‘B

El gran libro
de "trucos"
de PowerShell

Don Jones
Principal Author

WEE
% - ‘7\

. \\,§ =
0. ans’ A"
o N DEVOPS B e
L (cicalt) Svere

o, S | '
\/

o
PowerShell.org

The Big Book of PowerShell
Gotchas (Spanish)

The DevOps Collective, Inc.

Este libro esta a la venta en
http://leanpub.com/big-book-of-powershell-gotchas-spanish

Esta version se public6 en 2018-10-28

)

Leanpub

Este es un libro de Leanpub. Leanpub anima a los autores y
publicadoras con el proceso de publicacion. Lean Publishing es el
acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener feedback del lector
hasta conseguir tener el libro adecuado.

© 2018 The DevOps Collective, Inc.

http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/
http://leanpub.com/manifesto

También por The DevOps
Collective, Inc.

Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell
Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers
Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

The Monad Manifesto: Annotated (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Error Handling (Spanish)

DevOps: WTE?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Indice general

El gran libro de “trucos” de PowerShell
Formatoaladerecha

¢Donde esta el comando <SuNombreAqui>? He instalado
la ultima versién de PowerShell y no puedo encon-
trarlo!

PowerShell.exe no es PowerShell
Acumulando la salida en una funcién
ForEach vs ForEach vs ForEach
FinalizacionconTab
-Contains y -Like son diferentes
No puede tener lo que nosetiene.
-Filter y la diversidad de valores
No todo produce unasalida
Una pagina HTML a la vez, por favor

[Sangriento

INDICE GENERAL

No+Concatene+Strings 29
$ no forma parte del nombre de la variable 31
Utilizar la canalizacién (pipeline), no una matriz 33
Backtick, Grave Accent, Escape 35
Una multitud no es un individuo 38
Comandos de la viejaescuela 41
Propiedadesvs. Valores 42
Variables Remotas 44
New-Object PSObject vs. PSCustomObject 46

New-Object PSObjectenv1.0 46

New-ObjectenPS2.0 47

PSCustomObject en PowerShell v3.0 49

Ejecutando algo como el “usuario actualmente conectado” 50

Comandos que necesitan un perfil de usuario pueden
fallar cuando se ejecuta de forma remota 52

Escribiendo en SQL Server 53

Obtener tamarios de carpetas 55

El gran libro de “trucos”
de PowerShell

Por Don Jones (mayormente)

PowerShell esta lleno de “trucos” - pequeiias cosas que a veces se
interponen en su camino y son dificiles de averiguar por su cuenta.
Este breve libro est4 destinado a ayudarle a resolverlos y evitarlos.

Esta guia se publica bajo la licencia Creative Commons Attribution-
NoDerivs 3.0 Unported. Los autores le animan a redistribuir este
archivo lo més ampliamente posible, pero le solicitan que no
modifique el documento original.

Obteniendo el cédigo El médulo EnhancedHTML2 mencionado
en este libro puede encontrarse en PowerShell Gallery'. Esa pagina
incluye las instrucciones de descarga. PowerShellGet es necesario
y se puede obtener de PowerShellGallery.com

;Ha sido util este libro? El (los) autor (es) le pide (n) que haga
una donacién deducible de impuestos (en los EE.UU., consulte sus
leyes si vive en otro lugar) de cualquier cantidad a The DevOps
Collective® para apoyar su trabajo.

** Revise las actualizaciones! ** Nuestros ebooks se actualizan a
menudo con contenido nuevo y corregido. Los hacemos disponibles
de dos maneras:

'https://www.powershellgallery.com/packages/Enhanced HTML2
*https://devopscollective.org/donate

https://www.powershellgallery.com/packages/EnhancedHTML2
https://devopscollective.org/donate
https://devopscollective.org/donate
https://www.powershellgallery.com/packages/EnhancedHTML2
https://devopscollective.org/donate

El gran libro de “trucos” de PowerShell 2

+ Nuestra rama principal GitHub organization®, con un re-
positorio para cada libro. Visite https://github.com/devops-
collective-inc/

« En LeanPub*, donde se pueden descargar como PDF, EPUB, o
MOBI (login requerido), y “comprar” los libros haciendo una
donacion a DevOps. También puede elegir recibir notificacio-
nes de actualizaciones. Visite https://leanpub.com/u/devopscollective

GitBook y LeanPub generan la salida del formato PDF ligeramente
diferente, por lo que puede elegir el que prefiera. LeanPub también
le puede notificar cada vez que liberamos alguna actualizacion.
Nuestro repositorio de GitHub es el principal; los repositorios en
otros sitios suelen ser sélo espejos utilizados para el proceso de pu-
blicacion. LeanPub siempre contiene la mas reciente “publicacion
liberada” de cualquier libro.

*https://github.com/devops-collective-inc
“https://leanpub.com/u/devopscollective

https://github.com/devops-collective-inc
https://leanpub.com/u/devopscollective
https://github.com/devops-collective-inc
https://leanpub.com/u/devopscollective

Formato a la derecha

Todo el mundo se encuentra con esto. Comienza escribiendo un
comando verdaderamente impresionante.

a Administrator: Windows PowerShell = B

PS C:\> Get-WmiObject -Class Win32 LogicalDisk -ComputerMame CLIENT -Filter "DriveType=3" | ~

>> Select-Object PSComputerName,

>> @{name="FreeSpace(GB)" ;expression={$PSItem.FreeSpace / 1GB -as [int]}},

>> @{name="Size(GB) ' ;expression={$PSItem.Size / 1GB -as [int]}},

>> @{name="'FreePercent';expression={$PSItem.FreeSpace / $PSItem.Size * 180 -as [int]}} |
>» Format-Table -AutoSize

>>

PSComputeriame FreeSpace(GB) Size(GB) FreePercent

,, b

CLIENT 48 60 80

PS C:\> o

image005.png

Y luego piensa, “Wow, esto quedaria muy bien en un archivo
HTML?

Formato a la derecha 4

a Administrator: Windows PowerShell -8
PS C:\> Get-WmiObject -Class Win32_LogicalDisk -ComputerMame CLIENT -Filter "DriveType=3" | ~
>> Select-Object PSComputerName,
>> @{name="FreeSpace(GB) " ;expression={$PSItem.FreeSpace / 1GB -as [int]}},
>> @{name="Size(GB) ' ;expression={$PSItem.Size / 1GB -as [int]}},
>> @{name="FreePercent’;expression={$PSItem.FreeSpace / $PSItem.Size * 180 -as [int]}} |
>»> Format-Table -AutoSize |
>> ConvertTo-HTML | Out-File diskreport.html
>>
PS C:\>
—
£ Cidiskreport.html P - ¢ E HTMLTABLE

ClassId2edf51ef21dd47e99d3c952918aff9¢cd pageHeaderEntry pageFooterEntry autq

033ecb2bc07add43bSefD4ed5a35d280 Microsoft PowerShell. Comm

9e210fe47d09416682b841769c78b8a3

27¢87efObbdadf709£6b4002fadafb3c

4ec4f0187cb04£4cb6973460dfe252df

<f522b78d86c486691226b40aab9ed5c

< >

v

< >

image007.png

Sucede todo el tiempo. Si desea una manera facil de recordar lo
que no se debe hacer, es esto: nunca canalice (enviar al pipeline)
la salida de un comando de formato. Esa no es toda la verdad
(llegaremos a toda la verdad en un momento), pero si s6lo quiere
una respuesta rapida, eso es todo. En la comunidad, lo llamamos la
regla del “formato a la derecha”, porque tiene que ver con mover su
comando Format al extremo derecho de la linea de comandos. Es
decir, el comando Format va al final, y nada més viene después de
él.

La razon es que todos los comandos de formato producen codigos
de salida internos especiales, que estdn destinados a generar una
visualizacion en pantalla. Canalizar esos codigos (enviarlos al pipe-
line) a cualquier otro comando - ConvertTo-HTML, Export-CSV, lo
que sea — solo hara que se obtenga una salida ilegible.

De hecho, hay algunos comandos que pueden venir después de un
comando de formato en la canalizacion (pipeline):

Formato a la derecha 5

1. Out-Default. Técnicamente siempre esta al final de la canali-
zacion (pipeline), aunque sea “invisible”. Es el encargado de
redirigir la salida al Host. Por eso es que vemos siempre la
salida en pantalla.

2. Out-Host también entiende la salida de los comandos de
formato, porque Out-Host es la forma en la que los codigos
de formato obtienen la informacion de lo que se debe mostrar
en pantalla.

3. Out-Printer también entiende los c6digos de formato de salida
y ademas, construye una pagina impresa que se veria exacta-
mente como la salida normal en pantalla.

