known as global sequence
alignments. A global alignment of two sequences requires that all
portions of both sequences are used in the alignment–later in this
chapter we’ll explore other types of alignments that are particularly
good for finding matching subsequences of two sequences, known as
local alignments.

Before we can do that, however, we should evaluate the speed
of our algorithm. If we try to use this method to align two longish
sequences (as in Figure 7.1), we’ll find that we must wait for a
surprisingly long time.

a <- char_vec("@TATCGGCGATCGATTAGCCC")
b <- char_vec("@TTGGCGATCGACCATCC")
answer <- global_aln(a, b) # waiting...

Figure 7.1: Attempting to use the recursive
method from the last chapter on long
sequences takes a very long time.

The recursive global_aln() function operates not too dissimilarly
from the fib() function of Chapter 4, except instead of making
two recursive calls it makes three! And, just like the fib() function,
the recursive calls only get closer to a base case one step at a time:
if a has n characters and b has m, computing just the center sub-
alignment requires aligning n � 1 and m � 1 characters. Contrast
this to many of the methods in Chapter 3, where recursive calls
were made to subproblems of half the original size. Indeed, just as
we wrote a recurrence relation for quicksort() (page 51), we can
write a recurrence relation for global_aln(). Let T(n, m) be the time
needed to align two sequences of length n and m. Then:

96 bio/recursion

T(n, m) =

8
>><

>>:

T(n � 1, m) + T(n � 1, m � 1) + T(n, m � 1) + O(n + m), if n > 1 and m > 1,

O(m), if n = 1,

O(n), if m = 1.

We won’t solve this recurrence exactly, other than to say that just
like the basic fib() function, the runtime is exponential in m and n.11 The O(n + m) comes from lines like a_out

= c(center$a_out, e_a_in), which requires
copying the data from center$a_out into a
new vector. Even without an O(n + m) term
in the recurrence (which can be avoided with
the creative use of stacks), the method would
still be exponentially slow.

But, also like the fib() function, many of the recursive calls solve
overlapping subproblems. Consider the call tree for an alignment
where a = @TATC and b = @TTGT (Figure 7.2; hopefully it’s clear
now why we named the subproblems le f t, center, and right!)

In Figure 7.2 we’ve highlighted the largest overlapping and
redundant subproblems, but there are many in the full tree even for
short input sequences. Obviously, memoizing our global alignment
function using the techniques of Chapter 4 will speed things up
considerably. We’ll use as keys into the memoization cache the
result of concatenating the unvec_char()’d versions of a_in and b_in

(Figure 7.3).

Figure 7.2: Call tree for global_aln() on sequences @TATC and @TTGT, with several
redundant computations highlighted.

With memoization our recursive
function runs much faster, even for
long input sequences. Just how fast
remains to be seen.

7.1 Inspecting the Cache

In an effort to determine how much
time and effort the memoized align-
ment algorithm takes, we can take a
detailed look at the cache. After all,
each entry in the cache represents a
chunk of work performed by some
function call. We’re going to visualize
the contents of the cache using the
ggplot2 R package.

But in order to plot anything
with ggplot2, the data to plot must exist in a dataframe–a table
of columns and rows. As shown in Figure 4.10 on page 60, the
contents of an rstack can easily be converted to a data frame. Unfor-
tunately, our data exists as entries of a hash table, for which no such
convenient conversion exists. Our strategy will be to use an rstack

as an intermediary (Figure 7.4, ignoring the highlighted lines).
As we do this, we’ll also (using an internal loop) run unvec_char()

on any elements of answer that are character vectors, effectively con-
verting entries like a_out so they are represented as c("@CATG")

instead of c("@", "C", "A", "T", "G") (highlighted lines in Figure

fast alignment, local alignment 97

GLOBAL_ALN_CACHE <<- hash()

global_aln <- function(a_in, b_in) {
key <- str_c(unvec_char(a_in), unvec_char(b_in), sep = ",")
if(has.key(key, GLOBAL_ALN_CACHE)) {
return(GLOBAL_ALN_CACHE[[key]])

}

if(length(a_in) == 1 | length(b_in) == 1) {
answer <- base_case(a_in, b_in)
GLOBAL_ALN_CACHE[[key]] <- answer
return(answer)

}

rest of function...

GLOBAL_ALN_CACHE[[key]] <<- best
return(best)

}

Figure 7.3: Modifications to memoize the
global_aln() function.

7.4).

hash_values_as_dataframe <- function(thehash) {
tempstack <- rstack()

for(key in keys(thehash)) {
answer <- thehash[[key]]

for(index in seq(1, length(answer))) {
if(is.character(answer[[index]])) {

answer[[index]] <- unvec_char(answer[[index]])
}

}

tempstack <- insert_top(tempstack, answer)
}

return(as.data.frame(tempstack, stringsAsFactors = FALSE))
}

Figure 7.4: Modifying
hash_values_as_dataframe() so that
any character vectors are run through
unvec_char() for the resulting data frame.

Of course, if we are interested in inspecting the cache for a given
run of global_aln(), we should be sure to clear it out before we call
global_aln() (Figure 7.5).

a <- char_vec("@TATCTGCAACGA")
b <- char_vec("@TTGTGC")
GLOBAL_ALN_CACHE <<- hash()
answer <- global_aln(a, b)

cache_df <- hash_values_as_dataframe(GLOBAL_ALN_CACHE)
print(head(cache_df))

Figure 7.5: Using
hash_values_to_dataframe() to summa-
rize the memoization cache. Notice that we
reset GLOBAL_ALN_CACHE before each call to
global_aln().

fast alignment, local alignment 113

A beautiful approached for global alignment that uses much less
memory (O(n) as opposed to O(mn)) is called Hirschberg’s algorithm.
This method fills out the score matrix for the dynamic program and
traceback, but does so recursively.6 The essense of the algorithm lies 6 Hirschberg’s algorithm is particularly

fascinating because it recursively solves
a dynamic program, itself representing a
recursively defined process!

in identifying–as efficiently (in memory used) as possible–which
cells in the middle two rows of the table the traceback path will
intersect. This can be done by computing scores (and “from” infor-
mation) in a row-by-row fashion, but only storing the most recent
row in order to compute the next. This proceeds in the forward
fashion to the middle row. Next, the same process happens in the
reverse starting at the bottom right (using the “alternative formula-
tion” discussed above), and where these two collide provides one
small part of the overall traceback path (Figure 7.34, top).

