

The Big Book of PowerShell
Gotchas (Spanish)

The DevOps Collective, Inc.

Este libro está a la venta en
http://leanpub.com/big-book-of-powershell-gotchas-spanish

Esta versión se publicó en 2018-10-28

Este es un libro de Leanpub. Leanpub anima a los autores y
publicadoras con el proceso de publicación. Lean Publishing es el
acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener feedback del lector
hasta conseguir tener el libro adecuado.

© 2018 The DevOps Collective, Inc.

http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/
http://leanpub.com/manifesto

También por The DevOps
Collective, Inc.
Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell

Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers

Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

The Monad Manifesto: Annotated (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTF?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Índice general

El gran libro de “trucos” de PowerShell 1

Formato a la derecha . 3

¿Dónde está el comando <SuNombreAqui>? He instalado
la última versión de PowerShell y no puedo encon-
trarlo! . 6

PowerShell.exe no es PowerShell 8

Acumulando la salida en una función 9

ForEach vs ForEach vs ForEach 11

Finalización con Tab . 13

-Contains y -Like son diferentes 14

No puede tener lo que no se tiene 18

-Filter y la diversidad de valores 21

No todo produce una salida 23

Una página HTML a la vez, por favor 25

[Sangriento . 27

ÍNDICE GENERAL

No+Concatene+Strings . 29

$ no forma parte del nombre de la variable 31

Utilizar la canalización (pipeline), no una matriz 33

Backtick, Grave Accent, Escape 35

Una multitud no es un individuo 38

Comandos de la vieja escuela 41

Propiedades vs. Valores . 42

Variables Remotas . 44

New-Object PSObject vs. PSCustomObject 46
New-Object PSObject en v1.0 46
New-Object en PS 2.0 . 47
PSCustomObject en PowerShell v3.0 49

Ejecutando algo como el “usuario actualmente conectado” 50

Comandos que necesitan un perfil de usuario pueden
fallar cuando se ejecuta de forma remota 52

Escribiendo en SQL Server 53

Obtener tamaños de carpetas 55

El gran libro de “trucos”
de PowerShell

Por Don Jones (mayormente)

PowerShell está lleno de “trucos” - pequeñas cosas que a veces se
interponen en su camino y son difíciles de averiguar por su cuenta.
Este breve libro está destinado a ayudarle a resolverlos y evitarlos.

Esta guía se publica bajo la licencia Creative CommonsAttribution-
NoDerivs 3.0 Unported. Los autores le animan a redistribuir este
archivo lo más ampliamente posible, pero le solicitan que no
modifique el documento original.

Obteniendo el código El módulo EnhancedHTML2 mencionado
en este libro puede encontrarse en PowerShell Gallery¹. Esa página
incluye las instrucciones de descarga. PowerShellGet es necesario
y se puede obtener de PowerShellGallery.com

¿Ha sido útil este libro? El (los) autor (es) le pide (n) que haga
una donación deducible de impuestos (en los EE.UU., consulte sus
leyes si vive en otro lugar) de cualquier cantidad a The DevOps
Collective² para apoyar su trabajo.

** Revise las actualizaciones! ** Nuestros ebooks se actualizan a
menudo con contenido nuevo y corregido. Los hacemos disponibles
de dos maneras:

¹https://www.powershellgallery.com/packages/EnhancedHTML2
²https://devopscollective.org/donate

https://www.powershellgallery.com/packages/EnhancedHTML2
https://devopscollective.org/donate
https://devopscollective.org/donate
https://www.powershellgallery.com/packages/EnhancedHTML2
https://devopscollective.org/donate

El gran libro de “trucos” de PowerShell 2

• Nuestra rama principal GitHub organization³, con un re-
positorio para cada libro. Visite https://github.com/devops-
collective-inc/

• En LeanPub⁴, donde se pueden descargar como PDF, EPUB, o
MOBI (login requerido), y “comprar” los libros haciendo una
donación a DevOps. También puede elegir recibir notificacio-
nes de actualizaciones. Visite https://leanpub.com/u/devopscollective

GitBook y LeanPub generan la salida del formato PDF ligeramente
diferente, por lo que puede elegir el que prefiera. LeanPub también
le puede notificar cada vez que liberamos alguna actualización.
Nuestro repositorio de GitHub es el principal; los repositorios en
otros sitios suelen ser sólo espejos utilizados para el proceso de pu-
blicación. LeanPub siempre contiene la más reciente “publicación
liberada” de cualquier libro.

³https://github.com/devops-collective-inc
⁴https://leanpub.com/u/devopscollective

https://github.com/devops-collective-inc
https://leanpub.com/u/devopscollective
https://github.com/devops-collective-inc
https://leanpub.com/u/devopscollective

Formato a la derecha
Todo el mundo se encuentra con esto. Comienza escribiendo un
comando verdaderamente impresionante.

image005.png

Y luego piensa, “Wow, esto quedaría muy bien en un archivo
HTML.”

Formato a la derecha 4

image007.png

¿¡¿¡¿Un momento QUÉ?!?!?

Sucede todo el tiempo. Si desea una manera fácil de recordar lo
que no se debe hacer, es esto: nunca canalice (enviar al pipeline)
la salida de un comando de formato. Esa no es toda la verdad
(llegaremos a toda la verdad en un momento), pero si sólo quiere
una respuesta rápida, eso es todo. En la comunidad, lo llamamos la
regla del “formato a la derecha”, porque tiene que ver con mover su
comando Format al extremo derecho de la línea de comandos. Es
decir, el comando Format va al final, y nada más viene después de
él.

La razón es que todos los comandos de formato producen códigos
de salida internos especiales, que están destinados a generar una
visualización en pantalla. Canalizar esos códigos (enviarlos al pipe-
line) a cualquier otro comando - ConvertTo-HTML, Export-CSV, lo
que sea – solo hará que se obtenga una salida ilegible.