4. Out-File, como Out-Printer, redirecciona la salida en pantalla,
pero esta vez a un archivo de texto en disco.

5. Out-String utiliza los cédigos de formato de salida y produce
una cadena simple que contiene el texto que de otro modo
habria aparecido en pantalla.

Aparte de esas excepciones -y de ellas, usualmente sélo se utiliza
Out-File- no se puede canalizar la salida de un comando Format a
otro comando si desea obtener cualquier cosa que parezca util.

cDonde esta el comando
<SuNombreAqui>? He
instalado la ultima
version de PowerShell y
no puedo encontrarlo!

Una cosa dificil es entender que hay un cierto nimero de comandos
que vienen con PowerShell y otros que simplemente no vienen.

Cada nueva version de PowerShell incluye al menos algunos nue-
vos comandos. Por ejemplo, Start-Job aparecié por primera vez en
PowerShell v2, mientras que Invoke-AdWorkflow fue introducido
en PowerShell v3.

Lo que confunde a la gente es que una nueva version de PowerShell
también tiende a corresponder con una nueva version del sistema
operativo Windows. Y el Sistema Operativo viene con cientos de
comandos. Por ejemplo, puede haber utilizado Get-SmbShare por
primera vez en Windows Server 2012, que incluye PowerShell v3.
Pero Get-SmbShare es parte del sistema operativo, no parte de
PowerShell. Es decir, no tendra Get-SmbShare en cada sistema que
tenga PowerShell v3 o posterior, porque el comando no es una
“caracteristica de PowerShell es una “caracteristica de Windows”.

Asi que... ;De donde se obtienen los comandos?

Normalmente, los comandos son parte de algiin producto. ; Necesita
los comandos de Exchange Server? Instale las herramientas de
administracién de Exchange Server. ;Necesita los comandos de
Windows Server 2012? Instale el kit de herramientas de adminis-

;Doénde esta el comando <SuNombreAqui>? He instalado la dltima version de
PowerShell y no puedo encontrarlo! 7

tracion remota del servidor (RSAT), que contiene las herramientas
de administracion del servidor.

PowerShell.exe no es
PowerShell

Es importante entender que Windows PowerShell, detras de esce-
nas es en realidad un motor. Usted como un simple ser humano no
puede interactuar directamente con PowerShell.

En su lugar, necesita una aplicacion Host. Un Host incrusta el
motor internamente, y luego le da una manera de interactuar
con él. Por ejemplo, powershell.exe es una aplicacién Host. Se
construye alrededor de la misma consola de consola de Windows
(conhost.exe) a través de la antigua shell de linea de comandos
cmd.exe, pero incrustando el motor PowerShell. Se escriben los
comandos y el Host los envia al motor para su ejecucién. El Host
también es responsable de mostrar cualquier resultado. En este
caso, en pantalla.

(Por qué es importante esta distincién?

Porque diferentes Hosts pueden comportarse de diferentes mane-
ras. Por ejemplo, el PowerShell ISE se comporta un poco diferente
que el Host de la consola, y ambos se comportan de manera muy
diferente de Active Directory Administration Center, otro host de
PowerShell.

Acumulando la salida en
una funcion

Esto es un truco un poco “avanzado”, pero es uno en que muchos
desarrolladores experimentados caen. Aqui hay un ejemplo, sélo
para demostrar el punto (no es funcional, ya que el comando
utilizado es ficticio):

Z Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help
O & B & B x| @9 P & M| = B =oF A
Untitled1.ps1* X \
1 Efunction Get-Stuff {
2 = param(
3 string[]]$ComputerName
4 J
5 foutput &)
6 3 foreach (Scomputer in Scomputername) {
7 $datal Get-Something -ComputerName SComputer
8 fdataz Get-OtherSomething -ComputerName 3$Computer
9 = fproperties @f{"ComputerName"=5Computerhame;
10 'DataPointl’=%datal. pointl;
11 "DataPoint2’-idata?. point2}
12 $obj New-Object -TypeName PSObject -Property iproperties
13 foutput %obj
14
15 Write-Output foutput
16
17
13

image009.png

El problema es que la funcién puede generar multiples objetos
de salida, y el programador estd acumulandolos en la variable de
$output. Esto significa que esta funcién no emitira nada hasta que
su ejecucion esté completamente terminada. No es asi como los
comandos PowerShell (y las funciones) suelen estar disefiados para
funcionar.

Los comandos de PowerShell normalmente deben enviar cada
objeto a la canalizacion (pipeline), uno a la vez, apenas esos objetos

Acumulando la salida en una funcién 10

estén listos. Esto permite que la canalizacion (pipeline) acumule la
salida, e inmediatamente la pase a lo largo de la siguiente funcién o
comando en la canalizacion (pipeline). Asi funcionan los comandos
en PowerShell. Ahora, siempre hay excepciones. Sort-Object, por
ejemplo, tiene que acumular su salida, porque en realidad no puede
ordenar nada hasta que tenga todos los elementos. Es por esto que se
le llama un comando _blocking, porque “bloquea” la canalizaciéon
(pipeline) completamente hasta que se produce su salida. Pero eso
es una excepcion.

Normalmente esto es muy facil de solucionar, simplemente envian-
do a la canalizacién (pipeline) directamente en lugar de acumular:

File Edit View Tools Debug Add-ons Help

e’ & x0>x»x 9 b 8| =N f=IR:]

| Untitled.ps1* X |
1 El|funct'ion Get-5tuff {
=] param{
[string[]]$ComputerName

3
4
5= foreach (Scomputer in Scomputername) {

6 $datal = Get-Something -ComputerName SComputer

7 fdataz = Get-OtherSomething -ComputerName iComputer
g8 B Sproperties = @{'ComputerName'=5ComputerName;

9 "DataPointl’-%datal. pointl;
10 "DataPoint2’=%data?. point2}
11 $obj = New-Object -TypeName PSObject -Property $properties
12 Write-Output %obj
13 H
14 [1

image011.png

ForEach vs ForEach vs
ForEach

PowerShell tiene comandos de aspecto similar que pueden confun-
dir, especialmente a los recién llegados. Por ejemplo, usted tiene dos
entidades ForEach:

« El Cmdlet ForEach-Object, que tiene un alias ForEach (tam-
bién tiene el alias %). Estid destinado a funcionar en la ca-
nalizacion (pipeline), y utiliza un pardmetro de proceso que
acepta un ScriptBlock.

« La declaracién ForEach. Tiene una sintaxis especifica, no esta
destinado a ser utilizado en la canalizacion (pipeline) y no
tiene un alias.

Aqui estan los tres en accion, en un ejemplo muy simple:

=z Administrator: Windows PowerShell ISE
File Edit View Tools Debug Add-ons Help
O e -3 & B »x 9 P & B | = B =S OO &
Untitled1.ps1* X |
1
2 # Full Syntax
3 Get-Service -Name "BITS ForEach-Object -Process { S_.Stop() }
14
5 # Shorter syntax
6 Get-Service -Name 'BITS' ForEach { $_.5top() }
:3 # Scripting construct
9 S5ervices = Get-Service -Name BITS
10 = ForEach rvice in §services) {
11 fservice.stop()

image013.png

ForEach vs ForEach vs ForEach 12

La gran diferencia es que, en la canalizacién (pipeline), ForEach-
Object procesa un objeto a la vez. Esto significa que puede ser mds
lento, ya que ese ScriptBlock debe interpretarse en cada iteracion.
También tiende a usar menos memoria, ya que los objetos fluyen
por la canalizacion (pipeline) uno a la vez y no tienen que ser
agrupados en una variable primero.

La declaracion ForEach tiende a ser mas rapida, pero a menudo
tiene mas sobrecarga de memoria, ya que tiene que iterar sobre
toda la coleccion de objetos a la vez, en lugar de transmitir objetos
de uno en uno cada vez.

Ambos usan una sintaxis parecida, pero hay diferencias. Es impor-
tante entender que no son los mismos comandos, y que se ejecutan
de manera diferente. Es confuso porque “ForEach” es tanto un alias
como una declaracion de Scripting. El Shell determina qué se esta
utilizando mirando el contexto en el que lo esta utilizando.

Finalizacion con Tab

Es triste y sorprendente ver como pocas personas confian en la
terminacion con la tecla Tab, tanto en el PowerShell ISE como en
la ventana de la consola.

« Cuando se completa con Tab, nunca digitara comandos o
nombres de parametros incorrectos

« Para muchos valores de parametros que son listas estaticas o
listas de facil consulta, la terminacién con Tab (especialmente
en v3 y posteriores) puede completar los valores de dichos
parametros

« La terminacién con Tab hace que los nombres de Cmdlet
largos sean mucho maés faciles de escribir, sin necesidad de
conocer un alias de dificil o tener que memorizar el nombre
completo.

Mantenga el habito de usar la terminacién con Tab todo el tiempo
que sea posible. Le garantizar cometer menos errores.