With these neighboring cells identified, the same process can
be recursively computed on the upper-left qaudrant of the matrix
defined by the cells found, and then again on the lower-right quad-
rant of the matrix (Figure 7.34, bottom). In this way, at most one
or two full rows of information need to stored, even though cell
scores will be computed many times. Fortunately, only 1/2 of the
scores will be computed twice, only 1/4 of the cell scores need
to be computed three times, 1/8 four times, and so on. Because
1 + 1/2 + 1/4 + · · ·  2, the total runtime of Hirshberg’s algorithm
is only twice that of normal global alignment (still O(nm)) but uses
much less memory (O(n), or “linear space”).

This is only a sketch of the algorithm; for details we refer the
reader to a more comprehensive bioinformatics text such as An
Introduction to Bioinformatics Algorithms by Neil C. Jones and Pavel A.
Pevzner.

Figure 7.34: Hirschberg’s algorithm finds the
traceback path in the dynamic programming
tables recursively. To start, pairs of rows
are scanned from the top and bottom to
find a small part of the traceback path near
the middle row (top). Then the upper-left
quadrant and lower-right quadrants are
solved recursively (bottom).

7.6 Alternative Scoring Rules, Multiple Alignment

As we saw, only simple modifications to the scoring and traceback
rules were needed to convert global alignment into local alignment.
Other adjustments can be used to produce other alignment types.

The first modification is for end-gap-free alignments–these allow
for overhangs at the start or end of a and/or b to be scored as 0,
or “free.” These are useful when both sequences are sourced from
similar template sequences and potentially overlap (Figure 7.35).
This is common in genome assemply applications where short
fragments are sequenced from a longer chromosome and need to be
pieced back together.

Figure 7.35: In end-gap-free alignment, gaps
occurring at the beginning or end of the
alignment (shown in purple) do not count
against the alignment score, allowing the
algorithm to align two sequences drawn
from different portions of similar template
sequences. The four general types are shown.

To allow for free end-gaps, the dynamic program is adjusted so
that scores along the top row and left-hand column are all 0 (rather
than increasingly negative gap costs). This allows the traceback to
“stop” anywhere along either sequence (and free gaps are assumed

114 bio/recursion

to fill out the rest). The traceback starts not in the lower-right corner,
but rather at the largest scoring cell along the bottom row or right-
hand column, allowing the free gaps at the other end. Figure 7.36

shows the four possible types of traceback paths corresponding to
the four types of alignments in Figure 7.35.

Figure 7.36: Traceback paths for the four
potential types of end-gap-free alignments,
which start at the highest-scoring cell along
the bottom or right, and end at the first cell
encountered along the top or left.

A more sophisticated modification provides for affine-gap align-
ments, which consider a tricky biological reality that not all gaps are
created equal. In an evolutionary tree (see Figure 6.2, page 83), once
a gap has been introduced by the loss of a DNA base or addition of
a new base, it can be more likely that future losses or additions may
occur at the same location.7 To account for this, affine-gap scoring

7 The particulars of this are best left to
advanced courses in evolutionary biology. In
some cases repeated additions or deletions
may not be causal, but an artifact of the
non-uniform nature of mutation. In other
cases a single modification could increase
the likelihood of future mutations. For
example, if a removal causes a gene sequence
to become non-functional (and this doesn’t
cause the lineage to go extinct), then future
mutations to the same region carry less risk
of ill effects.

associates a large cost with the first in a series of gaps, but smaller
costs with subsequent gaps (Figure 7.37).

Figure 7.37: Affine-gap alignments score
gaps in a series differently that standard
alignment; usually the first gap incurs a
severe penalty, and subsequent gaps less so
to account for evolutionary patterns.

There are at least a couple of ways to implement affine-gap
penalties. The easiest (and slowest) extends the idea of “from”
arrows so that an "up" arrow (or "left" as the case may be) might
be longer than a single cell, with the associated cost computed as
desired from the length (Figure 7.38). This means, however, that
when filling out the score table each cell depends on not just three
neighboring subproblems, but many. A more efficient solution
makes use of multiple scoring tables with “from” arrows that might
move between them. For more information on this topic we again
refer to An Introduction to Bioinformatics Algorithms by Jones and
Pevzner.

Figure 7.38: The simplest way to implement
affine-gap alignment costs is to consider
different-length “jumps” for each sub-
problem, with each having a different cost
associated as desired.

For this chapter and the last, we’ve considered aligning
only two sequences, a and b. The idea can be extended to three
sequences; consider the seven possible ending configurations for
sequences a, b, and d. When computing a multi-way aligment, we
consider all combinations for scoring. (An alignment of "T" with "A"

with "-", for example, incurs the T/A cost, the A/- cost, and the -/T

cost.)

✓
paea aligned w/
pbeb aligned w/

pd

◆

| {z }
aln1

�
�
ed

, score = S(aln1) + S(�,�) + S(�, ed) + S(ed,�)

✓
pa aligned w/

pbeb aligned w/
pded

◆

| {z }
aln2

ea
�
�

, score = S(aln2) + S(ea,�) + S(�,�) + S(�, ea)

✓
paea aligned w/
pb aligned w/

pded

◆

| {z }
aln3

�
eb
�

, score = S(aln3) + S(�, eb) + S(eb,�) + S(�,�)

fast alignment, local alignment 115

✓
paea aligned w/
pb aligned w/

pd

◆

| {z }
aln4

�
eb
ed

, score = S(aln4) + S(�, eb) + S(eb, ed) + S(ed,�)

✓
pa aligned w/

pbeb aligned w/
pd

◆

| {z }
aln5

ea
�
ed

, score = S(aln5) + S(ea,�) + S(�, ed) + S(ed, ea)

✓pa aligned w/
pb aligned w/

pdeb

◆

| {z }
aln6

eaeb
�

, score = S(aln6) + S(ea, eb) + S(eb,�) + S(�, ea)

✓
pa aligned w/
pb aligned w/

pd

◆

| {z }
aln7

eaeb
ed

, score = S(aln7) + S(ea, eb) + S(eb, ed) + S(ed, ea)

Figure 7.39: The dynamic programming so-
lution for three-sequence multiple alignment
would utilize 3-dimensional score and from
matrices. The global alignment would start
the traceback from the green cell; neighbor-
ing solutions are represented by the seven
cells touching it.