De hecho, hay algunos comandos que pueden venir después de un
comando de formato en la canalización (pipeline):

Formato a la derecha 5

1. Out-Default. Técnicamente siempre está al final de la canali-
zación (pipeline), aunque sea “invisible”. Es el encargado de
redirigir la salida al Host. Por eso es que vemos siempre la
salida en pantalla.

2. Out-Host también entiende la salida de los comandos de
formato, porque Out-Host es la forma en la que los códigos
de formato obtienen la información de lo que se debe mostrar
en pantalla.

3. Out-Printer también entiende los códigos de formato de salida
y además, construye una página impresa que se vería exacta-
mente como la salida normal en pantalla.

4. Out-File, como Out-Printer, redirecciona la salida en pantalla,
pero esta vez a un archivo de texto en disco.

5. Out-String utiliza los códigos de formato de salida y produce
una cadena simple que contiene el texto que de otro modo
habría aparecido en pantalla.

Aparte de esas excepciones -y de ellas, usualmente sólo se utiliza
Out-File- no se puede canalizar la salida de un comando Format a
otro comando si desea obtener cualquier cosa que parezca útil.

¿Dónde está el comando
<SuNombreAqui>? He
instalado la última

versión de PowerShell y
no puedo encontrarlo!

Una cosa difícil es entender que hay un cierto número de comandos
que vienen con PowerShell y otros que simplemente no vienen.

Cada nueva versión de PowerShell incluye al menos algunos nue-
vos comandos. Por ejemplo, Start-Job apareció por primera vez en
PowerShell v2, mientras que Invoke-AdWorkflow fue introducido
en PowerShell v3.

Lo que confunde a la gente es que una nueva versión de PowerShell
también tiende a corresponder con una nueva versión del sistema
operativo Windows. Y el Sistema Operativo viene con cientos de
comandos. Por ejemplo, puede haber utilizado Get-SmbShare por
primera vez en Windows Server 2012, que incluye PowerShell v3.
Pero Get-SmbShare es parte del sistema operativo, no parte de
PowerShell. Es decir, no tendrá Get-SmbShare en cada sistema que
tenga PowerShell v3 o posterior, porque el comando no es una
“característica de PowerShell “, es una “característica deWindows”.

Así que… ¿De dónde se obtienen los comandos?

Normalmente, los comandos son parte de algún producto. ¿Necesita
los comandos de Exchange Server? Instale las herramientas de
administración de Exchange Server. ¿Necesita los comandos de
Windows Server 2012? Instale el kit de herramientas de adminis-

¿Dónde está el comando <SuNombreAqui>? He instalado la última versión de
PowerShell y no puedo encontrarlo! 7

tración remota del servidor (RSAT), que contiene las herramientas
de administración del servidor.

PowerShell.exe no es
PowerShell

Es importante entender que Windows PowerShell, detrás de esce-
nas es en realidad un motor. Usted como un simple ser humano no
puede interactuar directamente con PowerShell.

En su lugar, necesita una aplicación Host. Un Host incrusta el
motor internamente, y luego le da una manera de interactuar
con él. Por ejemplo, powershell.exe es una aplicación Host. Se
construye alrededor de la misma consola de consola de Windows
(conhost.exe) a través de la antigua shell de línea de comandos
cmd.exe, pero incrustando el motor PowerShell. Se escriben los
comandos y el Host los envía al motor para su ejecución. El Host
también es responsable de mostrar cualquier resultado. En este
caso, en pantalla.

¿Por qué es importante esta distinción?

Porque diferentes Hosts pueden comportarse de diferentes mane-
ras. Por ejemplo, el PowerShell ISE se comporta un poco diferente
que el Host de la consola, y ambos se comportan de manera muy
diferente de Active Directory Administration Center, otro host de
PowerShell.

Acumulando la salida en
una función

Esto es un truco un poco “avanzado”, pero es uno en que muchos
desarrolladores experimentados caen. Aquí hay un ejemplo, sólo
para demostrar el punto (no es funcional, ya que el comando
utilizado es ficticio):

image009.png

El problema es que la función puede generar múltiples objetos
de salida, y el programador está acumulándolos en la variable de
$output. Esto significa que esta función no emitirá nada hasta que
su ejecución esté completamente terminada. No es así como los
comandos PowerShell (y las funciones) suelen estar diseñados para
funcionar.

Los comandos de PowerShell normalmente deben enviar cada
objeto a la canalización (pipeline), uno a la vez, apenas esos objetos

Acumulando la salida en una función 10

estén listos. Esto permite que la canalización (pipeline) acumule la
salida, e inmediatamente la pase a lo largo de la siguiente función o
comando en la canalización (pipeline). Así funcionan los comandos
en PowerShell. Ahora, siempre hay excepciones. Sort-Object, por
ejemplo, tiene que acumular su salida, porque en realidad no puede
ordenar nada hasta que tenga todos los elementos. Es por esto que se
le llama un comando _blocking, porque “bloquea” la canalización
(pipeline) completamente hasta que se produce su salida. Pero eso
es una excepción.

Normalmente esto es muy fácil de solucionar, simplemente envian-
do a la canalización (pipeline) directamente en lugar de acumular:

image011.png

ForEach vs ForEach vs
ForEach

PowerShell tiene comandos de aspecto similar que pueden confun-
dir, especialmente a los recién llegados. Por ejemplo, usted tiene dos
entidades ForEach:

• El Cmdlet ForEach-Object, que tiene un alias ForEach (tam-
bién tiene el alias %). Está destinado a funcionar en la ca-
nalización (pipeline), y utiliza un parámetro de proceso que
acepta un ScriptBlock.

• La declaración ForEach. Tiene una sintaxis específica, no está
destinado a ser utilizado en la canalización (pipeline) y no
tiene un alias.

Aquí están los tres en acción, en un ejemplo muy simple:

image013.png

ForEach vs ForEach vs ForEach 12

La gran diferencia es que, en la canalización (pipeline), ForEach-
Object procesa un objeto a la vez. Esto significa que puede ser más
lento, ya que ese ScriptBlock debe interpretarse en cada iteración.
También tiende a usar menos memoria, ya que los objetos fluyen
por la canalización (pipeline) uno a la vez y no tienen que ser
agrupados en una variable primero.