-Contains y -Like son
diferentes

Si tuviera un centavo por cada vez que he visto esto:

| Administrator: Windows PowerShell ISE

1 File Edit View Tools Debug Add-ons Help
D@ H &8 »9 b B8 so0lmom.
| | Untitled1.pst* X |
| 1 $processes = Get-Process
—|Foreach ($proc 1in Sprocesses) {
= if (Sproc.name -contains 'notepad') {
$proc Stop-Process

—

N OV B W

Ln7 Col1 150%

image015.png

Entiendo como sucede. El operador -Contains parece que deberia
comprobar si el nombre de un proceso contiene las letras “notepad”.
Pero eso no es lo que hace.

El enfoque correcto es utilizar el operador -Like, que de hecho hace
una comparacion de cadena con comodines:

-Contains y -Like son diferentes 15

fe e — — —— — - —

| = Administrator: Windows PowerShell ISE - O

: File Edit View Tools Debug Add-ons Help
Bl & B/ & B x 9 [SNER - T T = e] s -

|| | Untitled1ps1* X | &
| 1 S$processes = Get-Process

2 =Foreach ($proc 1in Sprocesses) {

3 = if (Sproc.name -Tike "*notepad#|') {
4 $proc Stop-Process

5 }

6 [}

7

Ln3 Col 36 150%

image017.png

Voy a dejar pasar la idea de que la respuesta realmente correcta es
ejecutar Stop-Process -Name *notepad *, porque estaba apuntando
a un ejemplo simple aqui. Pero ... no piense demasiado. A veces un
script en un bucle foreach no es el mejor enfoque.

Asi que de todos modos, ;qué hacen -Contains (y su amigo, -
NotContains) en realidad? Son similares a los operadores -In y
-Notln introducidos en PowerShell v3. Estos operadores pueden
causar un poco de confusion. Lo que hacen es comprobar si una
coleccion de objetos contiene un tnico objeto dado. Por ejemplo:

-Contains y -Like son diferentes 16

] Administrator: Windows PowerShell - P

PS C:\> $names = "SERVER1","SERVER2","SERVER3","SERVER4","DC1","DC2" ~
PS C:\> $names -contains "SERVER1"

PS C:\> $names -contains "SERVER1@8"
PS C:\> "DC1" -in $names

PS C:\> "SQL7" -in $names

image019.png

De hecho, este ejemplo es probablemente la mejor manera de verlo
funcionar. El truco es que, cuando se utiliza un objeto complejo en
lugar de un valor simple (como lo hice en ese ejemplo), -Contains
e -In buscan en todas las propiedades del objeto para encontrar
una coincidencia. Si piensa en algo como un proceso, ellos siempre
estaran cambiando. De cuando en cuando, la CPU y la memoria de
un proceso, pueden ser diferentes.

-Contains y -Like son diferentes 17

] Administrator: Windows PowerShell - P
PS C:\> notepad ~
PS C:\> $single_proc = get-process -Name notepad
PS C:\> $single_proc
Handles NPM(K) PM(K) WS(K) WVM(M) CPU(s) Id ProcessName
98 9 1348% 7952 92 0.85 2756 notepad
PS C:\> (get-process) -contains $single_proc
False
PS C:\> o
v
< >

image021.png

En este ejemplo, he iniciado el bloc de notas. He puesto su objeto
de proceso en $single_proc, y se puede ver que he verificado que
estaba alli. Pero cuando ejecuto Get-Process para comprobar si
la coleccion contenia mi Notepad, el resultado fue falso. Eso es
porque el objeto en $single_proc esti desactualizado. Notepad esta
en ejecucion, pero ahora se ve diferente, por lo que -Contains no
puede encontrarlo.

Los operadores -in y -contains son mejores con valores simples,
o con objetos que no tienen valores de propiedad que cambian
constantemente. Pero no son operadores de coincidencia de cadenas
de caracteres comodines. Use-like (o -notlike) para eso.

No puede tener lo que no
se tiene

;Puede ver lo que esta mal?

] Administrator: Windows PowerShell

PS C:\> Get-Service |

>> Select-Object -Property Name,DisplayName |
>> Where Status -eq ‘Running’ |

>> Sort Name

>>

PS C:\»

image023.png

Quiero decir, estoy bastante seguro de que tengo algunos servicios
en ejecucion. Se supone que algo se debia mostrar.

Si no ve la respuesta de inmediato - o no la ve - es un buen
momento para hablar acerca de como solucionar problemas con
algunas lineas de comandos. Para empezar, como siempre digo,
retrocediendo un paso. Elimine el Gltimo comando, y vea si eso hace
alguna diferencia.

No puede tener lo que no se tiene 19

] Administrator: Windows PowerShel - P
PS C:\> Get-Service | "
>> Select-Object -Property Name,DisplayName |

>> Where Status -eq 'Running' |

>> Sort Name

>>

PS C:\> Get-Service |

>>» Select-Object -Property Name,DisplayName |

>> Where Status -eq ‘Running’

>>

PS C:\> Get-Service |

»> Select-Object -Property Name,DisplayName

>

Name DisplayName

AeLookupSvc Application Experience

ALG Application Layer Gateway Service
AllUserInstallAgent Windows All-User Install Agent

AppIDSvc Application Identity

Appinfo Application Information

AppMgmt % Application Management

AudioEndpointBuilder Windows Audio Endpoint Builder

Audiosrv Windows Audio

AxInstSV ActiveX Installer (AxInstSV)

BDESVC BitlLocker Driwve Encryption Service

BFE Base Filtering Engine

BITS Background Intelligent Transfer Service v
< >

image025.png

En este caso, quité el comando Sort-Object (Sort) y no ocurrié nada
diferente, asi que eso no era la causa del problema. A continuacion,
eliminé el comando Where-Object (Where, en la sintaxis corta
de v3), y ah-ha! Apareci6 la salida. Asi que el comando Where-
Object estd “rompiendo” algo. Vamos a revisar lo que funcioné y
a canalizarlo a Get-Member, para ver qué hay en la canalizacion
(pipeline) después de ejecutar Select-Object.

No puede tener lo que no se tiene 20

] Administrator: Windows PowerShell - P
WSCSVC Security Center ~
WSearch Windows Search
WSService Windows Store Service (WSService)
wWuausery Windows Update
wudfsve Windows Driver Foundation - User-mode Driver F...
biwanSvc WWAN AutoConfig
PS C:\> Get-Service | %
>> Select-Object -Property Name,DisplayMame |
>> Get-Member
>
Typelame: Selected.System.ServiceProcess.ServiceController
Name MemberType Definition
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string ToString()
DisplayName MoteProperty System.String DisplayName=Application Experience
Name NoteProperty System.String Mame=AelookupSwvc
PS C:\> v
< >

image027.png

OK, tengo un objeto que tiene una propiedad DisplayName y una
propiedad Name.

Y mi comando Where-Object estaba comprobando la propiedad
Status. ;Ve una propiedad Status? No, no se ve. Mi error es que
quité la propiedad Status cuando no la inclui en la lista de salida
del comando Select-Object. Asi que el objeto no tenia nada contra
qué trabajar y no devolvi6 nada.

(Si, seria mejor si PowerShell lanzara un error - “hey, pidio filtrar la
propiedad Status, y no hay una!” - pero eso no asi como funciona).

Moraleja de la historia: prestar atencion a lo que esta en la canali-
zacion (pipeline). No se puede trabajar con algo que no se tiene. No
siempre obtendra un mensaje de error ttil, por lo que a veces tendra
que escarbar y averiguarlo de otra manera - como retrocediendo un
paso.

-Filter y la diversidad de
valores

Esta es una de las cosas mas dificiles de acostumbrarse en PowerS-

hell:

] Administrator: Windows PowerShell = [
PS C:\> Get-ChildItem -Filter *.html A

Directory: C:\

Mode LastWriteTime Length Name

-a--- 4/26/2013 12:87 PM 2148 diskreport.html

PS C:\> Get-WmiObject -Class Win32 LogicalDisk -Filter "DriveType=3"

DeviceID = &s
DriveType 3
Provideriame :

FreeSpace : 51293458432
Size : 64855486592
VolumeName

PS C:\> Get-ADUser -Filter { title -eq 'CTO" }.

image029.png

Aqui vemos tres comandos, cada uno usando un parametro -Filter.
Cada uno de esos filtros es diferente.

1. Con Get-Childltem, -Filter acepta los comodines del sistema
de archivos como *.

2. Con Get-WmiObject, -Filter requiere una cadena, y utiliza
operadores de estilo de programacion (como = para la igual-
dad).