Since there are 3 input sequences, there are 23 � 1 ending con-
figurations to consider–2 choices for how we end the a portion (ea

and �), times 2 for b, times 2 for d, minus the obviously unneces-
sary -/-/- option. A memoized, recursive solution would follow
much the same strategy as in the last chapter. Similarly, a dynamic
program would follow in the footsteps of this chapter: these seven
options can be cast as potential “from” arrows in a 3-dimensional
table! (Figure 7.39.) Although more difficult to visualize, aligning
four sequences can be accomplished with 4-dimensional matrices,
each cell of which depends on 24 � 1 neighboring cells.8

8 I find it interesting that “base cases” of
higher-dimensional alignments are instances
of lower-dimensional alignments. For
example, any subproblem along a “wall”
of the 3-dimensional table is an instance
of 2-dimensional alignment, with the third
sequence filled out by gaps. From this, it is
possible to design a general n-way dynamic
program that relies on itself (recursively) to
compute solutions for lower-dimensional
walls in dimension n � 1.

While such multiple alignments allow biologists to compare many
sequences simultaneously, in practice this method is far too slow.
If a has n characters, b has m, and d has l, the time needed to fill
out the 3-dimensional table is O(nml). Adding a fourth sequence
of length k increases the runtime to O(nmlk). In general, the time
necessary grows explonentially with the number of input sequences.
Real multiple-alignment programs turn away from this optimal
approach and again turn to much faster (but not gauranteed to
produce score-maximizing alignment) heuristics.

Exercises

1. Try implementing end-gap-free alignment.

2. Try implementing affine-gap alignment with the naïve algorithm
described.

3. Try implementing 3-sequence global alignment, using the algo-
rithm for 2-sequence alignment if one of the three inputs is just
"@".

8 Hidden Markov Models

On two occasions I have been
asked, ‘Pray, Mr. Babbage, if
you put into the machine
wrong figures, will the right
answers come out?’ I am not
able rightly to apprehend the
kind of confusion of ideas that
could provoke such a
question.

Charles Babbage, 1864

Many topics in computer science constitute a sort of “algorithmic
forensics:” given a set of observations, what happened to pro-
duce them? In some cases, we have a good idea of the underlying
“model” and our goal is to figure out how our observations fit into
the model. Hidden Markov Models (HMMs, after late 19th century
Russian mathematician Andrey Markov) are a common example.

Suppose, for the moment, that we are security guards working
deep underground for months at a time at the NORAD compound
(North American Aerospace Defense Command), inside Cheyenne
Mountain in Colorado. As amateur meteorologists, based on histor-
ical newspapers we’ve built a simple weather model: the weather
tomorrow will most likely be like the weather today. To quantify
this, if any given day is sunny then it will be sunny the next day
with 75% probability and rainy with the remaining 25% probability.
On the other hand, if it is rainy, then the next day will be rainy 70%
of the time and sunny 30% of the time. These two states–sunny (s)
and rainy (r)–represent our model of the world, and our model
satisfies the Markov property: that the probability of moving to a state
depends only on the immediately previous state. After five rainy
days the sixth will be rainy with 70% probability; similarly after ten
rainy days the eleventh will also be rainy with 70% probability.

But this is not the entire story. As mere security guards stuck
inside, we can’t actually observe the weather.1 Fortunately, our 1 We should probably pick a different hobby.

Programming, maybe.friend the General lives outside the base, and every day he comes
to work passing by our security station either carrying an umbrella,

118 bio/recursion

or not. From talking to his friends, we know that he tends to carry
an umbrella on rainy days, but he forgets it on about 20% of those
rainy days. Similarly, he usually doesn’t carry it on sunny days,
but brings it just in case 10% of the time. All of this information
together represents our Hidden Markov Model, where “umbrella”
(u) and “no umbrella” (n) are possible observations influenced by
the (hidden from us) states 8.1.

Figure 8.1: Graphical representation for the rainy/sunny
Hidden Markov Model, with states shown in pink, and
possible observations shown in blue.

Given a model like this, there are a number of ques-
tions we might ask. Supposing we start on a sunny day,
what is the probability it will be rainy exactly 10 days
later? What is the probability that we’ll see an umbrella
on day 20? In the long term, what percentage of days will
be sunny?

All of these questions can be answered using the many
beautiful mathematical theories developed for Hidden
Markov Models.2 For a practical perspective, we’ll focus

2 The excellent book Probability and Computing
by Mitzenmacher and Upfal covers a variety
of these results.

in this chapter on a single question: given a sequence of
Umbrella/No Umbrella observations like n, n, n, u,

n, u, u, u, u, n, u, n, n, n, what is the most likely
sequence of underlying states? (More plainly: what was

most probably the weather on those days?)
This is a well-formed question. Consider a shorter sequence

like n, u. The likelihood that the underlying states were s, s is
[probability of n being observed from state s] ⇥ [probability that
state s transitions to state s] ⇥ [probability of u being observed
from state s], or (0.9)(0.75)(0.1) = 0.0675. A similar calculation
shows that the likelihood of s, r is (0.9)(0.25)(0.8) = 0.18.3 Given

3 Although “likelihood” and “probability”
are closely related, they are not quite the
same thing. Probability measures the chance
of an outcome from a random process,
while likelihood measures the probability
that a hypothesized model produced some
outcome (for discrete situations at least, such
as our weather model).

an observation sequence, we simply want to find a state sequence
maximizing this likelihood.

But this is also not an easy question. One possible strategy for
finding the most likely state sequence is to consider all possible state
sequences, compute the likelihood for each as described above, and
keep the most likely one. However, the number of possible state
sequences is (number of states)(number of observations) (two possible
states for day 1, times two for day 2, and so on). If our sequence was
20 days long, there would be 1,048,576 possible state sequences to
check; at 30 days, there are over a billion! Clearly we need a better
strategy.

Hidden Markov Models can be used to represent a huge va-
riety of processes. Those involving chance immediately come to
mind, such as measurements made with scientific instruments
prone to error. Many games like poker and roulette can be mod-
eled probabilistically, though they may or may not have a “hidden”
component.

hidden markov models 119

Figure 8.2: The “central dogma” of molecular biology de-
scribes the transcription/translation process whereby genic
regions in the DNA are turned into functional proteins.

HMMs have also been successfully applied to pro-
cesses that we don’t usually think of as random, such as
text-to-speech applications where the observations are
sound waves, and the hidden states are words or letter
combinations. In the realm of bioinformatics, HMMs are
commonly used to identify regions of DNA with specific
properties.

