El gran libro
de manejo de errores

en PowerShell

Dave Wyatt
Principal Author

0
¥ o
@ THE .
. ®
S

PowerShell.org

The Big Book of PowerShell
Error Handling (Spanish)

The DevOps Collective, Inc.

Este libro esta a la venta en http://leanpub.com/big-book-of-
powershell-error-handling-spanish

Esta version se public6 en 2018-10-28

)

Leanpub

Este es un libro de Leanpub. Leanpub anima a los autores y
publicadoras con el proceso de publicacion. Lean Publishing es el
acto de publicar un libro en progreso usando herramientas
sencillas y muchas iteraciones para obtener feedback del lector
hasta conseguir tener el libro adecuado.

© 2018 The DevOps Collective, Inc.

http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/big-book-of-powershell-error-handling-spanish
http://leanpub.com/
http://leanpub.com/manifesto

También por The DevOps
Collective, Inc.

Creating HTML Reports in Windows PowerShell

A Unix Person’s Guide to PowerShell

The Big Book of PowerShell Error Handling

DevOps: The Ops Perspective

Ditch Excel: Making Historical and Trend Reports in PowerShell
Secrets of PowerShell Remoting

The Big Book of PowerShell Gotchas

The Monad Manifesto, Annotated

Why PowerShell?

Windows PowerShell Networking Guide

The PowerShell + DevOps Global Summit Manual for Summiteers
Why PowerShell? (Spanish)

Secrets of PowerShell Remoting (Spanish)

DevOps: The Ops Perspective (Spanish)

The Monad Manifesto: Annotated (Spanish)

Creating HTML Reports in PowerShell (Spanish)

The Big Book of PowerShell Gotchas (Spanish)

DevOps: WTE?

PowerShell.org: History of a Community

http://leanpub.com/u/devopscollective
http://leanpub.com/u/devopscollective
http://leanpub.com/creatinghtmlreportsinwindowspowershell
http://leanpub.com/aunixpersonsguidetopowershell
http://leanpub.com/thebigbookofpowershellerrorhandling
http://leanpub.com/devopstheopsperspective
http://leanpub.com/ditchexcelmakinghistoricalandtrendreportsinpowershell
http://leanpub.com/secretsofpowershellremoting
http://leanpub.com/thebigbookofpowershellgotchas
http://leanpub.com/themonadmanifestoannotated
http://leanpub.com/whypowershell
http://leanpub.com/windowspowershellnetworkingguide
http://leanpub.com/summiteermanual
http://leanpub.com/why-powershell-spanish
http://leanpub.com/secrets-of-powershell-remoting-spanish
http://leanpub.com/devops-the-ops-perspective-spanish
http://leanpub.com/monad-manifesto-annotated-spanish
http://leanpub.com/creating-html-reports-in-powershell-spanish
http://leanpub.com/big-book-of-powershell-gotchas-spanish
http://leanpub.com/devopswtf
http://leanpub.com/powershellorghistoryofacommunity

Indice general

El gran libro de manejo de errores en PowerShell 1

Introducciéon L oL
;Qué es el manejo de errores? 3
;Coémo esta organizado este libro? 3

Fundamentos para el manejo de errores en PowerShell . 5
ErrorRecords y Exceptions 5
Terminating versus Non-Terminating Errors 6

Controlando el comportamiento de los errores

Lavariable $Error, 9
ErrorVariable 10
$MaximumErrorCount 11
ErrorAction y $ErrorActionPreference 11
Try/Catch/Finally 13
Trap . . . oo 16
La variable $SLASTEXITCODE 18
Lavariable $? 19
Resumen 20

Anéilisis de los resultados de las pruebas de manejo de

€ITOTES i ittt it e 22
Interceptando errores Non-Terminating 24
Interceptando errores Terminating 24

Efectos de establecer ErrorAction o $ErrorActionPreference 26

INDICE GENERAL

Coémo se comporta PowerShell cuando se encuentra
errores Terminating no controlados
Conclusiones