3. Con Get-ADUser, -Filter requiere un bloque de script, y acep-
ta operadores de comparacion de estilo PowerShell (como -eq

-Filter y la diversidad de valores 22

para la igualdad)

Esto es lo que pienso cuando se utiliza un pardmetro -Filter.
PowerShell no esta procesando el filtrado. En su lugar, los criterios
de filtrado se estan transmitiendo a la tecnologia subyacente, como
el sistema de archivos, o WMI, o al directorio activo. Es esta
tecnologia la que decide qué tipo de criterios de filtro se van a
aceptar. PowerShell es solo el intermediario. Asi que es mejor leer
cuidadosamente la ayuda, y tal vez buscar ejemplos, para entender
como la tecnologia subyacente necesita que especifique su filtro.

Si, seria bueno si PowerShell tradujera para usted (que es realmente
lo que hace Get-ADUser - el comando traduce eso en un filtro de
LDAP tras bambalinas). Pero, por lo general, no lo hace.

No todo produce una
salida

Veo esto a menudo:

[x] Administrator: Windows PowerShell = B

PS C:\> Get-Service | A~
>> Where Status -eq 'Running' |

>> Export-CSV RunningServices.csv |

>> Format-Table -AutoSize

>>

PS C:\>

image031.png

Si esperaba algo en la pantalla en términos de salida, estara de-
cepcionado. El truco aqui es hacer un seguimiento de lo que cada
comando produce como salida, y es alli donde hay un posible punto
de confusion.

En el mundo de PowerShell, la salida es lo que apareceria en la
pantalla si ejecutamos el comando y no lo canalizamos (enviar al
pipeline) a nada maés. Si, Export-CSV hace algo - crea un archivo
en disco - pero en el mundo de PowerShell ese archivo no se ve en
pantalla. Export-CSV no produce ninguna salida, hablando de algo
que apareceria en la pantalla. Por ejemplo:

24

No todo produce una salida

- O Y

] Administrator: Windows PowerShell

PS C:\> Get-Service |

>> Where Status -eq ‘Running® |
>> Export-CSV RunningServices.csv
>>

PS C:\»

image033.png

;Lo ve? nada. Ya que no hay nada en la pantalla, no hay nada en
la canalizacion (pipeline). No puede canalizar Export-CSV a otro
comando, porque no hay nada que canalizar.

Algunos comandos pueden incluir un parametro -PassThru. Cuan-
do lo tienen y se utiliza, haran lo que hagan normalmente, pero
también pasaran sus objetos de entrada a través de la canalizacion
(pipeline), para que luego se puedan canalizar a otra cosa. Export-
CSV no es uno de esos comandos, - nunca produce una salida, por
lo que nunca tendra sentido para canalizarlo a otra cosa.

Una pagina HTML a la
vez, por favor

Esto me vuelve loco:

(>} Administrator: Windows PowerShell -9
PS C:\> Get-Service | ConvertTo-HTML -PreContent "<hl>Serwices</h1>" | Out-File report.html ~
PS C:\> Get-Process | ConvertTo-HTML -PreContent “<hl>Procs</h1>" | Out-File report.html -Append
PS C:\>
N - a
2] Cireport.html P~ & || @ HTML TABLE
. ~
Services
Name RequiredServices CanPauseAndContinue CanShutdown C
AeLookupSve [S]ysl:m ServiceProcess. ServiceController False False T
ALG System.ServiceProcess.ServiceController False False Fz
AllUserInstallAgent Ei]ystem ServiceProcess ServiceController False False T
AppIDSve System.ServiceProcess.ServiceController False False T
Appinfo ;S]ystem ServiceProcess ServiceController False False e
< AppMemt ;S]ystem ServiceProcess ServiceController False False e
AudioEndpointBuilder [S]yslsm.Sm’xcercess.SenlceContmllH False False T
i . v
A(udiusn’ _S_5 stem. ServiceProcess ServiceController False False s by

image037.png

Lo que esta pasando es que alguien ejecuté dos comandos, canali-
zando la salida de cada uno a ConvertTo-HTML, y esencialmente
combinando ambas paginas HTML en un solo archivo. Lo que me
realmente me vuelve loco es que Internet Explorer esta bien con esa
tonteria.

Los archivos HTML pueden empezar con una etiqueta de nivel
superior, pero si se echa un vistazo a ese archivo vera que contiene
dos:

Una pagina HTML a la vez, por favor 26

(> Administrator: Windows PowerShell -9

PS C:\> Get-Service | ConvertTo-HTML -PreContent "<hl»Serwices</hl1>" | Out-File report.html ~
PS C:\> Get-Process | ConvertTo-HTML -PreContent “<hl>Procs</hl>" | Out-File report.html -Append

PS C:\> notepad .\report.html

PS C:\>

| report - Notepad
File Edit Format View Help

<tr><td>WwanSve</td><td>System.ServiceProcess.ServiceController
[]</td><td>False</td><td>False</td><td>False</td><td>WWAN
AutoConfig</td><td>System.ServiceProcess.ServiceController
[1</td><td>. </td><td>WwanSvc</td><td>System.ServiceProcess.Servi
[]</td><td>SafeServiceHandle</td><td>Stopped</td><td>Win32ShareF
</td></tr>

</table>

<title>HTML TABLE</title> I
</head><body>
<h1>Procs</hi>
<table>
image039.png

He resaltado las lineas que terminan una pagina HTML y co-
mienzan la siguiente. Esto es técnicamente un archivo HTML
malformado. Algunos navegadores Web lo admiten (unos si, otros
no), dificil de analizar si alguna vez necesita para manipular el
contenido mediante programacion, y ... bueno, es esta mal. Es como
el incesto o algo asi. Inaceptable.

Si necesita combinar varios elementos en un tnico archivo HTML,
utilice el parametro -Fragment de ConvertTo-HTML. Produzca sélo
una parte del HTML o varias porciones de ese tipo y luego com-
binelas en una sola pagina completa. Ahhh bien. Todo el proceso
al respecto de la creaciéon de informes HTML en PowerShell lo
encuentra en nuestro otro libro electrénico gratuito que viene con
este.

{

Horrible} (Puntuacion)][Sangriento] {Horrible} (Puntuacién)

Esto no un “truco” pero vale la pena revisarlo para que no resulte
confuso. Las tuercas de PowerShell con la puntuacion.

] Administrator: Windows PowerShell ISE % = B
File Edit View Tools Debug Add-ons Help
el & o x|9 ¢ @ W% | 8 =00 mom.
| Untitled1,psi® | MyModulepsm1 X | @
1 S$ErrorLogFilePreference = 'c:\errors.txt'
3 =function Get-0SInfo {
4 = <#
5 .SYNOPSIS
6 Lists computer information from one or more computers.
7 .DESCRIPTION
8 This command uses WMI to connect to one or more computers. You may s
9 .EXAMPLE
10 Get-Content computernames.txt | Get-0SInfo
11 This example uses a filename named computernames.txt, which is expec
12 .EXAMPLE
13 Get-0SInfo -ComputerName localhost,client,dc
14 This example gets information from three computers.
15 .PARAMETER computername
16 The name, or IP address, of a computer. Accepts multiple values and
17 #>
18 [cmdletBinding()]
19 = param(
20 [Parameter(Mandatory=$True,vValueFromPipeline=5True)]
21 [validateNotNullorEmpty()]
22 [string[]]$computername,
23
24 [string]$errorLog = $ErrorLogFilePreference
25
26 = BEGIN {
27 Remove-Item -Path SerrorLog -ErrorAction SilentlyContinue
28 }
29 = PROCESS {
30 = foreach ($computer in Scomputername) {
31 = try {
32 Write-Verbose "Connecting to S$computer"
n1 Col1 150%

image041.png

(Paréntesis) se utilizan para encerrar expresiones, como la expre-
sion foreach() y en ciertos casos para resaltar alguna sintaxis decla-
rativa. Por ejemplo el bloque param() y en el atributo [parameter()].

[Corchetes cuadrados] se utilizan alrededor de algunos atributos,
como en [CmdletBinding()], y alrededor de tipos de datos co-

[Sangriento 28

mo [string]. También se utilizan para indicar arrays - como en
[string[]]. Pueden aparecer en otros lugares.

{Corchetes} casi siempre contienen codigo ejecutable, como en el
bloque try{}, el bloque begin{} y la funcién en si. También se utilizan
para expresar literales de tablas hash (como @f}).

Si el teclado tuviera algunos botones mas, PowerShell no habria
tenido que tener todos estos usos “incorporados” de caracteres de
puntuacion. Pero lo hace. En este punto, son casi una parte del
“coste de entrada” del Shell, por lo que tendra que acostumbrarse a
ellos.

No+Concatene+Strings

Realmente me disgusta la concatenaciéon de cadenas. Es como
obligar a alguien a acurrucarse con alguien que ni siquiera conocen.