La declaración ForEach tiende a ser más rápida, pero a menudo
tiene más sobrecarga de memoria, ya que tiene que iterar sobre
toda la colección de objetos a la vez, en lugar de transmitir objetos
de uno en uno cada vez.

Ambos usan una sintaxis parecida, pero hay diferencias. Es impor-
tante entender que no son los mismos comandos, y que se ejecutan
de manera diferente. Es confuso porque “ForEach” es tanto un alias
como una declaración de Scripting. El Shell determina qué se está
utilizando mirando el contexto en el que lo está utilizando.

Finalización con Tab
Es triste y sorprendente ver cómo pocas personas confían en la
terminación con la tecla Tab, tanto en el PowerShell ISE como en
la ventana de la consola.

• Cuando se completa con Tab, nunca digitara comandos o
nombres de parámetros incorrectos

• Para muchos valores de parámetros que son listas estáticas o
listas de fácil consulta, la terminación con Tab (especialmente
en v3 y posteriores) puede completar los valores de dichos
parámetros

• La terminación con Tab hace que los nombres de Cmdlet
largos sean mucho más fáciles de escribir, sin necesidad de
conocer un alias de difícil o tener que memorizar el nombre
completo.

Mantenga el hábito de usar la terminación con Tab todo el tiempo
que sea posible. Le garantizará cometer menos errores.

-Contains y -Like son
diferentes

Si tuviera un centavo por cada vez que he visto esto:

image015.png

Entiendo cómo sucede. El operador -Contains parece que debería
comprobar si el nombre de un proceso contiene las letras “notepad”.
Pero eso no es lo que hace.

El enfoque correcto es utilizar el operador -Like, que de hecho hace
una comparación de cadena con comodines:

-Contains y -Like son diferentes 15

image017.png

Voy a dejar pasar la idea de que la respuesta realmente correcta es
ejecutar Stop-Process -Name *notepad *, porque estaba apuntando
a un ejemplo simple aquí. Pero … no piense demasiado. A veces un
script en un bucle foreach no es el mejor enfoque.

Así que de todos modos, ¿qué hacen -Contains (y su amigo, -
NotContains) en realidad? Son similares a los operadores -In y
-NotIn introducidos en PowerShell v3. Estos operadores pueden
causar un poco de confusión. Lo que hacen es comprobar si una
colección de objetos contiene un único objeto dado. Por ejemplo:

-Contains y -Like son diferentes 16

image019.png

De hecho, este ejemplo es probablemente la mejor manera de verlo
funcionar. El truco es que, cuando se utiliza un objeto complejo en
lugar de un valor simple (como lo hice en ese ejemplo), -Contains
e -In buscan en todas las propiedades del objeto para encontrar
una coincidencia. Si piensa en algo como un proceso, ellos siempre
estarán cambiando. De cuando en cuando, la CPU y la memoria de
un proceso, pueden ser diferentes.

-Contains y -Like son diferentes 17

image021.png

En este ejemplo, he iniciado el bloc de notas. He puesto su objeto
de proceso en $single_proc, y se puede ver que he verificado que
estaba allí. Pero cuando ejecuto Get-Process para comprobar si
la colección contenía mi Notepad, el resultado fue falso. Eso es
porque el objeto en $single_proc está desactualizado. Notepad está
en ejecución, pero ahora se ve diferente, por lo que -Contains no
puede encontrarlo.

Los operadores -in y -contains son mejores con valores simples,
o con objetos que no tienen valores de propiedad que cambian
constantemente. Pero no son operadores de coincidencia de cadenas
de caracteres comodines. Use-like (o -notlike) para eso.

No puede tener lo que no
se tiene

¿Puede ver lo que está mal?

image023.png

Quiero decir, estoy bastante seguro de que tengo algunos servicios
en ejecución. Se supone que algo se debía mostrar.

Si no ve la respuesta de inmediato - o no la ve - es un buen
momento para hablar acerca de cómo solucionar problemas con
algunas líneas de comandos. Para empezar, como siempre digo,
retrocediendo un paso. Elimine el último comando, y vea si eso hace
alguna diferencia.

No puede tener lo que no se tiene 19

image025.png

En este caso, quité el comando Sort-Object (Sort) y no ocurrió nada
diferente, así que eso no era la causa del problema. A continuación,
eliminé el comando Where-Object (Where, en la sintaxis corta
de v3), y ah-ha! Apareció la salida. Así que el comando Where-
Object está “rompiendo” algo. Vamos a revisar lo que funcionó y
a canalizarlo a Get-Member, para ver qué hay en la canalización
(pipeline) después de ejecutar Select-Object.

No puede tener lo que no se tiene 20

image027.png

OK, tengo un objeto que tiene una propiedad DisplayName y una
propiedad Name.

Y mi comando Where-Object estaba comprobando la propiedad
Status. ¿Ve una propiedad Status? No, no se ve. Mi error es que
quité la propiedad Status cuando no la incluí en la lista de salida
del comando Select-Object. Así que el objeto no tenía nada contra
qué trabajar y no devolvió nada.

(Sí, sería mejor si PowerShell lanzara un error - “hey, pidio filtrar la
propiedad Status, y no hay una!” - pero eso no así cómo funciona).

Moraleja de la historia: prestar atención a lo que está en la canali-
zación (pipeline). No se puede trabajar con algo que no se tiene. No
siempre obtendrá unmensaje de error útil, por lo que a veces tendrá
que escarbar y averiguarlo de otra manera - como retrocediendo un
paso.

-Filter y la diversidad de
valores

Esta es una de las cosas más difíciles de acostumbrarse en PowerS-
hell:

image029.png

Aquí vemos tres comandos, cada uno usando un parámetro -Filter.
Cada uno de esos filtros es diferente.

1. Con Get-ChildItem, -Filter acepta los comodines del sistema
de archivos como *.

2. Con Get-WmiObject, -Filter requiere una cadena, y utiliza
operadores de estilo de programación (como = para la igual-
dad).