Poniéndolo todo junto
Supresién de errores (no hagaesto)
Uso de la variable $? (dselo bajo su propio riesgo)
Determinar qué tipos de errores puede producir un co-

mando
Tratamiento de errores Terminating
Tratamiento de errores Non-Terminating
Llamando a programas externos

El gran libro de manejo
de errores en PowerShell

Escrito por Dave Wyatt

A pesar del titulo, este es en realidad un pequefio y conciso libro
diseflado para ayudarle a entender como PowerShell genera y
maneja errores. Intentara ayudarle a crear el mejor manejo posible
de errores para sus propios scripts y funciones, en tan solo unas
pocas lecciones.

Esta guia se publica bajo la licencia Creative Commons Attribution-
NoDerivs 3.0 Unported. Los autores le animan a redistribuir este
archivo lo més ampliamente posible, pero le solicitan que no
modifique el documento original.

Obteniendo el cédigo El cédigo de ejemplo, junto con un archivo
que documenta nombres de clases de excepcion conocidos, se
puede encontrar en https://github.com/devops-collective-inc/big-
book-of-powershell-error-handling/tree/master/attachments.

;Ha sido util este libro? El (los) autor (es) le pide (n) que haga
una donacién deducible de impuestos (en los EE.UU., consulte sus
leyes si vive en otro lugar) de cualquier cantidad a The DevOps
Collective' para apoyar su trabajo.

'https://devopscollective.org/donate/

https://devopscollective.org/donate/
https://devopscollective.org/donate/
https://devopscollective.org/donate/

El gran libro de manejo de errores en PowerShell 2

** Revise las actualizaciones! ** Nuestros ebooks se actualizan a
menudo con contenido nuevo y corregido. Los hacemos disponibles
de tres maneras:

+ Nuestra rama principal GitHub organization® con un re-
positorio para cada libro. Visite https://github.com/devops-
collective-inc/

+ Nuestra GitBook page’, donde puede navegar por los libros
en linea, o descargarlos en formato PDF, EPUB o MOBI. Uti-
lizando el lector en linea, puede saltar a capitulos especificos.
Visite https://www.gitbook.com/@devopscollective

+ En LeanPub*, donde se pueden descargar como PDF, EPUB, o
MOBI (login requerido), y “comprar” los libros haciendo una
donacion a DevOps. También puede elegir recibir notificacio-
nes de actualizaciones. Visite https://leanpub.com/u/devopscollective

GitBook y LeanPub generan la salida del formato PDF ligeramente
diferente, por lo que puede elegir el que prefiera. LeanPub también
le puede notificar cada vez que liberamos alguna actualizacion.
Nuestro repositorio de GitHub es el principal; los repositorios
en otros sitios suelen ser solo espejos utilizados para el proceso
de publicacion. GitBook normalmente contendrd nuestra tltima
version, incluyendo algunos bits no terminados; LeanPub siempre
contiene la mas reciente “publicacién liberada” de cualquier libro.

*https://github.com/devops-collective-inc
*https://www.gitbook.com/@devopscollective
“https://leanpub.com/u/devopscollective

https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective
https://github.com/devops-collective-inc
https://www.gitbook.com/@devopscollective
https://leanpub.com/u/devopscollective

Introduccion

El manejo de errores en Windows PowerShell puede ser un tema
complejo. El objetivo de este libro -que afortunadamente no es tan
“grande” como su nombre lo indica- es ayudar a aclarar algo de
esa complejidad y ayudarle a hacer un trabajo mejor y mas conciso
para manejar errores en sus scripts.

¢Qué es el manejo de errores?