Grosero.
=] Administrator: Windows Powershell ISE - o
File Edit View Tools Debug Add-ons Help
Hh e 3 & B x» 9 > G ® |8 (B0 & m.
‘ Untitled1.ps1* X ‘ *)

1 ElParam(
2 [string[]]Scomputername
—foreach (Scomputer in Scomputername) {
Swni = Get-WmiObject -Class Win32_BIOS -ComputerName Scomputer
Smessage = "Computer " + Scomputer + " BIOS serial " + S$wmi.serialnumber
Write-Host $message

WNO VI BWN

image043.png

Y completamente innecesario, cuando se utilizan comillas dobles.

=] Administrater: Windows PowerShell ISE - =

File Edit View Tools Debug Add-ons Help

Hhe Jd & B » |9 b B ® (B BO0| & @,

| Untitied1.ps1* X | e
1 =lParam(

[string[]]$computername

=foreach (Scomputer in $computername) {
Swni = Get-Wmiobject -Class win32_BIOS -ComputerName Scomputer
Smessage = "Computer $computer BIOS serial $(Swmi.serialnumber)”|
Write-Host $message

ONOV BWN

}

image045.png

Mismo efecto al final. Usando comillas dobles, PowerShell buscara
el caracter $. Cuando lo encuentre:

1. Siel siguiente caracter es { entonces PowerShell llevara todo a
la concordancia } como un nombre de variable, y reemplazara
todo con el contenido de esa variable. Por ejemplo, poner $
{mi variable} dentro de comillas dobles reemplazara con el
contenido de $ {mi variable}.

No+Concatene+Strings 30

2. Si el siguiente caracter es un (entonces PowerShell llevara
todo a la coincidencia) y lo ejecutara como si fuera codigo.
Por lo que, ejecuté $wmi.serialnumber para acceder a la
propiedad serialnumber del objeto que se encontraba en la
variable $wmi.

3. De lo contrario, PowerShell tomara todos los caracteres que
sean legales para un nombre de variable, hasta el primer
caracter de nombre de variable ilegal, y lo reemplazara con
esa variable. Asi es como funciona $computer en mi ejemplo.
El espacio después de la r no es legal para un nombre de
variable, por lo que PowerShell sabe que el nombre de la
variable se detiene en r.

Una cosa para resaltar aqui:

= Administrator: Windows PowerShell ISE o B

File Edit View Tools Debug Add-ons Help

0&ed 4 B x |9 > B E|w B o0l mom.

| Untitied1.pst= X | 2
1 =lParam(
2 [string[]]$computername

3

4 =foreach (Scomputer in Scomputername) {

5 Swni = Get-wWmiobject -Class Win32_BIOS -ComputerName Scomputer

6 Smessage = "Computer Scomputer BIOS serial Swmi.serialnumber|'

7 Write-Host S$message

8

image047.png

Esto no funcionara como se esperaba. En la mayoria de los ca-
sos, $wmi sera reemplazado por un nombre de tipo de objeto y
.serialnumber seguira alli. Eso ocurre porque . no es un nombre
de variable legal, por lo que PowerShell deja de “observar” la
variable con la letra i. Entonces, reemplaza $wmi con su contenido.
Usted vio en el ejemplo anterior, el uso de $($wmi.serialnumber),
que es una subexpresién y funciona. Los paréntesis hacen que su
contenido se ejecute como codigo..

$ no forma parte del
nombre de la variable

Gran “trampa”.

[x] Administrator: Windows PowerShell = &

PS C:\> $example = 5
PS C:\> new-variable -Name $example -Value 6
PS C:\> o

image049.png

;Puede predecir el resultado?

=] Administrator: Windows PowerShell -0
PS C:\> $example = 5

PS C:\> new-variable -Mame $example -Value 6
PS C:\»

PS C:\> $example

PS C:\> $5

PS C:\>
&

image051.png

Observe que el simbolo de moneda $ no forma parte del nombre
de la variable. Si tiene una variable llamada example, que es como
tener una caja con la palabra “ example” escrito al costado. Cuando
se refiere a example significa que est4 hablando de la caja misma.
Cuando se refiere a $ example significa que esta haciendo referencia
al contenido de la caja.

Asi que en mi ejemplo, he utilizado $example = 5 para poner un 5
en la caja. Luego, cree una nueva variable. El nombre de la nueva
variable fue $example — que como lleva el simbolo de moneda, en
realidad hace referencia al valor de la variable $example que es 5.
Asi que lo que ocurri6 en realidad fue que se cre6 una variable
llamada 5, que tiene asignado el valor 6, a la que se puede hacer
referencia por el nombre $5.

$ no forma parte del nombre de la variable 32

Dificil, ;verdad? Lo es:

ile Edit View Tools Debug Add-ons Help

0e H & Bx|oe pEE| |8 s nom.
Untided]ps1® X |
1 =lParam(

[string[]]$computername

3

4 E=foreach ($computer in S$computername) {

5 = try {

6 = $parameters = @{'Class'='Win32_BIOS';

7 "ComputerName '=$computer;
8 '"ErrorAction'="Stop’;

9 'Errorvariable'=$x} I
10 Get-WmiObject @parameters
11 = } catch {
12 Write-wWarning "The error was $x"
13
image053.png

En ese ejemplo, utilicé el parametro -ErrorVariable para especificar
una variable en la que se almacenaria cualquier error que se
produzca. El problema es, he utilizado $x cuando deberia haber
utilizado solo x (sin el simbolo de moneda):

ile Edit View Tools Debug Add-ons Help

ba B3 & B x| 9 &| b0 @ |8 500 @ .
Untitled1.ps1* X |
1 =lParam(

[string[]]$computername

3

4 Hforeach (Scomputer in $computername) {

5 = try {

6 = Sparameters = @{'Class'="Win32_BIOS';

7 "ComputerName '=$computer;
8 'ErrorAction'="Stop';

9 "Errorvariable'="x"}

10 Get-WmiObject @parameters

11 = } catch {

12 write-warning "The error was Sx" I
13

image055.png

Ahora la forma correcta. Utilizando solo x, a la que mas tarde
se puede acceder usando $x para obtener su contenido, es decir,
cualquier error que haya sido almacenado alli.

Utilizar la canalizacién
(pipeline), no una matriz

Un error muy comin cometido por programadores tradicionales
que recién llegan a PowerShell:

ile Edit View Tools Debug Addons Help

Oe :Jd & B > | 9 P 3 B = |8 500 B .
Untitled1.ps1* X ‘
1 =Param(
2 [string[]] $computername
3
4
p 5 [output = @()
6 =foreach (Scomputer in Scomputername) {
7 = try {
8 = Sparameters = @{'Class'="Win32_BIOS';
9 'ComputerName '=$computer;
10 'ErrorAction’'="Stop"';
11 'Errorvariable’'="x"}
12 Soutput += Get-WmiObject @parameters
13 Select-Object PSComputerName,SerialNumber
14 = } catch {
15 wWrite-warning "The error was $x"
16 }

18 Write-output Soutput
image057.png

Esta persona ha creado una matriz vacia en $output, y mientras
recorre la lista de ordenadores y ejecuta consultas WMI, estan
agregando nuevos objetos de salida al contenido de la matriz.
Finalmente, envia la matriz a la canalizacion (pipeline).

Mala practica. Como se ve, esto obliga a PowerShell a esperar mien-
tras se completa la ejecucién del comando. Cualquier comando
subsecuente en la canalizacion (pipeline) se sentara a esperar con
los brazos cruzados. ;Un mejor enfoque? Utilizar la canalizacion
(pipeline), cuyo propdsito es acumular la salida por usted - sin
necesidad de que usted mismo la acumule en una matriz.

Utilizar la canalizacion (pipeline), no una matriz 34

ile Edit View Tools Debug Add-ons Help

I = B x| 9o 5E| w8 =300 &mm.
Untitled1ps1* X |

1 =raram(

2 [string[]] $computername

3

4

5 Hforeach ($computer in $computername) {

6 = try {

7 = Sparameters = @{'Class'='Win32_BIOS';

8 'ComputerName '=Scomputer;

9 'ErrorAction’'="Stop"';

10 'Errorvariable’'="x"}

11 Get-WmiObject @parameters

12 Select-Object PSComputerName,SerialNumber

13 = } catch {

14 Write-warning "The error was $x"

15 }

16 }

7

image059.png

Ahora, los comandos posteriores recibiran la salida, dejando que
varios de esos comandos se ejecuten mas o menos simultineamente
en la canalizacién (pipeline).