3. Con Get-ADUser, -Filter requiere un bloque de script, y acep-
ta operadores de comparación de estilo PowerShell (como -eq

-Filter y la diversidad de valores 22

para la igualdad)

Esto es lo que pienso cuando se utiliza un parámetro –Filter.
PowerShell no está procesando el filtrado. En su lugar, los criterios
de filtrado se están transmitiendo a la tecnología subyacente, como
el sistema de archivos, o WMI, o al directorio activo. Es esta
tecnología la que decide qué tipo de criterios de filtro se van a
aceptar. PowerShell es sólo el intermediario. Así que es mejor leer
cuidadosamente la ayuda, y tal vez buscar ejemplos, para entender
cómo la tecnología subyacente necesita que especifique su filtro.

Sí, sería bueno si PowerShell tradujera para usted (que es realmente
lo que hace Get-ADUser - el comando traduce eso en un filtro de
LDAP tras bambalinas). Pero, por lo general, no lo hace.

No todo produce una
salida

Veo esto a menudo:

image031.png

Si esperaba algo en la pantalla en términos de salida, estará de-
cepcionado. El truco aquí es hacer un seguimiento de lo que cada
comando produce como salida, y es allí donde hay un posible punto
de confusión.

En el mundo de PowerShell, la salida es lo que aparecería en la
pantalla si ejecutamos el comando y no lo canalizamos (enviar al
pipeline) a nada más. Sí, Export-CSV hace algo - crea un archivo
en disco - pero en el mundo de PowerShell ese archivo no se ve en
pantalla. Export-CSV no produce ninguna salida, hablando de algo
que aparecería en la pantalla. Por ejemplo:

No todo produce una salida 24

image033.png

¿Lo ve? nada. Ya que no hay nada en la pantalla, no hay nada en
la canalización (pipeline). No puede canalizar Export-CSV a otro
comando, porque no hay nada que canalizar.

Algunos comandos pueden incluir un parámetro -PassThru. Cuan-
do lo tienen y se utiliza, harán lo que hagan normalmente, pero
también pasarán sus objetos de entrada a través de la canalización
(pipeline), para que luego se puedan canalizar a otra cosa. Export-
CSV no es uno de esos comandos, - nunca produce una salida, por
lo que nunca tendrá sentido para canalizarlo a otra cosa.

Una página HTML a la
vez, por favor

Esto me vuelve loco:

image037.png

Lo que está pasando es que alguien ejecutó dos comandos, canali-
zando la salida de cada uno a ConvertTo-HTML, y esencialmente
combinando ambas páginas HTML en un solo archivo. Lo que me
realmente me vuelve loco es que Internet Explorer está bien con esa
tontería.

Los archivos HTML pueden empezar con una etiqueta de nivel
superior, pero si se echa un vistazo a ese archivo verá que contiene
dos:

Una página HTML a la vez, por favor 26

image039.png

He resaltado las líneas que terminan una página HTML y co-
mienzan la siguiente. Esto es técnicamente un archivo HTML
malformado. Algunos navegadores Web lo admiten (unos si, otros
no), difícil de analizar si alguna vez necesita para manipular el
contenido mediante programación, y … bueno, es esta mal. Es como
el incesto o algo así. Inaceptable.

Si necesita combinar varios elementos en un único archivo HTML,
utilice el parámetro -Fragment de ConvertTo-HTML. Produzca sólo
una parte del HTML o varias porciones de ese tipo y luego com-
bínelas en una sola página completa. Ahhh bien. Todo el proceso
al respecto de la creación de informes HTML en PowerShell lo
encuentra en nuestro otro libro electrónico gratuito que viene con
este.

{
Horrible} (Puntuación)][Sangriento] {Horrible} (Puntuación)

Esto no un “truco” pero vale la pena revisarlo para que no resulte
confuso. Las tuercas de PowerShell con la puntuación.

image041.png

(Paréntesis) se utilizan para encerrar expresiones, como la expre-
sión foreach() y en ciertos casos para resaltar alguna sintaxis decla-
rativa. Por ejemplo el bloque param() y en el atributo [parameter()].

[Corchetes cuadrados] se utilizan alrededor de algunos atributos,
como en [CmdletBinding()], y alrededor de tipos de datos co-

[Sangriento 28

mo [string]. También se utilizan para indicar arrays - como en
[string[]]. Pueden aparecer en otros lugares.

{Corchetes} casi siempre contienen código ejecutable, como en el
bloque try{}, el bloque begin{} y la función en sí. También se utilizan
para expresar literales de tablas hash (como @{}).

Si el teclado tuviera algunos botones más, PowerShell no habría
tenido que tener todos estos usos “incorporados” de caracteres de
puntuación. Pero lo hace. En este punto, son casi una parte del
“coste de entrada” del Shell, por lo que tendrá que acostumbrarse a
ellos.

No+Concatene+Strings
Realmente me disgusta la concatenación de cadenas. Es como
obligar a alguien a acurrucarse con alguien que ni siquiera conocen.
Grosero.

image043.png

Y completamente innecesario, cuando se utilizan comillas dobles.

image045.png

Mismo efecto al final. Usando comillas dobles, PowerShell buscará
el carácter $. Cuando lo encuentre:

1. Si el siguiente carácter es { entonces PowerShell llevará todo a
la concordancia } como un nombre de variable, y reemplazará
todo con el contenido de esa variable. Por ejemplo, poner $
{mi variable} dentro de comillas dobles reemplazará con el
contenido de $ {mi variable}.

No+Concatene+Strings 30

2. Si el siguiente carácter es un (entonces PowerShell llevará
todo a la coincidencia) y lo ejecutara como si fuera código.
Por lo que, ejecuté $wmi.serialnumber para acceder a la
propiedad serialnumber del objeto que se encontraba en la
variable $wmi.