Cuando decimos que un script “maneja” un error, significa que
reacciona al error haciendo algo distinto del comportamiento pre-
determinado. En muchos lenguajes de programacion y de secuen-
cias de comandos, el comportamiento predeterminado es simple-
mente mostrar un mensaje de error y fallar inmediatamente. En
PowerShell, también se emitird un mensaje de error, pero a menudo
se seguira ejecutando el cddigo después de que se produzca el error.

El manejo de errores requiere que el autor de la secuencia de
comandos anticipe donde pueden ocurrir y que escriba cédigo para
interceptar y analizar dicho errores cuando ocurren. Esto puede
ser un tema complejo y a veces frustrante, particularmente en
PowerShell. El propoésito de este libro es mostrarle las herramientas
de manejo de errores que PowerShell pone a su disposicion y la
mejor forma de usarlas.

¢Como esta organizado este libro?

Después de la introduccion, el libro se divide en cuatro secciones.
Las dos primeras secciones estan escritas asumiendo que usted

Introduccién 4

no sabe nada sobre el manejo de errores de PowerShell, y para
proporcionar un sélido contexto sobre el tema. Sin embargo, no hay
nada nuevo en estas secciones que no esté cubierto por los archivos
de ayuda de PowerShell. Si est4 bastante familiarizado con el objeto
ErrorRecord y los diversos parametros / variables / declaraciones
relacionados con la generacion de errores, de informes y de manejo,
puede pasar directamente a las secciones 3 y 4.

La seccion 3 es una mirada objetiva a las caracteristicas de manejo
de errores de PowerShell, basada en los resultados de algtin codigo
de prueba que escribi para entender su funcionamiento. La idea
era determinar si existian diferencias funcionales entre enfoques
similares para manejar errores ($Error versus ErrorVariable, el uso
onode $_enunbloque catch, etc.), lo que genero fuertes opiniones,
durante y después los Scripting Games en 2013.

Estas pruebas revelan un par de dificultades, en particular, al hacer
uso de ErrorVariable.

La seccion 4 resume las cosas dandole una visiéon més orientada a
las tareas de manejo de errores, teniendo en cuenta los hallazgos de
la seccidn 3.

Fundamentos para el
manejo de errores en
PowerShell

Empecemos por revisar algunos de los conceptos basicos.

ErrorRecords y Exceptions

En NET Framework, sobre el que se construye PowerShell, el
reporte de errores se realiza en gran medida lanzando excepciones.
Las excepciones son objetos .NET que tienen como tipo base
System.Exception®. Estos objetos de excepcion contienen suficiente
informacion para comunicar todos los detalles del error a una
aplicaciéon de .NET Framework (el tipo de error que ocurrid, un
seguimiento de pila de llamadas del método que condujo al error,
etc.) que por si solo no es suficiente informacién para proporcionar
a un script de PowerShell. Por eso, PowerShell tiene su propio
seguimiento de la pila de scripts y de llamadas de funcién de las
que .NET Framework no sabe nada. También es importante saber
qué objetos generaron errores, ya que una unica sentencia o tuberia
(pipeline) es capaz de producir multiples errores.

Por estas razones, PowerShell expone el objeto ErrorRecord. Erro-
rRecord contienen una excepciéon .NET, junto con varias otras
piezas de informacion especifica de PowerShell. Por ejemplo, la
figura 1.1 muestra como acceder a las propiedades TargetObject,
Categorylnfo e InvocationInfo de un objeto ErrorRecord; que pro-

*http://msdn.microsoft.com/en-us/library/system.exception(v=vs.110).aspx

http://msdn.microsoft.com/en-us/library/system.exception(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.exception(v=vs.110).aspx

Fundamentos para el manejo de errores en PowerShell 6

porcionan informacién util para la logica de manejo de errores de
su script.

ce\temp> Get-Item

1. TargetObject

BoundParameters
Inb uments
riptLineNumber
InLine

: Get-Item C

: At Tine:l
+ Get-Ttem
+

i Get-Ttem
: 0

: Internal

urce\temp>

image003.png

Figura 1.1: Algunas de las propiedades mas ttiles del objeto Erro-
rRecord.