The “central dogma” of molecular biology holds that
“gene“ regions of DNA sequences are transcribed into
messenger RNA (potentially with some subsections,
called introns, removed). These are then translated in
three-base chunks into an amino acid sequence that folds
in 3 dimensions to become a building block of life: a
protein (Figure 8.2).

Figure 8.3: Graphical representation for the gene/non-gene
Hidden Markov Model.

In many species, the overall makeup of the DNA is
biased, for example consisting of 80% As and Ts and only
20% Cs and Gs. Furthermore, there are often patterns
and trends that distinguish gene sequences from the
surrounding DNA. In real gene finding applications,
these patterns and the models that represent them are
amazingly complex and are generated by analyzing many
sequences in related species.

For this discussion we’ll assume an extremely simple
model: a genome that is 80% As and Ts in non-gene ("n")
regions, and 25% As, Ts, Cs, and Gs in gene ("g") regions.
Further, we’ll assume that the genome starts in a non-
gene region, and that each position can transition from a
non-gene position to a gene position with 1% probability,
and gene positions can transition to non-gene positions
with 5% probability (Figure 8.3).

8.1 Generating Sequences

How might we represent a Hidden Markov Model like the above
in code? There are a number of possibilities. We might store the
state transition probabilities in a hash table, with a key for each
state and the corresponding probabilities as values. Alternatively
we could could use a matrix, with each row/column combination
representing a particular transition probability. Since R supports
matrices natively, we’ll use this representation (Figure 8.4).

120 bio/recursion

Figure 8.4: Representing state transition
probabilities with an R matrix, including
named rows and columns.

trans_probs <- matrix(nrow = 2, ncol = 2,
dimnames = list(c("g", "n"), c("g", "n")))

trans_probs["g", "g"] <- 0.97
trans_probs["g", "n"] <- 0.03
trans_probs["n", "n"] <- 0.99
trans_probs["n", "g"] <- 0.01

print(trans_probs)

g n
g 0.97 0.03
n 0.01 0.99

Figure 8.5: Output for Figure 8.4, represent-
ing transition probabilities (from row to
column).

The code and printed output (Figure 8.5) reveal that we can name
the rows and columns, and access individual entries by name, as in
trans_probs["g", "n"], storing the probability of transitioning from
a gene to a non-gene state. Similarly, we’ll encode the observation
probabilities in a two by four matrix (Figure 8.6, output in Figure
8.7).

Figure 8.6: Representing observation proba-
bilities. obs_probs <- matrix(nrow = 2, ncol = 4,

dimnames = list(c("g", "n"),
c("A", "C", "G", "T")))

obs_probs["g", "A"] <- 0.25
obs_probs["g", "C"] <- 0.25
obs_probs["g", "G"] <- 0.25
obs_probs["g", "T"] <- 0.25
obs_probs["n", "A"] <- 0.4
obs_probs["n", "C"] <- 0.1
obs_probs["n", "G"] <- 0.1
obs_probs["n", "T"] <- 0.4

print(obs_probs)

A C G T
g 0.25 0.25 0.25 0.25
n 0.40 0.10 0.10 0.40

Figure 8.7: Output for Figure 8.6, represent-
ing observation probabilities.

R provides convenient syntax for working with named matrices.
For example, probs <- trans_probs["g",] assigns to probs the
"g" row as a named vector; names(probs) thus returns the character
vector c("g", "n") while probs itself contains the numeric vector
c(0.97, 0.03). The sample() function returns a random sample
from a vector; it takes an optional size parameter specifying the
sample size, and a prob parameter specifying the sampling distribu-
tion vector. Thus, sample(names(probs), size = 1, prob = probs)

returns "g" with 97% probability and "n" with 3% probability (repre-
senting a random transition from the original "g"). We can use these
to write a function random_next_state() that, given the trans_probs

matrix and a “current” state, randomly selects a new state and re-
turns it. A very similar function random_obs() generates a random
observation from a given state 8.8).

With these functions in hand, we can write another that gener-
ates a random sequence of states and corresponding outputs. The
function will need both the trans_probs and obs_probs matrices,

128 bio/recursion

called_g

called_n

g

n

0 100 200 300 400 500
Position

St
at
e

Observation
A
C
G
T

Figure 8.23: Plotted output for Figure 8.22.

pos state obs called
500 1 n A called_n
499 2 n A called_n
498 3 n A called_n
497 4 n T called_n
496 5 n A called_n
495 6 n C called_n

Figure 8.24: Printed output for Figure 8.22.

8.4 Sub-problems and Dynamic Programming

As with sequence alignment, even though the memoized recursive
solution is fast (compared to a non-memoized solution), solving
large instances is still impractical due to limitations of the call stack
(see page 64). Fortunately, finding most-likely state sequences lends
itself well to a dynamic-programming, table-based solution. (As
mentioned earlier, the Viterbi algorithm was originally developed as
a dynamic program.)

Figure 8.25: Graphical representation for a three-state
Hidden Markov Model; all unlabeled edges have
weight of 0.1.

In order to inspect the relationships among sub-problems,
we’ll plot the sub-problems on a grid as we did for sequence
alignment in Figure 7.8 on page 98. To get a better sense
of the process, we’ll consider a more complex model with
another state possibility, "t" for “transposable element.”
In real genomes, transposable elements are regions of the
DNA prone to being replicated in other parts of the genome.
For our test we’ll represent genic regions as being rich in
As, non-gene regions as being rich in Cs, and transposable
elements as being rich in Gs. Further, all three states will only
transition to another state with 10% probability (Figure 8.25).

After generating transition probability and observation
matrices trans_probs2 and obs_probs2 (code not shown), we
generate a sequence of 50 observations (Figure 8.26).

However, before running decode() we need to modify the
function so that the answer lists generated store which sub-answer
produced the most likely overall answer. This “from” information
consists of the sub-answer’s input (obs_vec and end_state). For
base cases these will be set to NA. These modifications are found in
Figures 8.27.1 and 8.27.2.

Figure 8.26: Generating a moderate-size
observation sequence for the three-state
model.

seq_df2 <- generate_seq(trans_probs2, obs_probs2, "n", 50)

Now we can this modified decode() function to compute the
most likely state sequence for the given observation sequence,
seq_df2$obs. Rather than consider all three possible answers and

hidden markov models 129

...
Base case:
if(length(obs_vec) == 1) {
answer <- list(state_vec = end_state,

lhood = log(obs_probs[end_state, obs_vec]),
obs_vec = obs_vec,
end_state = end_state,
from_obs_vec = NA,
from_end_state = NA)

return(answer)
}
...