Backtick, Grave Accent,
Escape

A menudo va a encontrarse con esto

ile Edit View Tools Debug Addons Help

0 e d 4 B x|9 P & B = |8 500 &mE.
Uniitled1.ps1* | Untitled2ps1® X |
1 =param(
2 [string[]] $computername
3 D)
4
5 —foreach (Scomputer in Scomputername) {
6 = try {
7 Get-Wmiobject -Class Win32_BIOS °
8 -ComputerName S$computer
9 -ErrorAction Stop
¢ 10 -Errorvariable x
11 Select-Object PSComputerName,
12 serialNumber
13 = } catch {
14 Write-wWarning "The error was $x"
15
16 }

image061.png

No, no es un pixel muerto en el monitor o un trozo de toner
perdido en la pagina, es la marca de acento grave o backtick. ‘ Es el
caracter de escape de PowerShell. En este ejemplo, esta “escapando”
el retorno de carro invisible al final de la linea, eliminando su
proposito especial como final de linea l6gica, simplemente haciendo
que sea un retorno de carro literal.

No me gusta el backtick utilizado de esta manera.

Primero, es dificil de ver. Segundo, si se deja un espacio en blanco
extra después de él, ya no estara escapando el retorno de carro, y el
script se rompera:

Backtick, Grave Accent, Escape 36

ile Edit View Tools Debug Add-ons Help

b e & B »|®9 P BB | |8 BO0 & m.
Untitied1.ps1” | Untitled2ps1™ X |

1 [ElParam(

2 [string[]]$computername

3

4

5 =foreach (Scomputer in Scomputername) {

6 = try {

7 Get-WmiObject -Class Win32_BIOS I

8 -ComputerName Scomputer ~

9 -ErrorAction Stop

10 -Errorvariable x

11 Select-Object PSComputerName,

12 SerialNumber

13 = } catch {

14 Write-wWarning "The error was $x"

15 }

16 }

image063.png

Observe cuidadosamente el parametro -computername - en este
segundo ejemplo. Fijese como se muestra un color incorrecto para
un nombre de parametro. Ocurre porque he afiadido un espacio
después del backtick en la linea anterior. IMPOSIBLE de rastrear.

Y el backtick es innecesario como caracter de continuacion de linea.
Permitanme explicar por qué:

PowerShell ya le permite agregar un “Enter” en ciertas situaciones.
Usted solo tiene que aprender cuales son esas situaciones, y luego
tomar ventaja de ellas. Entiendo totalmente el deseo de tener codigo
perfectamente formateado - predico sobre eso todo el tiempo - pero
no tiene que confiar en un personaje como el backtick para obtener
codigo bien formateado.

Sélo tiene que ser mas listo.

Backtick, Grave Accent, Escape 37

ile Edit View Tools Debug Add-ons Help

e d & B x| P BB | w8 BO00 & m.
Untitied1.ps1* X | Untitied2ps1” |

1 [EParam(

2 [string[]]$computername

3

4

5 =foreach (Scomputer in Scomputername) {

6 = try {

7 = $parameters = @{'Class'="Win32_BIOS';

8 'ComputerName'=$computer;

9 'ErrorAction’'="Stop"';

10 'Errorvariable’'="x"}

11 Get-Wmiobject @parameters

12 Select-Object PSComputerName, I

13 SerialNumber

14 = } catch {

15 Write-warning "The error was $x"

16 }

17 [}

18

image065.png

Para empezar, he puesto mis comandos Get-WmiObject en una
tabla hash, por lo que ahora puedo dar un formato agradable y
bonito. Cada linea termina en un punto y coma, y PowerShell me
permite romper la linea después de cada punto y coma. Incluso
si agrego un espacio adicional o un Tab después del punto y
coma, funcionara bien. Entonces hago “Splat” de esos parametros
al comando Get-WmiObiject.

Después de Get-WmiObject, tengo un caracter Pipe, y PowerShell
admite un “Enter” luego de un carécter Pipe.

Usted notara al final de Select-Object que se puede utilizar una
coma también.

Asi termino con un formato que parece al menos tan bueno, si no
mejor, porque no tiene un backtick ‘ flotando por todas partes.

Una multitud no es un
individuo

Un error muy comun de novato:

ile Edit View Tools Debug Add-ons Help

O & & B x|9 P BB % |8 B0 BE.
Untitled1.psT* X | Untitied2,ps1” |
1 =param(
2 [string[]] $computername
3
4
5 Sbhios = Get-Wmiobject -class Win32_BIOS -ComputerName S$computername
6 Sos = Get-wWmiobject -Class Win32_OperatingSystem -ComputerName Scomputer
7
8 [H%data = @{'ComputerName'=3computername;
9 'BIOSSerial'=Shios.serialnumber;
10 'Osversion'=%os.version}
11 New-Object -TypeName PSObject -Property $data

image067.png

Aqui, el problema es que se estd tratando todo como si estuvie-
ra compuesto de un sélo un valor. Pero aqupi $computername
puede contener varios nombres de equipo (eso es lo que significa
([string[]]), lo que significa que tanto $bios como $o0s podrian
contener también varios elementos. El truco estd en enumerar
$computername para conseguir el resultado deseado:

Una multitud no es un individuo 39

ile Edit View Tools Debug Add-ons Help
e d & B x| P BB | w8 BO00 & m.
UntitiedT.ps1* X | Untitied2ps1” |

1 [EParam(
[string[]]$computername

—foreach ($computer 1in $computername) {

$hiocs = Get-Wmiobject -class Win32_BIOS -ComputerName Scomputer
$os = Get-WmiObject -Class Win32_OperatingSystem -ComputerName Scomp

'BIOSSerial'=S%bios.serialnumber;
'osversion'=%os.version}

2

3

4

5

6

7

8 = $data = @{'ComputerName'=Scomputer;

9

10

11 New-Object -TypeName PsSObject -Property Sdata

image069.png

Algunas veces también se encontrara con esto, incluso en situacio-
nes sencillas. Por ejemplo:

a Administrator: Windows PowzShell -8
PS C:\> $procs = Get-Process ~
PS C:\> $message = "Process name $procs.name”

PS C:\> $message

Process name System.Diagnostics.Process (conhost) System.Diagnostics.Process (csrss) System.Diagnost
ics.Process (csrss) System.Diagnostics.Process (dwm) System.Diagnostics.Process (explorer) System.Di
agnostics.Process (Idle) System.Diagnostics.Process (lsass) System.Diagnostics.Process (MsMpEng) Sys
tem.Diagnostics.Process (powershell) System.Diagnostics.Process (powershell ise) System.Diagnostics.
Process (SearchIndexer) System.Diagnostics.Process (serwvices) System.Diagnostics.Process (smss) Syst
em.Diagnostics.Process (spoolsv) System.Diagnostics.Process (svchost) System.Diagnostics.Process (sv
chost) System.Diagnostics.Process (svchost) System.Diagnostics.Process (swchost) System.Diagnostics.
Process (svchost) System.Diagnostics.Process (svchost) System.Diagnostics.Process (svchost) System.D
iagnostics.Process (svchost) System.Diagnostics.Process (svchost) System.Diagnostics.Process (svchos
t) System.Diagnostics.Process (System) System.Diagnostics.Process (TabTip) System.Diagnostics.Proces
s (TabTip32) System.Diagnostics.Process (taskhost) System.Diagnostics.Process (taskhostex) System.Di
agnostics.Process (vmtoolsd) System.Diagnostics.Process (vmtoolsd) System.Diagnostics.Process (winin
it) System.Diagnostics.Process (winlogon).name

PS C:v> o

image071.png

PowerShell v2 no reaccionara tan bien, pero en PowerShell v3,
la variable dentro de comillas dobles $procs es una variable que
contiene varios objetos. PowerShell los enumera implicitamente,
ademés de buscar una propiedad llamada name. Fijese en “name”
al final de la cadena - PowerShell no hizo nada con eso.

Es probable que mejor desee enumerar asi:

Una multitud no es un individuo

a

PS C:\> $procs

PS C:\> $procs |

The
The
The
The
The
The
The
The
The
The
The
The
The
The

proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc

name
name

name i
name i
name i
name i
name i
name i
name i
name i
name i
name i
name i
name i
name i
name i
name i
name i

is
is

Administrator: Windows PowerShell

Get-Process

ForEach-Object { "The proc name is $($PSItem.Name)" }
conhost

csrss

csrss

dwm

explorer

Idle

1sass

MsMpEng

powershell

powershell_ise

SearchIndexer

services

SMSS

spoolsv

svchost

svchost

svchost Ik
svchost

image073.png

40

- oEN

Comandos de la vieja
escuela

Siempre tenga en cuenta que mientras PowerShell tiene comandos
llamados dir y cd, no son los viejos comandos de MS-DOS. Son sim-
plemente alias o apodos, a comandos de PowerShell. Eso significa
que tienen una sintaxis diferente.

[~} Administrator: Windows PowerShell -8
PS C:\» dir /s -~

PS C:\> dir -Recurse

Directory: C:\

Mode LastWriteTime Length Name

d--- 7/26/2012 12:33 AM Perflogs

d-r- 4/9/2013 11:82 PM Program Files

d-r- 4/9/2013 11:03 PM Program Files (x86)
d--- 3/5/2013 12:43 PM reports

image075.png

Puede ejecutar la ayuda para el comando dir (o cualquier otro alias)
para ver el nombre del comando real y su sintaxis adecuada.