Terminating versus
Non-Terminating Errors

PowerShell es un lenguaje extremadamente expresivo. Esto signi-
fica que una sola sentencia o pipeline de cédigo PowerShell puede
realizar el trabajo de cientos, o incluso miles de instrucciones crudas
de CPU. Por ejemplo:

Fundamentos para el manejo de errores en PowerShell 7

Get-Content .\computers.txt | Restart-Computer

Este pequerio script de PowerShell de tan solo 46 caracteres abre
un archivo en disco, detecta automaticamente su codificacion, lee
el texto una linea a la vez, se conecta a cada computadora remota
nombrada en el archivo, se autentica en ese equipo y, si tiene éxito,
reinicia la computadora. Varios de estos pasos pueden encontrar
errores, como en el caso del comando Restart-Computer, que puede
tener éxito para algunos equipos y fallar para otros.

Por esta razon, PowerShell introduce el concepto de un error Non-
Terminating. Un error Non-Terminating es aquel que no impide
que el comando avance y pruebe el siguiente elemento en una
lista de entradas. Por ejemplo, si uno de los equipos del archivo
computers.txt esta desconectado, eso no detendra a PowerShell que
seguira intentando reiniciar el resto de los equipos del archivo.

Por el contrario, un error Terminating es uno que hace que el
script o tuberia (pipeline) falle. Por ejemplo, este comando busca
las direcciones de correo electronico asociadas con las cuentas de
usuario en un Active Directory:

Get-Content .\users.txt |
Get-ADUser -Properties mail |
Select-Object -Property SamAccountName,mail

En este script, si el comando Get-ADUser no puede comunicarse
con el Active Directory, no hay razon para seguir leyendo las lineas
del archivo de texto o intentando procesar registros adicionales, por
lo que se producira un error Terminating. Cuando se encuentra este
error Terminating, todo el script o tuberia (pipeline) es abortado
inmediatamente. Get-Content detendra la lectura y cerrara el ar-
chivo.

Es importante conocer la distincién entre estos tipos de errores,
ya que los scripts utilizaran diferentes técnicas para interceptarlos.

Fundamentos para el manejo de errores en PowerShell 8

Como regla general, la mayoria de los errores producidos por los

Cmdlets no Non-Terminating (con algunas excepciones, aqui y
alla).

Controlando el
comportamiento de los
errores

Esta seccidn muestra brevemente como usar cada una de las decla-
raciones, variables y parametros de PowerShell que estan relacio-
nados con el reporte o manejo de errores.

La variable $Error

$Error es una variable global automatica en PowerShell que siem-
pre contiene un ArrayList de cero o mas objetos ErrorRecord. A
medida que se producen nuevos errores, se agregan al principio de
esta lista, por lo que siempre se puede obtener informacioén sobre el
error mas reciente utilizando $Error[0]. Los errores Terminating y
Non-Terminating se incluiran en esta lista.

Aparte de acceder a los objetos de la lista con la sintaxis de matriz,
hay otras dos tareas comunes que se realizan con la variable $Error:
Se puede comprobar cuantos errores estan actualmente en la lista
utilizando la propiedad $Error.Count y puede eliminar todos los
errores de la lista con el método $Error.Clear(). Por ejemplo:

Controlando el comportamiento de los errores 10

ey Windows PowerShell - O

> Serror

> Get-Ttem

image004.png

Figura 2.1: Utilizando $Error para acceder a la informacién de error,
verificar el recuento y borrar la lista.

Si estd planeando hacer uso de la variable $Error en sus scripts,
tenga en cuenta que puede contener informacion sobre errores
que ocurrieron en la sesién actual de PowerShell, pero antes de
que se iniciara la ejecucién de su secuencia de comandos. Algunas
personas consideran una mala practica borrar la variable $Error
dentro de un script. Como se trata de una variable global para
la sesién de PowerShell, la persona que llamé a su secuencia de
comandos podria revisar el contenido de $Error después de que su
comando haya terminado la ejecucion..