3. De lo contrario, PowerShell tomará todos los caracteres que
sean legales para un nombre de variable, hasta el primer
carácter de nombre de variable ilegal, y lo reemplazará con
esa variable. Así es como funciona $computer en mi ejemplo.
El espacio después de la r no es legal para un nombre de
variable, por lo que PowerShell sabe que el nombre de la
variable se detiene en r.

Una cosa para resaltar aquí:

image047.png

Esto no funcionará como se esperaba. En la mayoría de los ca-
sos, $wmi será reemplazado por un nombre de tipo de objeto y
.serialnumber seguirá allí. Eso ocurre porque . no es un nombre
de variable legal, por lo que PowerShell deja de “observar” la
variable con la letra i. Entonces, reemplaza $wmi con su contenido.
Usted vio en el ejemplo anterior, el uso de $($wmi.serialnumber),
que es una subexpresión y funciona. Los paréntesis hacen que su
contenido se ejecute como código..

$ no forma parte del
nombre de la variable

Gran “trampa”.

image049.png

¿Puede predecir el resultado?

image051.png

Observe que el símbolo de moneda $ no forma parte del nombre
de la variable. Si tiene una variable llamada example, que es como
tener una caja con la palabra “ example” escrito al costado. Cuando
se refiere a example significa que está hablando de la caja misma.
Cuando se refiere a $ example significa que está haciendo referencia
al contenido de la caja.

Así que en mi ejemplo, he utilizado $example = 5 para poner un 5
en la caja. Luego, cree una nueva variable. El nombre de la nueva
variable fue $example – que como lleva el símbolo de moneda, en
realidad hace referencia al valor de la variable $example que es 5.
Así que lo que ocurrió en realidad fue que se creó una variable
llamada 5, que tiene asignado el valor 6, a la que se puede hacer
referencia por el nombre $5.

$ no forma parte del nombre de la variable 32

Difícil, ¿verdad? Lo es:

image053.png

En ese ejemplo, utilicé el parámetro -ErrorVariable para especificar
una variable en la que se almacenaría cualquier error que se
produzca. El problema es, he utilizado $x cuando debería haber
utilizado solo x (sin el símbolo de moneda):

image055.png

Ahora la forma correcta. Utilizando solo x, a la que más tarde
se puede acceder usando $x para obtener su contenido, es decir,
cualquier error que haya sido almacenado allí.

Utilizar la canalización
(pipeline), no una matriz
Un error muy común cometido por programadores tradicionales
que recién llegan a PowerShell:

image057.png

Esta persona ha creado una matriz vacía en $output, y mientras
recorre la lista de ordenadores y ejecuta consultas WMI, están
agregando nuevos objetos de salida al contenido de la matriz.
Finalmente, envía la matriz a la canalización (pipeline).

Mala práctica. Como se ve, esto obliga a PowerShell a esperar mien-
tras se completa la ejecución del comando. Cualquier comando
subsecuente en la canalización (pipeline) se sentará a esperar con
los brazos cruzados. ¿Un mejor enfoque? Utilizar la canalización
(pipeline), cuyo propósito es acumular la salida por usted - sin
necesidad de que usted mismo la acumule en una matriz.

Utilizar la canalización (pipeline), no una matriz 34

image059.png

Ahora, los comandos posteriores recibirán la salida, dejando que
varios de esos comandos se ejecuten más o menos simultáneamente
en la canalización (pipeline).

Backtick, Grave Accent,
Escape

A menudo va a encontrarse con esto

image061.png

No, no es un píxel muerto en el monitor o un trozo de tóner
perdido en la página, es la marca de acento grave o backtick. ‘ Es el
carácter de escape de PowerShell. En este ejemplo, está “escapando”
el retorno de carro invisible al final de la línea, eliminando su
propósito especial como final de línea lógica, simplemente haciendo
que sea un retorno de carro literal.

No me gusta el backtick utilizado de esta manera.

Primero, es difícil de ver. Segundo, si se deja un espacio en blanco
extra después de él, ya no estará escapando el retorno de carro, y el
script se romperá:

Backtick, Grave Accent, Escape 36

image063.png

Observe cuidadosamente el parámetro -computername - en este
segundo ejemplo. Fíjese como se muestra un color incorrecto para
un nombre de parámetro. Ocurre porque he añadido un espacio
después del backtick en la línea anterior. IMPOSIBLE de rastrear.

Y el backtick es innecesario como carácter de continuación de línea.
Permítanme explicar por qué:

PowerShell ya le permite agregar un “Enter” en ciertas situaciones.
Usted solo tiene que aprender cuáles son esas situaciones, y luego
tomar ventaja de ellas. Entiendo totalmente el deseo de tener código
perfectamente formateado - predico sobre eso todo el tiempo - pero
no tiene que confiar en un personaje como el backtick para obtener
código bien formateado.

Sólo tiene que ser más listo.

Backtick, Grave Accent, Escape 37

image065.png

Para empezar, he puesto mis comandos Get-WmiObject en una
tabla hash, por lo que ahora puedo dar un formato agradable y
bonito. Cada línea termina en un punto y coma, y PowerShell me
permite romper la línea después de cada punto y coma. Incluso
si agrego un espacio adicional o un Tab después del punto y
coma, funcionará bien. Entonces hago “Splat” de esos parámetros
al comando Get-WmiObject.

Después de Get-WmiObject, tengo un carácter Pipe, y PowerShell
admite un “Enter” luego de un carácter Pipe.

Usted notará al final de Select-Object que se puede utilizar una
coma también.

Así termino con un formato que parece al menos tan bueno, si no
mejor, porque no tiene un backtick ‘ flotando por todas partes.