BwN -

Propiedades vs. Valores

$names = Get-ADComputer -filter * |
Select-Object -Property Name

Get-CimInstance -Class Win32_BIOS -ComputerName $names

;Sabe por qué esto no funcionara? Porque el resultado de Get-
ADComputer es un objeto que tiene propiedades. Usted probable-
mente sabia eso. Pero el resultado de Select-Object es también un
objeto que tiene propiedades. Especificamente, en este caso, es un
objeto “ADComputer “ seleccionado, que tiene una sola propiedad:
Name.

Observe la ayuda del comando Get-CimlInstance. El parametro -
ComputerName acepta objetos de tipo String. Asi lo la ayuda.
Pero un objeto ADComputer no es lo mismo que una cadena. La
propiedad Name que se ha seleccionado contiene cadenas, pero no
es una cadena en si. Esto es una distincién enorme y es mejor no
olvidarse de ello.

Piense en una propiedad como una caja. Esa caja puede contener
cosas, pero es una cosa en y por si misma, también. En este caso,
la caja se denomina Name y contiene cadenas. Pero no se puede
33 . » . ’ .
empujar” toda la caja en algo que soélo estaba esperando Strings.
“Hey, queria un String, no toda la caja”

Ahora piense en un Fax. ;Recuerda esas maquinas? Recibian y
transmitian paginas. Ahora suponga que tiene un sobre lleno de
paginas. No se puede “empujar” el sobre en la maquina de fax
y esperar resultados correctos. En esa analogia, el sobre es una
propiedad, y las paginas dentro de ella son valores. Para lograr
transmitir las paginas primero debe sacarlas del sobre.

W N -

Propiedades vs. Valores 43

Lo que quiere hacer en este caso es extraer las cadenas (Strings) de
la caja, y Select-Object ofrece una manera de hacer eso:

$names = Get-ADComputer -filter * |
Select-Object -ExpandProperty Name

Get-CimInstance -Class Win32_BIOS -ComputerName $names

;Ve la diferencia? -ExpandProperty obtiene sdlo el contenido de
la propiedad especificada, en lugar de devolver un objeto que sélo
tiene esa propiedad. ;Quiere una manera sencilla de probar esto en
el shell? Ejecute este par de comandos:

Get-Service | Select -Property Name | Get-Member
Cet-Service | Select -ExpandProperty Name | Get-Member

N

w

N

w

© 00w N O O »

10

12
13
14

15

Variables Remotas

Cuando utilice PowerShell Remoting, debe recordar que se trata
de dos o mas equipos que no comparten informaciéon entre ellos.
Por ejemplo, el siguiente comando funcionara correctamente en su
equipo local:

$f1 = 'D:\Scripts\folder1'

$£2 = 'D:\Scripts\folder2’

Copy-Item -Path $f1 -Recurse -Destination $f2 -Verbose -F\
orce

Sin embargo, si intenta ejecutar el comando Copy-Item en un
equipo remoto, se producira un error:

$£1 "D:\Scripts\folder1"
$£f2 = "D:\Scripts\folder2"

Invoke-Command -ComputerName MemberServer -ScriptBlock {\
Copy-Item -Path $f1 - Recurse -Destination $f2 -Verbose -\
Force}

Cannot bind argument to parameter 'Path' because it is n\
ull.

+ CategoryInfo : InvalidData: [:] [Copy-Item], Parameter\
BindingValidationException

+ FullyQualifiedErrorId : ParameterArgumentValidationErr\
orNullNotAllowed,Microsoft.PowerShell.Commands.CopyItemCo\
mmand

+ PSComputerName : MemberServer

El problema es que $f1y $f2 se definen en su equipo local, pero no
en el equipo remoto. El bloque de secuencia de comandos enviado

> O s W N

O O s W N

Variables Remotas 45

a Invoke-Command no se evalia en su computadora, simplemente
se pasa como esta (as-is).

Hay dos posibles soluciones. La primera es simplemente incluir las
definiciones de variables en el bloque de secuencia de comandos:

Invoke-Command -ComputerName MemberServer -ScriptBlock {
$f1 = "D:\Scripts\folder1"

$f2 = "D:\Scripts\folder2"

Copy-Item -Path $f1 -Recurse -Destination $f2 -Verbose -\
Force

}

Otra técnica, disponible en PowerShell v3 y posterior, es utilizar
el designador de variable $using. PowerShell pre-escanea el bloque
de secuencia de comandos y pasara los valores de la(s) variable(s)
local(es) al (los) equipo(s) remoto(s).

$£1 "D:\Scripts\folder1"
$£f2 = "D:\Scripts\folder2"

Invoke-Command -ComputerName MemberServer -ScriptBlock ({
Copy-Item -Path $using:f1 -Recurse -Destination $using:f\
2 -Verbose -Force}

El uso de la sintaxis especial $using: es lo que hace que esta version
del comando funcione.

New-Object PSObject vs.
PSCustomObject

A menudo hay cierta confusion en lo que respecta a las diferencias
entre el uso de nuevo objeto PSObject y PSCustomObject, asi como
el funcionamiento de ambos.

Cualquiera de los dos se puede utilizar para formar un conjunto
de valores en una colecciéon de objetos PowerShell y agrupar-
los en una sola entidad. Asimismo, ambas formas daran sali-
da a los datos como NoteProperties en los tipos de objeto Sys-
tem.Management. Automation.PSCustomObject. Asi que jcual es la
gran diferencia entre ellos?

Para empezar, el Cmdlet New-Object fue introducido en PowerS-
hell v1.0 y ha pasado por una serie de cambios, mientras que el uso
de la clase PSCustomObject vino mas tarde en la version 3.0. Para
los sistemas que utilicen PowerShell v2.0 o anterior, se debe utilizar
New-Object. La diferencia clave entre la version 2.0 y la version 1.0
desde un punto de vista administrativo es que 2.0 permite el uso de
tablas hash. Por ejemplo:

New-Object PSObject en v1.0

0o N O O b W N =

10
11
12
13
14
15
16
17
18
19

New-Object PSObject vs. PSCustomObject 47

$Path = "c:\scripts"
$Directory = Get-Acl -Path $Path

ForEach ($Dir in $Directory.Access){

$DirPermissions = New-Object -TypeName PSObject

$DirPermissions | Add-Member -MemberType NoteProperty\
-Name Path -Value $Path

$DirPermissions | Add-Member -MemberType NoteProperty\
-Name Owner -Value $Directory.Owner

$DirPermissions | Add-Member -MemberType NoteProperty\
-Name Group -Value $Dir.IdentityReference

$DirPermissions | Add-Member -MemberType NoteProperty\
-Name AccessType -Value $Dir.AccessControlType

$DirPermissions | Add-Member -MemberType NoteProperty\
-Name Rights -Value $Dir.FileSystemRights

$DirPermissions

Con el método New-Object en PowerShell v1.0, tiene que declarar
el tipo de objeto que desea crear y agregar miembros a la coleccion
en comandos de forma individual. Sin embargo en la versién 2.0
con la capacidad de utilizar hashtables:

New-Object en PS 2.0

0o N O O b W N =

11
12
13
14
15
16
17
18

New-Object PSObject vs. PSCustomObject 48

$Path = "c:\scripts"
$Directory = Get-Acl -Path $Path

ForEach ($Dir in $Directory.Access){

$DirPermissions = New-Object -TypeName PSObject -Prop\
erty @{

'"Path' = $Path

'"Owner' = $Directory.Owner

'Group' = $Dir.IdentityReference
'AccessType' = $Dir.AccessControlType
'Rights' = $Dir.FileSystemRights

$DirPermissions

Aqui esta la salida:

e w1 g

8 'Path" = $Path

] 'owner’ iDirectory.Owner

10 ‘Group’ iDir. Identityreference

11 'AccessType" SDir. AccesscontrolType

12 'Rights’ ibir. FileSystemRights

: BUILTIN inistrators
Group : BUILTIN

Note theorder of output vs. order in the hash table

Esta forma nos ahorra una gran cantidad de escritura al mismo
tiempo que permite un script mas limpio. Sin embargo ambos mé-
todos tienen el mismo problema. La salida no esta necesariamente
en el mismo orden en que se ha declarado, asi que si esta buscando
un formato determinado, puede que no funcione. PSCustomObject
corrigié esto cuando fue introducido en la version 3.0.

o N O O b W N =~

11
12

New-Object PSObject vs. PSCustomObject 49

PSCustomObject en PowerShell v3.0

$Path = "c:\scripts"
$Directory = Get-Acl -Path $Path

ForEach ($Dir in $Directory.Access){
[PSCustomOb ject]@{
Path = $Path
Owner = $Directory.Owner
Group = $Dir.IdentityReference
AccessType = $Dir.AccessControlType
Rights = $Dir.FileSystemRights
}#EndPSCustomOb ject

}#EndForEach

Fortach (3Dir in 3Directory.Access}{
pSCustomobject]@f

R YU

Path fPath

Owner SDirectory.Owner
1 Group SDir.IdentityReference
a AccessType = 3D7r. AccessControlType
10 Rights ibir.FileSystemRights

ki
1z | }#EndForEach

nistrators

Note the order of the properties

Como se puede observar, la salida siempre coincidira con lo que se
ha definido en el Hashtable. Otra ventaja de usar PSCustomObject
es que la enumeracion de los datos se hace mas rapidamente que
su contraparte New-Object. Lo Gnico que debe tener en cuenta
con PSCustomObject es que no funcionara con los sistemas que
ejecutan PowerShell v2.0 o anteriores.