ErrorVariable

El parametro comun ErrorVariable proporciona una alternativa
al uso de la colecciéon $Error anterior. A diferencia de $Error,
ErrorVariable sélo contendra los errores que se produjeron desde
el comando que se esta llamando, en lugar de tener potencialmente
errores de otras partes en la sesion PowerShell. Esto también evita
tener que borrar el contenido de $Error (con los problemas que esto
podria ocasionar).

Cuando se utiliza ErrorVariable, si desea anexar a la variable de
error en lugar de sobrescribirla, coloque un signo + delante del

Controlando el comportamiento de los errores 11

nombre de la variable. Tenga en cuenta que no se utiliza un
signo de moneda cuando pasa un nombre de variable al parametro
ErrorVariable, pero si utiliza el signo de moneda mas adelante
cuando comprueba su valor.

La variable asignada al parametro ErrorVariable nunca sera nula.
Si no se produjeron errores, contendra un objeto ArrayList con un
recuento de 0, como se ve en la figura 2.2:

TR W W www ww — W — —_— W | &=
PS C:\> Get—Iten G:\ —ErrorVariable err
Directory:

Mode LastWriteT ine Length Name

d—hs 11/29,2013 8 PM CiN

PS C:\> $err.GetType) .FullNane
Systen_Collections.ArrayList
B§ G:\> $err.Coun

gem ei\doos\notexist. txt Errorlariable terr —Errorfiction SilentlyGontinue
ount

t find path * txt? it does not ex

Iten]. ItenNotFoundException
+ Fullygual: 1o etItenConmand

PS C:\>

image005.png

Figura 2.2: Demostracion del uso del parametro ErrorVariable.

$MaximumErrorCount

De forma predeterminada, la variable $Error sélo puede contener
un maximo de 256 errores antes de que comience a desechar los ele-
mentos mas antiguos de la lista. Puede ajustar este comportamiento
modificando la variable $MaximumErrorCount.

ErrorActiony
$ErrorActionPreference

Hay varias maneras en las que puede controlar el comportamiento
de PowerShell. Las que probablemente utilizara con mas frecuencia

Controlando el comportamiento de los errores 12

son los parametro ErrorAction y la variable $ErrorActionPreferen-
ce.

El pardmetro ErrorAction se puede pasar a cualquier Cmdlet o
funcién avanzada y puede tener uno de los siguientes valores:
Continue (el valor por defecto), SilentlyContinue, Stop, Inquire,
Ignore (s6lo en PowerShell 3.0 o posterior), y Suspend (sélo para
workflows, pero no se discutira aqui). Este valor afecta el como se
comporta el Cmdlet cuando produce un error Non-Terminating.

« El valor predeterminado Continue provoca que el error se
escriba en la secuencia de errores y se agregue a la variable
$Error. Entonces, el Cmdlet continuara su ejecucion.

« El valor SilentlyContinue sélo agrega el error a la variable
$Error. No escribe el error en la secuencia de errores (por lo
que no se mostrara en la consola).

« El valor Ignore suprime el mensaje de error y no lo agrega a
la variable $Error. Esta opcion se agregd con PowerShell 3.0.

« El valor Stop hace que los errores Non-Terminating se traten
como errores Terminating, deteniendo inmediatamente la
ejecucion del Cmdlet. Esto también permite interceptar estos
errores en una sentencia try / catch o trap, como se describe
mas adelante.

« El valor Inquire provoca que PowerShell pregunte al usuario
si el script debe continuar o no cuando se produce un error.