Una multitud no es un
individuo

Un error muy común de novato:

image067.png

Aquí, el problema es que se está tratando todo como si estuvie-
ra compuesto de un sólo un valor. Pero aqupi $computername
puede contener varios nombres de equipo (eso es lo que significa
([string[]]), lo que significa que tanto $bios como $os podrían
contener también varios elementos. El truco está en enumerar
$computername para conseguir el resultado deseado:

Una multitud no es un individuo 39

image069.png

Algunas veces también se encontrará con esto, incluso en situacio-
nes sencillas. Por ejemplo:

image071.png

PowerShell v2 no reaccionará tan bien, pero en PowerShell v3,
la variable dentro de comillas dobles $procs es una variable que
contiene varios objetos. PowerShell los enumera implícitamente,
además de buscar una propiedad llamada name. Fíjese en “.name”
al final de la cadena - PowerShell no hizo nada con eso.

Es probable que mejor desee enumerar así:

Una multitud no es un individuo 40

image073.png

Comandos de la vieja
escuela

Siempre tenga en cuenta que mientras PowerShell tiene comandos
llamados dir y cd, no son los viejos comandos deMS-DOS. Son sim-
plemente alias o apodos, a comandos de PowerShell. Eso significa
que tienen una sintaxis diferente.

image075.png

Puede ejecutar la ayuda para el comando dir (o cualquier otro alias)
para ver el nombre del comando real y su sintaxis adecuada.

Propiedades vs. Valores
1 $names = Get-ADComputer -filter * |

2 Select-Object -Property Name

3

4 Get-CimInstance -Class Win32_BIOS -ComputerName $names

¿Sabe por qué esto no funcionará? Porque el resultado de Get-
ADComputer es un objeto que tiene propiedades. Usted probable-
mente sabía eso. Pero el resultado de Select-Object es también un
objeto que tiene propiedades. Específicamente, en este caso, es un
objeto “ADComputer “ seleccionado, que tiene una sola propiedad:
Name.

Observe la ayuda del comando Get-CimInstance. El parámetro -
ComputerName acepta objetos de tipo String. Así lo la ayuda.
Pero un objeto ADComputer no es lo mismo que una cadena. La
propiedad Name que se ha seleccionado contiene cadenas, pero no
es una cadena en sí. Esto es una distinción enorme y es mejor no
olvidarse de ello.

Piense en una propiedad como una caja. Esa caja puede contener
cosas, pero es una cosa en y por sí misma, también. En este caso,
la caja se denomina Name y contiene cadenas. Pero no se puede
“empujar” toda la caja en algo que sólo estaba esperando Strings.
“Hey, quería un String, no toda la caja”

Ahora piense en un Fax. ¿Recuerda esas máquinas? Recibían y
transmitían páginas. Ahora suponga que tiene un sobre lleno de
páginas. No se puede “empujar” el sobre en la máquina de fax
y esperar resultados correctos. En esa analogía, el sobre es una
propiedad, y las páginas dentro de ella son valores. Para lograr
transmitir las páginas primero debe sacarlas del sobre.

Propiedades vs. Valores 43

Lo que quiere hacer en este caso es extraer las cadenas (Strings) de
la caja, y Select-Object ofrece una manera de hacer eso:

1 $names = Get-ADComputer -filter * |

2 Select-Object -ExpandProperty Name

3

4 Get-CimInstance -Class Win32_BIOS -ComputerName $names

¿Ve la diferencia? -ExpandProperty obtiene sólo el contenido de
la propiedad especificada, en lugar de devolver un objeto que sólo
tiene esa propiedad. ¿Quiere una manera sencilla de probar esto en
el shell? Ejecute este par de comandos:

1 Get-Service | Select -Property Name | Get-Member

2 Get-Service | Select -ExpandProperty Name | Get-Member

Variables Remotas
Cuando utilice PowerShell Remoting, debe recordar que se trata
de dos o más equipos que no comparten información entre ellos.
Por ejemplo, el siguiente comando funcionará correctamente en su
equipo local:

1 $f1 = 'D:\Scripts\folder1'

2 $f2 = 'D:\Scripts\folder2'

3 Copy-Item -Path $f1 -Recurse -Destination $f2 -Verbose -F\

4 orce

Sin embargo, si intenta ejecutar el comando Copy-Item en un
equipo remoto, se producirá un error:

1 $f1 = "D:\Scripts\folder1"

2 $f2 = "D:\Scripts\folder2"

3

4 Invoke-Command -ComputerName MemberServer -ScriptBlock {\

5 Copy-Item -Path $f1 - Recurse -Destination $f2 -Verbose -\

6 Force}

7

8 Cannot bind argument to parameter 'Path' because it is n\

9 ull.

10 + CategoryInfo : InvalidData: [:] [Copy-Item], Parameter\

11 BindingValidationException

12 + FullyQualifiedErrorId : ParameterArgumentValidationErr\

13 orNullNotAllowed,Microsoft.PowerShell.Commands.CopyItemCo\

14 mmand

15 + PSComputerName : MemberServer

El problema es que $f1 y $f2 se definen en su equipo local, pero no
en el equipo remoto. El bloque de secuencia de comandos enviado

Variables Remotas 45

a Invoke-Command no se evalúa en su computadora, simplemente
se pasa como está (as-is).

Hay dos posibles soluciones. La primera es simplemente incluir las
definiciones de variables en el bloque de secuencia de comandos:

1 Invoke-Command -ComputerName MemberServer -ScriptBlock {

2 $f1 = "D:\Scripts\folder1"

3 $f2 = "D:\Scripts\folder2"

4 Copy-Item -Path $f1 -Recurse -Destination $f2 -Verbose -\

5 Force

6 }

Otra técnica, disponible en PowerShell v3 y posterior, es utilizar
el designador de variable $using. PowerShell pre-escanea el bloque
de secuencia de comandos y pasará los valores de la(s) variable(s)
local(es) al (los) equipo(s) remoto(s).

1 $f1 = "D:\Scripts\folder1"

2 $f2 = "D:\Scripts\folder2"

3

4 Invoke-Command -ComputerName MemberServer -ScriptBlock {

5 Copy-Item -Path $using:f1 -Recurse -Destination $using:f\

6 2 -Verbose -Force}

El uso de la sintaxis especial $using: es lo que hace que esta versión
del comando funcione.