Ejecutando algo como el
“usuario actualmente
conectado”

Una solicitud de PowerShell comin es poder iniciar de forma
remota algiin cédigo que se ejecuta bajo la cuenta del usuario que
esta conectado actualmente a una maquina remota o el usuario que
mas a menudo utiliza la maquina remota.

Esto es realmente dificil, y generalmente impractico.

Primero, entender que Windows es inherentemente un sistema
operativo multiusuario. No tiene un concepto para “el usuario
actualmente conectado” porque puede haber muchos usuarios co-
nectados. Aunque las versiones cliente de Windows no permiten
técnicamente multiples inicios de sesién interactivos, el sistema
operativo base actiia como si pudiera.

Segundo, como un sistema operativo multiusuario, el trabajo de
Windows es mantener un estricto aislamiento alrededor del espacio
de proceso de cada usuario. Usted no quiere que un usuario salte en
el espacio de trabajo a otro, porque eso seria un gran riesgo para la
seguridad y la estabilidad. Es por esto que no puede iniciar sesién
como un usuario y ejecutar algo que otro usuario puede “ver”.

Por ejemplo, una version comun de esta solicitud es para que un
administrador de manera remota abra el Bloc de Notas como una
ventana (pop up) en frente de los usuarios, para presentar de forma
remota mensajes importantes. Por desgracia, el Bloc de Notas no
es una buena aplicaciéon de mensajeria instantanea y Windows no
hace que esto sea facil. Si lo piensa con mas detalle, ;se imagina que
podria hacer el malware si esto fuera posible? Seria horrible!

Ejecutando algo como el “usuario actualmente conectado” 51

Con muy pocas excepciones, realmente no se puede ejecutar algo
“como otro usuario en una maquina remota”. Una excepcion es si
conoce el nombre de usuario y la contrasefia del usuario remoto.
Si lo conoce, puede iniciar una sesiéon de acceso remoto en la
computadora mediante sus credenciales y, potencialmente, ejecutar
aplicaciones en el espacio de proceso de ese usuario. Aunque eso es
muy poco practico en la mayoria de situaciones.

Comandos que necesitan
un perfil de usuario
pueden fallar cuando se
ejecuta de forma remota

Muchos comandos actian utilizando el perfil del usuario que ha
iniciado sesioén actualmente. Estos comandos a veces pueden fallar
cuando los ejecuta a través de una conexién remota, como con
Invoke-Command o Enter-PSSession. Por ejemplo, muchos insta-
ladores predeterminan la creacién de iconos por usuario y pueden
fallar cuando se ejecutan remotamente, incluso cuando se ejecutan
en un modo de “instalacion silenciosa”.

El problema es que, cuando se conecta a un equipo remoto, no
esta generando un entorno de usuario completo. Técnicamente
no esta “conectandose” a la maquina en el sentido usual. Se esta
autenticando, si, pero de la misma manera que si se autenticara a
una carpeta compartida. Su conexién remota no tiene un perfil de
usuario completo, por lo que cualquier cosa que se espere puede
obtener errores y fallar (incluso si no muestran esos errores).

No hay solucion facil para esto, por desgracia.

0 N O O b W N =~

11
12
13
14
15
16
17

Escribiendo en SQL
Server

Guardar datos en un servidor SQL - frente a Excel o algun otro
formato - es muy facil.

Suponga que tiene SQL Server Express instalado localmente. Ha
creado una base de datos llamada mydb y una tabla llamada
mytable. La tabla tiene dos columnas ColumnA y ColumnB, y
ambas son campos de cadenas (varchar). El archivo de base de
datos estd ubicado en c:\myfiles\mydb.mdf. Esto es muy fécil de
configurar en un GUI si descarga la version de SQL Server Express
“con herramientas”. Es gratis!

$cola = "Data to go into ColumnA"

$colb = "Data to go into ColumnB"

$connection_string = "Server=.\SQLExpress;AttachDbFilenam\
e=C:\Myfiles\mydb.mdf;Database=mydb; Trusted_Connection=Ye\
s;"

$connection = New-Object System.Data.SqlClient.SqlConnect\
ion

$connection.ConnectionString = $connection_string
$connection.Open()

$command = New-Object System.Data.SqlClient.SqlCommand

$command.Connection = $connection

$sql = "INSERT INTO MYTABLE (ColumnA,ColumnB) VALUES('$co\
la', '$colb')"
$command.CommandText = $sql

$command . ExecuteNonQuery ()

18
19

0 N O O b W N =

11
12
13
14
15
16
17
18
19
20
21

Escribiendo en SQL Server 54

$connection.close()

Puede insertar una gran cantidad de valores simplemente haciendo
un bucle a través de las tres lineas que definen la sentencia SQL y
ejecutarla:

$cola = @('Valuel', 'Value2', 'Value3')
$colb = @('Stuff1','Stuff2', 'Stuff3"')

$connection_string = "Server=.\SQLExpress;AttachDbFilenam\
e=C:\Myfiles\mydb.mdf;Database=mydb; Trusted_Connection=Ye\
s;"

$connection = New-Object System.Data.SqlClient.SqlConnect\
ion

$connection.ConnectionString = $connection_string
$connection.Open()

$command = New-Object System.Data.SqlClient.SqlCommand

$command.Connection = $connection

for ($i=0; $i -1t 3; $i++) {

$sql = "INSERT INTO MYTABLE (ColumnA,ColumnB) VALUES('$\
($cola[$i]) ", '$($colb/$i])")"

$command.CommandText = $sqgl

$command . ExecuteNonQuery ()

$connection.close()

Es igual de facil ejecutar consultas de actualizacion o eliminacion.
Las consultas de seleccion usan ExecuteReader() en lugar de Execu-
teNonQuery() y devuelven un objeto SqlDataReader que se puede
utilizar para leer datos de cada columna o avanzar a la siguiente
fila en el conjunto de resultados.

Obtener tamanos de
carpetas

La gente suele preguntar como usar PowerShell para obtener el
tamafo de una carpeta. Por ejemplo la carpeta de documentos de
un usuario.

El problema es que las carpetas no tienen un tamarnio. Windows
literalmente no rastrea el tamafio de los objetos de carpeta. El
tamario de una carpeta es simplemente la suma de los tamarios de
los archivos en dicha carpeta, lo que significa que para obtener el
tamarfio de la carpeta se tiene que sumar el tamafo de los archivos.

Get-ChildItem -Path <whatever> -File -Recurse |

Measure-Object -Property Length -Sum

Veamos un ejemplo. Primero, es necesario obtener todos los archi-
vos, y luego sumar sus propiedades de tamarfio.

	Tabla de contenidos
	El gran libro de ``trucos'' de PowerShell
	Formato a la derecha
	¿Dónde está el comando <SuNombreAqui>? He instalado la última versión de PowerShell y no puedo encontrarlo!
	PowerShell.exe no es PowerShell
	Acumulando la salida en una función
	ForEach vs ForEach vs ForEach
	Finalización con Tab
	-Contains y -Like son diferentes
	No puede tener lo que no se tiene
	-Filter y la diversidad de valores
	No todo produce una salida
	Una página HTML a la vez, por favor
	[Sangriento
	No+Concatene+Strings
	$ no forma parte del nombre de la variable
	Utilizar la canalización (pipeline), no una matriz
	Backtick, Grave Accent, Escape
	Una multitud no es un individuo
	Comandos de la vieja escuela
	Propiedades vs. Valores
	Variables Remotas
	New-Object PSObject vs. PSCustomObject
	New-Object PSObject en v1.0
	New-Object en PS 2.0
	PSCustomObject en PowerShell v3.0

	Ejecutando algo como el ``usuario actualmente conectado''
	Comandos que necesitan un perfil de usuario pueden fallar cuando se ejecuta de forma remota
	Escribiendo en SQL Server
	Obtener tamaños de carpetas