La variable $ErrorActionPreference se puede utilizar igual que
el parametro ErrorAction, con un par de excepciones: no puede
establecer $ErrorActionPreference en Ignore o Suspend. Ademés,
$ErrorActionPreference afecta su alcance actual ademas de cual-
quier comando secundario que se llame. Esta sutil diferencia tiene
el efecto de permitirle controlar el comportamiento de los errores
producidos por los métodos .NET, u otras causas como cuando
PowerShell se encuentra con un error del tipo “comando no en-
contrado”.

Controlando el comportamiento de los errores 13

La Figura 2.3 muestra los efectos de las tres configuraciones de
ErrorActionPreference mas utilizadas.

=3 Windows PowerShell TS|

File Edit View Tools Debug Add-ons Help
U el 4 0 » P & B w® 8| BoD| B ®
| ErrorActionPreference.psl X

1 function Test-errorActionPreference ([string] $Preference)

.

Write-Host 7
Write-Host "Preference:

SErrorActionPre e
Write-HoSt Statement before the error.’
GeT-Item C:'\Does\NOT\EXIST, TXT

Write-Host Statement after the error.’

Test-ErroractionPreference 'Continue’
15 Test-ErrorActionPreference 'silentlyContinue’
16 Test-ErrorActionPreference 'stop’

SkyDrive\Documents\Powershell.0rg\Powershell Error Handling\Cod: ers\pave\skyDrive\Documents\Powershell.org

rence: Continue
ment before the error.

statement after the error.

Preference: SilentlyContinue
Statement before the error.
Statement after the error.

Preference: stop
Statement before the error.

PS Ci\Users\Dave\skyorive\Dacuments\Powershell.org\Powershell Error Handling\Code>

image006.png

Figura 2.3: Comportamiento de $ErrorActionPreference

Try/Catch/Finally

Las sentencias Try/ Catch/ Finally, agregadas en PowerShell 2.0,
son la forma preferida de manejar los errores Terminating. No se
pueden utilizar para manejar errores Non-Terminating, a menos
que fuerce esos errores a convertirse en errores Terminating con
ErrorAction o $ErrorActionPreference establecido en Stop.

Para usar Try/Catch/ Finally, comience con la palabra clave “Try”
seguida de un solo bloque de secuencia de comandos de PowerShell.
Después del bloque Try puede haber cualquier niimero de bloques

Controlando el comportamiento de los errores 14

Catch y cero o un bloque Finally. Debe haber un minimo de un
bloque Catch o un bloque Finally. Un bloque Try no puede ser
utilizado por si mismo, debe tener al menos un bloque Catch.

El c6digo dentro del bloque Try se ejecuta hasta que se completa o se
produce un error Terminating. Si se produce un error Terminating,
se detiene la ejecucion del codigo en el bloque Try. PowerShell
escribe el error Terminating en la lista $Error y busca un bloque
Catch coincidente (ya sea en el ambito actual o en cualquier ambito
superior). Si no existe un bloque Catch para manejar el error,
PowerShell escribe el error en la secuencia Error, lo mismo que
habria hecho si el error hubiera ocurrido fuera de un bloque Try.

Los bloques Catch se pueden escribir para capturar sélo tipos
especificos de excepciones, o para capturar todos los errores Termi-
nating. Si define varios bloques de captura para diferentes tipos de
excepciones, asegirese de colocar los bloques mas especificos en la
parte superior de la lista. Las busquedas de PowerShell analizan los
bloques de arriba abajo, y se detienen tan pronto como encuentran
la primera coincidencia.

Si se incluye un bloque Finally, ese codigo se ejecuta después de
que los bloques Try y Catch estén completos (se hayan ejecutado),
independientemente de si se ha producido o no un error. Esto esta
destinado principalmente a realizar una limpieza de los recursos
(liberar memoria, llamar a métodos Close () o Dispose (), etc.)

La Figura 2.4 muestra el uso de un bloque Try/Catch/Finally:

Controlando el comportamiento de los errores 15

TryCatchFinally.psl X

1 try

2 & . .

3 ftestvariable "This is a test.’