Figure 8.27.1: Modifications to Figure 8.20.1
for keeping track of “from” information in
base-case answers.

...
for(s in possible_states) {
subanswer <- decode(trans_probs, obs_probs, obs_subvec, s)

answer <- list(state_vec = c(subanswer$state_vec, end_state),
lhood = subanswer$lhood +

log(trans_probs[s, end_state]) +
log(obs_probs[end_state, last_obs]),

obs_vec = obs_vec,
end_state = end_state,
from_obs_vec = subanswer$obs_vec,
from_end_state = subanswer$end_state)

...

Figure 8.27.2: Modifications to Figure 8.20.2
for keeping track of “from” information in
recursive-case answers.

checking for the most likely, we’ll compute just answer_n. Further,
we’ll assume that VITERBI_CACHE is the name of the memoization
cache, and use the hash_values_as_dataframe() function (page 97)
to convert the cache into a data frame for plotting (Figure 8.28).

DECODE_CACHE <<- hash() # memoization cache
answer_n <- decode(trans_probs2, obs_probs2, seq_df2$obs, "n")

cache_df <- hash_values_as_dataframe(DECODE_CACHE)
print(tail(cache_df, n = 20))

Figure 8.28: Converting the memoization
cache for decode() into a data frame.

Figure 8.29: Printed output for Figure 8.28.

Using ggplot2, we can then plot a cell for each subproblem
solved, colored by the best log-likelihood computed for that sub-
problem. We organize the cells along the x-axis according to the
length of the observation sequence solved for, and we also draw
“from” arrows, indicating which state transitions proved most likely
(Figure 8.30).

The resulting plot shows each desired ending state on the y-axis
and each observation sequence solved for on the x-axis (Figure 8.31).
We’ve also annotated the plot with the true state sequence and the
called state sequence contained in answer_n.

130 bio/recursion

Figure 8.30: Using ggplot2 to plot the
memoization cache contents, with sub-
problems organized by observation sequence
length.

p <- ggplot(cache_df) +
geom_tile(aes(x = reorder(obs_vec, nchar(obs_vec)),

y = end_state, fill = lhood)) +
geom_segment(aes(x = obs_vec, y = end_state,

xend = from_obs_vec, yend = from_end_state),
arrow = arrow(length = unit(0.2,"cm")),
position = position_jitter(width = 0.1,

height = 0.1),
color = "red") +

scale_y_discrete(name = "State") +
theme_bw(14) +
theme(axis.text.x = element_text(angle = 25, hjust = 1))

plot(p)

Figure 8.31: Plot inspecting the contents
of the memoization cache for decode().
Also shown are the true and called state se-
quences (top) and the observation sequence
(bottom). Values along the x-axis are observa-
tion sequences considered in the solution for
each sub-problem cell.

Based on this visualization, it is clear that the number of unique
sub-problems solved is O(nk), where n is the length of the observa-
tion sequence and k is the number of states in the model. However,
the total amount of work performed by decode() is actually much
larger, even for the memoized version. This is because each sub-
problem requires considering each possible “from” state in the
for-loop, of which there are O(k) (which is to say, for each red arrow
visualized in Figure 8.31, k arrows were computed and considered).
Thus, the total runtime for the memoized solution is O(nk2), as will
be the runtime for a dynamic programming solution.

Exercises

1. Our gene/non-gene model assumes that “gene” and “non-gene”
are equally likely first states, even though the base-case (Figure
8.13.2) considers the relative probability of observations. (To see
this clearly, consider what would happen if there was an observa-
tion that could be produced by either with equal probability.) In
reality, it is extremely unlikely that the first base in a genome is
part of a gene.

hidden markov models 131

One easy way to work around this is to introduce an additional
“start” state into the model, such that it is only possible to move
out of the start state into other states, and the start state only pro-
duces a special observation that can be placed at the beginning of
an observation sequence (Figure 8.32).

Figure 8.32: A gene/non-gene Hidden
Markov Model with an explicit starting state.

Code an HMM with such a start state, and generate a random
sequence of states and observations starting from it. Try decoding
the observation sequence.

2. Visualize the non-memoized call tree for decode(trans_probs,

obs_probs, obs_vec, end_state), with obs_vec <- c("C", "A",

"T") and end_state <- "g". (You only need to visualize the con-
tents of obs_vec and end_state at each node, since trans_probs

and obs_probs don’t change.)

3. Implement a memoized version of the decode() function, using
information from obs_vec and end_state for the memoization
cache keys. (The trans_probs and obs_probs parameters don’t
need to be part of the keys, since they don’t change.)

4. Implement the dynamic-programming Viterbi algorithm for
decoding. As hinted at by Figure 8.31 (and the techniques of
Chapter 7), you’ll need to produce a table with a column for each
observation and a row for each state. A for-loop will be required
in computing the log-likelihood for each cell, considering po-
tential log-likelihoods based on all the cells in the column to the
left.

Once the log-likelihood and “from” tables are complete, comput-
ing the most-likely sequence as a traceback is straightforward.

5. Generate a formal proof of correctness for the recursive decode()

function. You will likely need to use an inductive proof similar in
structure to that used for global sequence alignment (Chapter 6).

9 Turtle Drawing, L-Systems

The programmer, like the poet,
works only slightly removed
from pure thought-stuff. He
builds his castles in the air,
from air, creating by exertion
of the imagination. Few media
of creation are so flexible, so
easy to polish and rework, so
readily capable of realizing
grand conceptual structures...

Fred Brooks, 1975

Nearly all of the techniques covered in this book have a self-
similar beauty to them, and the many figures we’ve seen show that
these ideas can be visualized graphically. The goal of this chapter
is to more explicitly explore the idea of drawing via recursive and
self-similar processes, and as a result will be more whimsical than
practical. First though, we will need a way to draw simple lines and
shapes programmatically. As it turns out, this functionality will
be provided by a turtle–a virtual turtle–provided by the R package
TurtleGraphics.

After loading the library (along with others, see page 23), we can
run turtle_init(mode = "clip") to initiate and display our turtle in
the center of a 100 by 100 “terrarium“ (display box). In this box, the
lower-left hand corner is at coordinate (0, 0). The turtle_getpos()

function returns the turtle’s current position as a length-2 vector
in x, y coordinates. Similarly, turtle_getangle() returns a length-1
vector of his current angle (where 0 is up, �90 is left, 90 is right and
180 is down; Figure 9.2).