New-Object PSObject vs.
PSCustomObject

A menudo hay cierta confusión en lo que respecta a las diferencias
entre el uso de nuevo objeto PSObject y PSCustomObject, así como
el funcionamiento de ambos.

Cualquiera de los dos se puede utilizar para formar un conjunto
de valores en una colección de objetos PowerShell y agrupar-
los en una sola entidad. Asimismo, ambas formas darán sali-
da a los datos como NoteProperties en los tipos de objeto Sys-
tem.Management.Automation.PSCustomObject. Así que ¿cuál es la
gran diferencia entre ellos?

Para empezar, el Cmdlet New-Object fue introducido en PowerS-
hell v1.0 y ha pasado por una serie de cambios, mientras que el uso
de la clase PSCustomObject vino más tarde en la versión 3.0. Para
los sistemas que utilicen PowerShell v2.0 o anterior, se debe utilizar
New-Object. La diferencia clave entre la versión 2.0 y la versión 1.0
desde un punto de vista administrativo es que 2.0 permite el uso de
tablas hash. Por ejemplo:

New-Object PSObject en v1.0

New-Object PSObject vs. PSCustomObject 47

1 $Path = "c:\scripts"

2 $Directory = Get-Acl -Path $Path

3

4 ForEach ($Dir in $Directory.Access){

5

6 $DirPermissions = New-Object -TypeName PSObject

7 $DirPermissions | Add-Member -MemberType NoteProperty\

8 -Name Path -Value $Path

9 $DirPermissions | Add-Member -MemberType NoteProperty\

10 -Name Owner -Value $Directory.Owner

11 $DirPermissions | Add-Member -MemberType NoteProperty\

12 -Name Group -Value $Dir.IdentityReference

13 $DirPermissions | Add-Member -MemberType NoteProperty\

14 -Name AccessType -Value $Dir.AccessControlType

15 $DirPermissions | Add-Member -MemberType NoteProperty\

16 -Name Rights -Value $Dir.FileSystemRights

17

18 $DirPermissions

19 }

Con el método New-Object en PowerShell v1.0, tiene que declarar
el tipo de objeto que desea crear y agregar miembros a la colección
en comandos de forma individual. Sin embargo en la versión 2.0
con la capacidad de utilizar hashtables:

New-Object en PS 2.0

New-Object PSObject vs. PSCustomObject 48

1 $Path = "c:\scripts"

2 $Directory = Get-Acl -Path $Path

3

4 ForEach ($Dir in $Directory.Access){

5

6 $DirPermissions = New-Object -TypeName PSObject -Prop\

7 erty @{

8

9 'Path' = $Path

10 'Owner' = $Directory.Owner

11 'Group' = $Dir.IdentityReference

12 'AccessType' = $Dir.AccessControlType

13 'Rights' = $Dir.FileSystemRights

14

15 }

16

17 $DirPermissions

18 }

Aquí está la salida:

Note theorder of output vs. order in the hash table

Esta forma nos ahorra una gran cantidad de escritura al mismo
tiempo que permite un script más limpio. Sin embargo ambos mé-
todos tienen el mismo problema. La salida no está necesariamente
en el mismo orden en que se ha declarado, así que si está buscando
un formato determinado, puede que no funcione. PSCustomObject
corrigió esto cuando fue introducido en la versión 3.0.

New-Object PSObject vs. PSCustomObject 49

PSCustomObject en PowerShell v3.0

1 $Path = "c:\scripts"

2 $Directory = Get-Acl -Path $Path

3

4 ForEach ($Dir in $Directory.Access){

5 [PSCustomObject]@{

6 Path = $Path

7 Owner = $Directory.Owner

8 Group = $Dir.IdentityReference

9 AccessType = $Dir.AccessControlType

10 Rights = $Dir.FileSystemRights

11 }#EndPSCustomObject

12 }#EndForEach

Note the order of the properties

Como se puede observar, la salida siempre coincidirá con lo que se
ha definido en el Hashtable. Otra ventaja de usar PSCustomObject
es que la enumeración de los datos se hace más rápidamente que
su contraparte New-Object. Lo único que debe tener en cuenta
con PSCustomObject es que no funcionará con los sistemas que
ejecutan PowerShell v2.0 o anteriores.

Ejecutando algo como el
“usuario actualmente

conectado”
Una solicitud de PowerShell común es poder iniciar de forma
remota algún código que se ejecuta bajo la cuenta del usuario que
está conectado actualmente a una máquina remota o el usuario que
más a menudo utiliza la máquina remota.

Esto es realmente difícil, y generalmente impráctico.

Primero, entender que Windows es inherentemente un sistema
operativo multiusuario. No tiene un concepto para “el usuario
actualmente conectado” porque puede haber muchos usuarios co-
nectados. Aunque las versiones cliente de Windows no permiten
técnicamente múltiples inicios de sesión interactivos, el sistema
operativo base actúa como si pudiera.

Segundo, como un sistema operativo multiusuario, el trabajo de
Windows es mantener un estricto aislamiento alrededor del espacio
de proceso de cada usuario. Usted no quiere que un usuario salte en
el espacio de trabajo a otro, porque eso sería un gran riesgo para la
seguridad y la estabilidad. Es por esto que no puede iniciar sesión
como un usuario y ejecutar algo que otro usuario puede “ver”.

Por ejemplo, una versión común de esta solicitud es para que un
administrador de manera remota abra el Bloc de Notas como una
ventana (pop up) en frente de los usuarios, para presentar de forma
remota mensajes importantes. Por desgracia, el Bloc de Notas no
es una buena aplicación de mensajería instantánea y Windows no
hace que esto sea fácil. Si lo piensa con más detalle, ¿se imagina que
podría hacer el malware si esto fuera posible? Sería horrible!

Ejecutando algo como el “usuario actualmente conectado” 51

Con muy pocas excepciones, realmente no se puede ejecutar algo
“como otro usuario en una máquina remota”. Una excepción es si
conoce el nombre de usuario y la contraseña del usuario remoto.
Si lo conoce, puede iniciar una sesión de acceso remoto en la
computadora mediante sus credenciales y, potencialmente, ejecutar
aplicaciones en el espacio de proceso de ese usuario. Aunque eso es
muy poco práctico en la mayoría de situaciones.