4

5 Write-Host 'Statement before the error.’

7 System.I0.File Readal1Text('C:\does' not exist.txt"')
8

9 Write-Host 'Statement after the error.’

10

11 catch [System.I0.I0Exception

12 =

13 Write-Host '"An IOException was caught.’

14 Write-Host "Exception type: $({%_.Exception.GetType().FullName)"
15

16 catch

17 =4)

18 Write-Host 'Some other type of error was caught.'
19 T

20 finally

21 &

22 ftestvariable "The finally block was executed.’
23

24

25 Write-Host " S$testVariable = '$testVariable’.”

26

P5 C:\Users'\dwyatt> “Sour ce',PowerShell\ErrorHandling\TryCatchFinally.psl
Statement before the error.

An IOException was caught.

Exception type: em. I0. DirectoryNotFoundException

$testVariable = "The finally block was executed.’.

PS5 C:\Users'dwyatt>

image007.png
Figura 2.4: Ejemplo del uso de Try/Catch/Finally.

Observe que el texto “Statement after the error” nunca se muestra,
porque se produjo un error Terminating en la linea anterior. Dado
que el error se produjo por una excepcion IOException, se ejecutd
ese bloque Catch, en lugar del bloque general “catch-all” que
aparece al final. Después, el bloque Finally se ejecuta, cambiando
el valor de $testVariable.

Fijese también que mientras el bloque Catch especificaba un ti-
po [System.IO.IOException], el tipo de excepcion real fue [Sys-
tem.IO.DirectoryNotFoundException]. Esto funciona porque Di-
rectoryNotFoundException hereda de IOException, de la misma
manera que todas las excepciones comparten el mismo tipo base
[System.Exception]. Puede ver esto en la figura 2.5:

Controlando el comportamiento de los errores 16

Object System.IO.DirectoryNotFoundException
em. I0. IOException]

ectoryMotFoundException System. I0. IOException

image008.png

Figura 2.5: Mostrando que IOException es el tipo base para Direc-
toryNotFoundException.

Trap

Las sentencias Trap fueron el método para manejar los errores
Terminating en PowerShell 1.0. Al igual que con Try/Catch/Finally,
la instruccién Trap no tiene ningun efecto en los errores Non-
Terminating.

Trap es un poco incémodo de usar, ya que se aplica a todo el ambito
donde se define (y los &mbitos hijos también), en lugar de tener la
logica de manejo de errores cerca del cédigo que podria producir
el error como cuando se utiliza Try/Catch/Finally. Para aquellos
de ustedes familiarizados con Visual Basic, Trap es parecido a “On
Error Goto”. Por eso, las sentencias Trap no ven mucho uso en los
scripts de PowerShell modernos, y no los inclui en los scripts de
prueba ni en el analisis de la Seccion 3 de este libro.

En aras de mantener la integridad, he aqui un ejemplo de como usar
Trap:

Controlando el comportamiento de los errores 17

Trap.psl X
1 trap [System.I0.IOException
2 @i
Write-Host 'An IOException was trapped.’
break
¥
7 trap
8 mf .
9 Write-Host 'Some other type of error was trapped.’
10 break
13 Write-Host Statement before the error.®

15 System.I0.File] : :ReadAl1Text ('C:\does\not\exist. txt')

17 Write-Host 'Statement after the error.’

rorHandling\Trap. ps1

nt e
ception was tra

PS C:\Users\dwyatt>

image009.png
Figura 2.6: Uso de la sentencia Trap

Como puede ver, los bloques Trap se definen de la misma forma
que los bloques Catch, especificando opcionalmente un tipo Ex-
ception. Los bloques Trap pueden terminar opcionalmente con una
instruccién Break o Continue. Si no se utiliza ninguno de estos, el
error se escribe en la secuencia Error (Error Stream) y el bloque
de secuencia de comandos actual continta con la siguiente linea
después del error. Si utiliza Break, como se ve en la figura 2.5, el
error se escribe en la secuencia Error (Error Stream) y el resto del
bloque de secuencia de comandos actual no se ejecuta. Si utiliza
Continue, el error no se escribe en la secuencia de errores y el
bloque de secuencia de comandos contintia la ejecucion con la
siguiente instruccion.