Figure 9.1: The turtle’s “terrarium” after
calling turtle_init() is 100 units on the
x (horizontal) axis and 100 units on the y
(vertical), with 0, 0 in the lower-left and
100, 100 in the upper-right.

turtle_init(mode = "clip")
print(turtle_getpos()) # 50 50
print(turtle_getangle()) # 0

Figure 9.2: Initiating a new turtle and
printing his initial location and angle.

Our turtle has a pen, which by default is “down” on the paper.
We can tell him to move forward 10 units by calling turtle_forward(10),
causing him to move and draw a line with his pen. We could then

134 bio/recursion

call turtle_up() and turtle_forward(10) to have him lift his pen
and then move forward, followed by turtle_down() and another
turtle_forward(10) to have him to put his pen down and move
again while drawing.

Figure 9.3: Basic moves for turtle-based
drawing. turtle_init(mode = "clip") # initiate turtle at 50,50

turtle_setpos(50, 20) # set x,y location
turtle_forward(10) # move forward 10
turtle_up() # lift drawing pen
turtle_forward(10) # move forward 10
turtle_down() # set drawing pen down
turtle_lwd(3) # set pen size to 3.0
turtle_forward(10) # move forward 10
turtle_right(45) # turn 45 degrees right
turtle_col("red") # set pen color to red
turtle_backward(20) # move backward 20

The mode = "clip" in the turtle_init() function controls what
happens if the turtle moves outside the 100 ⇥ 100 window: by default
an error occurs, using mode = "clip" lets him simply move outside
the box but we won’t see any drawing. Figure 9.3 summarizes these
basic moves and a few more; the output is shown in Figure 9.4.

●
●

●

●

●

Figure 9.4: Displayed output for Figure 9.3.

Unfortunately, after every instruction, the turtle himself needs
to be redrawn (at least in the R TurtleGraphics package). Since we
will be drawing many lines (in loops and with functions), this dra-
matically slows down the drawing process. So although the turtle is
cute, after running turtle_init(mode = "clip") we’ll generally then
run turtle_hide() to indicate that we aren’t interested in seeing
the turtle himself. When we hide the turtle we can efficiently create
interesting images, such as a spiral produced by a loop (Figures 9.5
and 9.6).

Figure 9.5: If we are willing to “hide” the
turtle himself, we can efficiently produce
more complex drawings.

turtle_init(mode = "clip")
turtle_hide()

for(dist in seq(1,20)) {
turtle_forward(dist)
turtle_left(30)

}

Figure 9.6: Displayed output for Figure 9.5.

Finally, we’re also going to write three helper functions. The
first, turtle_getstate() will return the turtle’s current x and y
location as well as his angle as a 3-element vector. Conversely,
turtle_setstate() will take such a 3-element vector and set the
turtle’s current state to that position and angle. The TurtleGraphics

package provides no support for having the turtle draw text, so
we’ll include a custom turtle_text() function that takes a length-
1 character vector and plots it at the turtle’s current location and

turtle drawing, l-systems 135

angle. This function makes use of the same underlying graphical
system used by the TurtleGraphics package (Figures 9.7 and 9.8).

turtle_getstate <- function() {
state <- c(turtle_getpos(), turtle_getangle())
return(state)

}

turtle_setstate <- function(state) {
turtle_setpos(state[1], state[2])
turtle_setangle(state[3])

}

turtle_text <- function(label, col = "black", fontsize = 20) {
grid.text(label,

turtle_getpos()[1],
turtle_getpos()[2],
rot = -1*turtle_getangle(),
default.units = "native",
gp = gpar(fontsize = fontsize, col = col))

}

Example usage:
turtle_init(mode = "clip")
turtle_hide()

start_state <- turtle_getstate()
turtle_forward(20)
turtle_text("After move")
turtle_setstate(start_state)
turtle_text("Back at start")

Figure 9.7: Helpful functions for retrieving
and setting the turtle’s state, as well as
drawing text.

After move

Back at start

Figure 9.8: Displayed output for Figure 9.7.9.1 Graphical Recursion

Figure 9.9: Turtle moves for drawing a
simple tree with two branches.

Turtle graphics are too simple to be used for many applications, like
designing user interfaces. On the other hand, they are an excellent
tool for visualizing computational processes. Let’s start by writing a
function that draws a “tree” of a given size (taken as a parameter),
where the tree has only two branches, and the turtle is returned to
the starting position before the function ends. The overall strategy
will be to store the current state, move forward by the size given,
turn left, move forward by some fraction of the size given, return to
the branching point (without drawing), turn right, move forward
again by some fraction of the size given, and finally return to the
stored state (Figures 9.9 and 9.10).

We can use this function to draw two simple trees, one in the
lower-left with size of 20, and one in the lower-right with size of 0.5
(Figure 9.11).

150 bio/recursion

Figure 9.52: Generating a complex L-
System sentence and interpreting it with
the draw_sentence() function.

rules <- hash()
rules[["F"]] <- char_vec("F[-F]F[+F]F")

sentence <- c("F")
sentence <- lproduce(sentence, rules)
sentence <- lproduce(sentence, rules)
print(unvec_char(sentence))

turtle_init(mode = "clip")
turtle_hide()

turtle_setstate(c(50, 20, 0))
draw_sentence(sentence, 6, 30, 30)

Figure 9.53: Printed output for Figure 9.52,
showing the sentence used to draw Figure
9.54.

Figure 9.54: Displayed output for Figure 9.52.

Perhaps the most remarkable property of L-Systems is their
flexibility: they provide almost endless opportunities for creativity.
We could easily envision using random choices for sizes or angles
(like runif(1, min = size / 2, max = size * 2)); these types of
modifications often produce more life-like images.

For another example, rather than draw the entire structure
smaller to fit all of the F moves in the turtle’s drawing window,
we could specify that each jump into a substructure (indicated by an
addition to the state stack with a [character) could reduce the cur-
rent size by 1/3, while each jump out (removal with a] character)
reverses the adjustment. Other potential strategies include reducing
the size at each F symbol encountered, setting the size according to
the current size of the state stack, or increasing the symbol set with
explicit “smaller” and “larger” symbols.

Figure 9.55: Potential adjustments for the
draw_sentence() function (Figure 9.48),
incorporating specific symbols for “smaller”
and “larger.”