Comandos que necesitan
un perfil de usuario

pueden fallar cuando se
ejecuta de forma remota
Muchos comandos actúan utilizando el perfil del usuario que ha
iniciado sesión actualmente. Estos comandos a veces pueden fallar
cuando los ejecuta a través de una conexión remota, como con
Invoke-Command o Enter-PSSession. Por ejemplo, muchos insta-
ladores predeterminan la creación de iconos por usuario y pueden
fallar cuando se ejecutan remotamente, incluso cuando se ejecutan
en un modo de “instalación silenciosa”.

El problema es que, cuando se conecta a un equipo remoto, no
está generando un entorno de usuario completo. Técnicamente
no está “conectándose” a la máquina en el sentido usual. Se está
autenticando, sí, pero de la misma manera que si se autenticara a
una carpeta compartida. Su conexión remota no tiene un perfil de
usuario completo, por lo que cualquier cosa que se espere puede
obtener errores y fallar (incluso si no muestran esos errores).

No hay solución fácil para esto, por desgracia.

Escribiendo en SQL
Server

Guardar datos en un servidor SQL - frente a Excel o algún otro
formato - es muy fácil.

Suponga que tiene SQL Server Express instalado localmente. Ha
creado una base de datos llamada mydb y una tabla llamada
mytable. La tabla tiene dos columnas ColumnA y ColumnB, y
ambas son campos de cadenas (varchar). El archivo de base de
datos está ubicado en c:\myfiles\mydb.mdf. Esto es muy fácil de
configurar en un GUI si descarga la versión de SQL Server Express
“con herramientas”. Es gratis!

1 $cola = "Data to go into ColumnA"

2 $colb = "Data to go into ColumnB"

3

4 $connection_string = "Server=.\SQLExpress;AttachDbFilenam\

5 e=C:\Myfiles\mydb.mdf;Database=mydb;Trusted_Connection=Ye\

6 s;"

7 $connection = New-Object System.Data.SqlClient.SqlConnect\

8 ion

9 $connection.ConnectionString = $connection_string

10 $connection.Open()

11 $command = New-Object System.Data.SqlClient.SqlCommand

12 $command.Connection = $connection

13

14 $sql = "INSERT INTO MYTABLE (ColumnA,ColumnB) VALUES('$co\

15 la','$colb')"

16 $command.CommandText = $sql

17 $command.ExecuteNonQuery()

Escribiendo en SQL Server 54

18

19 $connection.close()

Puede insertar una gran cantidad de valores simplemente haciendo
un bucle a través de las tres líneas que definen la sentencia SQL y
ejecutarla:

1 $cola = @('Value1','Value2','Value3')

2 $colb = @('Stuff1','Stuff2','Stuff3')

3

4 $connection_string = "Server=.\SQLExpress;AttachDbFilenam\

5 e=C:\Myfiles\mydb.mdf;Database=mydb;Trusted_Connection=Ye\

6 s;"

7 $connection = New-Object System.Data.SqlClient.SqlConnect\

8 ion

9 $connection.ConnectionString = $connection_string

10 $connection.Open()

11 $command = New-Object System.Data.SqlClient.SqlCommand

12 $command.Connection = $connection

13

14 for ($i=0; $i -lt 3; $i++) {

15 $sql = "INSERT INTO MYTABLE (ColumnA,ColumnB) VALUES('$\

16 ($cola[$i])','$($colb[$i])')"

17 $command.CommandText = $sql

18 $command.ExecuteNonQuery()

19 }

20

21 $connection.close()

Es igual de fácil ejecutar consultas de actualización o eliminación.
Las consultas de selección usan ExecuteReader() en lugar de Execu-
teNonQuery() y devuelven un objeto SqlDataReader que se puede
utilizar para leer datos de cada columna o avanzar a la siguiente
fila en el conjunto de resultados.

Obtener tamaños de
carpetas

La gente suele preguntar cómo usar PowerShell para obtener el
tamaño de una carpeta. Por ejemplo la carpeta de documentos de
un usuario.

El problema es que las carpetas no tienen un tamaño. Windows
literalmente no rastrea el tamaño de los objetos de carpeta. El
tamaño de una carpeta es simplemente la suma de los tamaños de
los archivos en dicha carpeta, lo que significa que para obtener el
tamaño de la carpeta se tiene que sumar el tamaño de los archivos.

1 Get-ChildItem -Path <whatever> -File -Recurse |

2 Measure-Object -Property Length -Sum

Veamos un ejemplo. Primero, es necesario obtener todos los archi-
vos, y luego sumar sus propiedades de tamaño.

	Tabla de contenidos
	El gran libro de ``trucos'' de PowerShell
	Formato a la derecha
	¿Dónde está el comando <SuNombreAqui>? He instalado la última versión de PowerShell y no puedo encontrarlo!
	PowerShell.exe no es PowerShell
	Acumulando la salida en una función
	ForEach vs ForEach vs ForEach
	Finalización con Tab
	-Contains y -Like son diferentes
	No puede tener lo que no se tiene
	-Filter y la diversidad de valores
	No todo produce una salida
	Una página HTML a la vez, por favor
	[Sangriento
	No+Concatene+Strings
	$ no forma parte del nombre de la variable
	Utilizar la canalización (pipeline), no una matriz
	Backtick, Grave Accent, Escape
	Una multitud no es un individuo
	Comandos de la vieja escuela
	Propiedades vs. Valores
	Variables Remotas
	New-Object PSObject vs. PSCustomObject
	New-Object PSObject en v1.0
	New-Object en PS 2.0
	PSCustomObject en PowerShell v3.0

	Ejecutando algo como el ``usuario actualmente conectado''
	Comandos que necesitan un perfil de usuario pueden fallar cuando se ejecuta de forma remota
	Escribiendo en SQL Server
	Obtener tamaños de carpetas