...
} else if(symbol == "]") {

turtle_setstate(peek_top(pos_stack))
pos_stack <- without_top(pos_stack)

} else if(symbol == "s") {
size <- size * (2/3)

} else if(symbol == "l") {
size <- size / (2/3)

} else {
...

Figures 9.55, 9.56 and 9.57 show an example of the latter, a mod-
ification of the earlier L-System where s is interpreted as size <-

size * (2/3) and l is interpreted as size <- size / (2/3) in the
draw_sentence() function. (Note that since we’ve specified no re-
placement rules for s and l, the lproduce() function simply copies
existing instances of them into each successive generation.)

turtle drawing, l-systems 151

rules <- hash()
rules[["F"]] <- char_vec("Fs[l-Fs]F[l+Fs]Fl")

sentence <- c("F")
for(i in seq(1,4)) {

sentence <- lproduce(sentence, rules)
}

turtle_init(mode = "clip")
turtle_hide()

turtle_setstate(c(50, 10, 0))
draw_sentence(sentence, 2.5, 30, 30)

Figure 9.56: Drawing a more sophisticated
L-System including s and l symbols inter-
preted as in Figure 9.55.

Figure 9.57: Displayed output for Figure 9.56.

Figure 9.58: The sentence underlying Figure
9.57.

Parameterized L-Systems use symbols that encode additional in-
formation. For example F(20) might represent a forward movement
of size 20, while +(30) might represent a right turn of 30�. Simi-
larly, replacement rules could take this information into account;
as in F(n) ! F(n/2)[+F(n/2)]-F(n/2). Such rules might be en-
coded as R lists (or our own nested lists) as in s <- list(list("F",

20), list("+", 30), list("F", 20)). Corresponding versions of
lproduce() and draw_sentence() would need to be created to work
with such lists-of-lists.

What about rules that are not deterministic? Perhaps with 25%
probability we use the rule F ! F[+F]F and with the remaining
75% probability we use F ! F[-F]F. Symbols could be occasionally
deleted (say, with 50% probability we neglect to put anything in the
produced sentence for the symbol). “Context-sensitive” L-Systems
take multiple symbols into account in sentence generation, as in F+

! F+F and F- ! F-F.
Finally, even basic L-Systems can include symbols that are com-

pletely ignored in drawing but are used in the sentence generation
process. Consider the following L-System:

start: X

X ! F-[[X]+X]+F[+FX]-X

F ! FF

Figure 9.59 illustrates five iterations of lproduce(), where X is inter-
preted as “do nothing,” left and right turns are 20� and 25�.

A vast array of geometric figures can be produced and drawn
with L-Systems as well, including the Koch curve described by
the rule F ! F-F++F-F (with 60� turns). There are many resources
to be found for L-Systems on the web. Excellent books that cover
the topic include The Nature of Code by Daniel Shiffman and The
Algorithmic Beautify of Plants by Przemyslaw Prusinkiewicz and
Aristid Lindenmayer, both available for free online.

152 bio/recursion

Figure 9.59: Drawing for an L-System
with start symbol X and rules X !
F-[[X]+X]+F[+FX]-X, F ! FF.

Exercises

1. Consider the L-System sentence F[-Fc]F[+Fc]Fc, where c is
interpreted as “draw a small circle.” This would add circular
“leaves” to Figure 9.50. Create a modified substitution rule such
that after each sentence generation, leaves are present at the ends
of all branches (but not at internal branching points).

2. Add randomness to the draw_sentence() function, such that each
F, +, or - is interpreted and drawn slightly differently.

3. Research some of the properties of “space-filling curves,” and
implement one (such as the Hilbert curve) as an L-System.

4. See if you can implement a parameterized L-System, with “sym-
bols” made up of 2-element lists and sentences as lists of symbols
(e.g. list(list("F", 10), list("+", 36))). Rules will likely also
need to be stored as lists; in fact, they could store anonymous func-
tions (functions not given a name). For example, the rule F(n) !
F(n/2) might be encoded as rules[["F"]] <- function(value)

{ return(value/2) }. Using the rule would require first extract-
ing the function, with something like if(symbol[[1]] == "F") {

func <- rules[["F"]] } and then calling it with something like
newsymbol <- list("F", func(symbol[[2]])).

Epilogue

This book is an outgrowth of a short class I taught at
Oregon State University through the Center for Genome Research
and Biocomputing, “Recursion and Dynamic Programming for
Sequence Analysis.” My goal for the class was to introduce the
beauty of computer science to life scientists, via the algorithms
and tools they encounter frequently. Too often (in my opinion) are
methods in bioinformatics reduced to mechanistic table-filling,
when fundamental ideas about computing and mathematics lie so
close at hand.

This audience drove the use of R; in the first offering of the
class, R was a comfortable language for most, whereas other more
common choices (like Python) would have required additional
background. Soon what was a pedagogical challenge became an
opportunity, as R’s flexible graphical utilities allowed us to explore
the internals of these algorithms in ways I had not previously. Addi-
tionally, I discovered that R’s nature as a functional language with
procedural capabilities worked well with the recursion ! memo-
ization ! dynamic programming exposition I prefer. Indeed, my
own experiments in R for this work have helped me explore the
fascinating interface between functional and procedural paradigms.

A secondary goal for this book was to produce an homage to
these topics I love so much, as an artifact of elegance itself worthy
of display. Hopefully my few skills in typesetting and design (with
the help of some excellent LATEX packages) have been up to the
challenge. I apologize that in some sections the reader must play
“hunt the figure,” a consequence of the LATEX layout engine in figure-
dense regions.

With respect to content, in a few ways the current edition is
over-complete, and in others under-complete. Some of the material
in Chapters 3 and 4 was not included in the original class and is
tangential to the main topics. Yet, for example, it felt irresponsible
to cover stacks and depth-first-search in trees, but not depth- and
breadth-first search in graphs. In the future I’d like to add some
discussion of phylogenetic trees. I also think context-free-grammars,

154 bio/recursion

the CYK dynamic programming algorithm, and their application to
RNA secondary structure prediction would be a nice followup (or
precursor) to L-Systems.

This book was typeset with the excellent Tufte-LATEX package, with
Palatino and Helvetica typefaces for the main text, and Inconsolata
for code. Other packages of note include minted for styling code
blocks (with a custom scheme for R code), epigraph for chapter
epigraphs, wrapfig for placing text-wrapping figures, and subfloat

for numbering of sub-figures. Most figures were produced either
as R output, or with Apple Keynote. The cover image is courtesy
Wikimedia Commons. This work is self-published, and copyright
Shawn T. O’Neil 2017.

Index

$ (regular expression), 40

ˆ (regular expression), 40

! (not operator), see logical
operators

<<-, see global variables
NA value, 16

NULL value, 16

[[]]

for data frames, 15

for lists, 13

$

for data frames, 15

for lists, 14

%%, see modulus operator
& (and operator), see logical

operators
?, see help()

adjacency-list representation,
66

affine-gap alignment, see
alignment

alignment
affine-gap, 114

banded, 112

end-gap-free, 113

global, 83, 95

local, 107

multiple, 115

scoring, 83

and operator (&), see logical
operators

append_end(), 29

as.character(), 15

as.data.frame(), 60

as.data.frame(), 15

as.integer(), 15

as.list(), 15, 60, 69

banded alignment, see
alignment

base case, 28

base_case(), 90

bees, see Fibonacci sequence
binary search, 46

binary search tree, 33, 36

depth of, 36

drawing, 140

BLAST, 111

bubblesort(), 49

buckets, see hash table

c(), 12

cache, see memoization
call stack, 61, 79

call tree
drawing, 138

quicksort, 51

central dogma (of biology),
119

char_vec(), 89

character, 12

(compute_hash()), 75

connected components, 67

consonants_list(), 64

CRAN, 22

data frames, 15

decode(), 123

decoding, 122

156 bio/recursion

depth-first search, 64

draw_call_tree(), 138

draw_sentence(), 148

draw_tree(), 140

dynamic programming, 77,
107

dynamically typed, 9

edge-matrix representation, 66

empty(), 59, 69

end-gap-free alignment, see
alignment

evolutionary divergence, 83

fib(), 57, 61, 62, 77, 78, 81

fib_inner(), 81

Fibonacci sequence, 55

FIFO queues, see queues
for-loops, 18

functions, 19

generate_seq(), 121

get_ith(), 28

get_suffix(), 45

get_val(), 74

get_val_hash(), 75

get_value() (binary search
tree), 36

ggplot2 package, 24

global alignment, see
alignment

global variables, 20, 80

global_aln(), 91, 96

golden ratio, 71

in phyllotaxis, 144

graphs, 66

has.key(), 73

hash function, 74

hash table, 72

hash(), 73

hash_values_as_dataframe(),
97

help(), 24

heuristic, 110

hidden Markov models, see
Markov models

higher-order function, 31

Hirschberg’s algorithm, 112

HMM, see Markov models

if statements, 17

induction, see proof by
induction

infinite recursion error, see
stack overflow error

insert_back(), 69

insert_hash(), 75

insert_top(), 59

insert_tree(), 34

install.packages(), 22

interpreter, 11

invisible(), 21

is.na(), 16

is.null(), 16

key, see hash table
keys(), 73

Koch curve, 142

with L-Systems, 151

koch_curve(), 142

L-Systems, 146

context-sensitive, 151

non-deterministic, 151

parameterized, 151

leaves (of a tree), 33

library(), 22

LIFO queues, see stacks
likelihood vs. probability, 118

linked list, 26, 29

list, 13, 25

local alignment, see alignment
local function, 81

local variable, 20, 27, 81

log-likelihood, 125

logical, 12

logical operators, 17

lproduce(), 147

INDEX 157

Markov models, 117

Markov property, 117

mathematical induction, see
proof by induction

matrices, 16

memoization, 71

mergesort, 53

modulus operator, 18

multi-paradigm, 10

multiple alignment, see
alignment

named data types, 14

Needleman-Wunsch
algorithm, 107

nested list, 26, 73

nested_lapply(), 31

newline character, 138

not operator (!), see logical
operators

numeric, 12

O(), order notation, 42

optimal, see heuristic
order(), 46

packages, 22

parameters, 19

pass-by-value, 9, 20

peek_front(), 69

peek_top(), 59

persistence (data structures),
29

phyllotaxis, 142

precision (of numbers), 125

print_list(), 27

print_string_stack(), 62

print_subseq_matches(), 41

print_tree(), 33

probability matrix, 119

proof
by contradiction, 86

by induction, 57

pure function, 20, 72

queues, 69

quicksort(), 50

random_next_state(), 120

random_obs(), 120

recurrence relation, 50

recursive case, 28

recycling, 12

references, 25

regular expression, 40

romanesco (plant), 145

root (of a tree), 33

rstackdeque package, 23

score_aln(), 90

score_pair(), 89

search_table(), 46

sentences (of L-Systems), 147

seq(), 12

simple_tree(), 136

Smith-Waterman algorithm,
108

sparse matrix, 112

stack frame, 62

stack overflow error, 62

stacks, 59

use in L-Systems, 148

start state, 130

state (in programs), 80

str(), 14

str_c(), 39

str_detect(), 40

str_length(), 39

str_sub(), 39

string, see character
stringr package, 23

structural induction, see
induction

substring search problem, 39

suffix, 45

suffix array, 46

symbols (of L-Systems), 146

traceback, 102

treesort, 53

158 bio/recursion

turtle graphics, 133

turtle_circle(), 143

turtle_getstate(), 135

turtle_setstate(), 135

turtle_text(), 135

TurtleGraphics package, 24

unlist(), 15

unvec_char(), 89

vectorization, 12

Viterbi algorithm, 122

while-loops, 17

without_front(), 69

without_top(), 59

	Programming in R
	Installing R
	Data Types, Variable Assignment
	Control Structures
	Packages
	Getting Help

	Recursive Structures
	Trees

	Searching and Sorting
	Order Notation
	Faster Search
	Sorting

	Induction and Stacks
	Computing the Fibonacci Sequence
	Stacks
	The Call Stack
	Depth-First Search
	Graphs, Depth- vs. Breadth-First Search

	Hash Tables, Memoization, and Dynamic Programming
	Dynamic Programming
	Notes on Software Engineering

	Alignment
	Proofs-by-Contradiction
	Directionality
	Recursive Sequence Alignment

	Fast Alignment, Local Alignment
	Inspecting the Cache
	Subproblems are Organized
	The Dynamic Program
	Local Alignment
	Heuristification
	Alternative Scoring Rules, Multiple Alignment

	Hidden Markov Models
	Generating Sequences
	The Viterbi Algorithm
	Log-Likelihoods
	Sub-problems and Dynamic Programming

	Turtle Drawing, L-Systems
	Graphical Recursion
	Lindenmayer Systems

	Epilogue