Controlando el comportamiento de los errores 18

La variable $SLASTEXITCODE

Cuando llama a un programa ejecutable externo en lugar de un
Cmdlet, un Script o una funcion de PowerShell, la variable SLASTE-
XITCODE contiene automaticamente el cédigo de salida de dicho
proceso. La mayoria de los procesos utilizan por convencion un
cddigo de salida con valor cero cuando el proceso finaliza con éxito
y un valor diferente a cero si se produce un error, pero esto no esta
garantizado. Depende del desarrollador del ejecutable determinar
qué significan sus codigos de salida.

Tenga en cuenta que la variable SLASTEXITCODE solo se establece
cuando llama a un ejecutable directamente o a través del operador
de llamadas de PowerShell (&) o del Cmdlet Invoke-Expression.
Si utiliza otro método, como Start-Process o WMI para iniciar
el ejecutable, estos tienen sus propias maneras de comunicar su
codigo de salida, por lo que no se afectara el valor actual de
$LASTEXITCODE.

d e C i
Ser1al Numbe

Directory of c:h,

[2009 04:42 PM
1 Fs

C:'> ping.exe 10.0.0.2 -n 1

Pinging 10.0.0.2 with 32 bytes of data:
Request timed out.

s for 10.0.0.2:)
nt = 1, Received = 0, Lost = 1 (100% 1
ASTEXITCODE

image010.png

Figura 2.7: Uso de $ LASTEXITCODE

Controlando el comportamiento de los errores 19

La variable $?

La variable $? es un valor booleano que se establece automatica-
mente después de cada instruccién PowerShell o tuberia (pipeline)
finaliza la ejecucion. Estard establecida en True si el comando
anterior se ha ejecutado correctamente o en False si se produjo
un error. Si el comando anterior era una llamada a un exe nativo,
$7 se establecera en True si la variable $ LASTEXITCODE es
igual a cero, de lo contrario, False. Cuando el comando anterior
era una sentencia de PowerShell, $? Se establecerd en False si
se han producido errores (incluso si ErrorAction se establecié en
SilentlyContinue o Ignore).

Sélo tenga en cuenta que el valor de esta variable se restablece des-
pués de cada instruccion. Debe comprobar su valor inmediatamente
después del comando que le interesa o se sobrescribira (probable-
mente en True). La Figura 2.8 muestra este comportamiento. La
primera vez $? se establece en False, porque el Get-Item encontré6
un error. La segunda vez $? Se comprobé y se establecié en True,
porque el comando anterior finalizo correctamente. En este caso,
el comando anterior fue “$?” cuando se visualizé el valor de la
variable.

Get-Item c:‘does'notiexist.txt -ErrorAction Ignore
57

57

image011.png
Figura 2.8: Demostracion del comportamiento de la variable $?

La variable $? no da ningun detalle sobre el error que ocurrio.
Simplemente una bandera que indica que algo salié mal. En el
caso de llamar a programas ejecutables, debe asegurarse de que
devuelven un cédigo de salida de 0 para indicar una operacién
exitosa y un valor distinto de cero para indicar un error antes de

Controlando el comportamiento de los errores 20

poder confiar en el contenido de $?.

Resumen

Esto cubre todas las técnicas que puede utilizar para controlar,
interceptar o manejar errores en un script de PowerShell. Resu-
miendo:

« Para interceptar y reaccionar ante errores Non-Terminating,
comprueba el contenido de la coleccion automatica $Error
o de la variable que ha especificado como ErrorVariable.
Esto se hace después de que el comando se completa. No
puede reaccionar a un error Non-Terminating antes de que
el Cmdlet o Funcién termine su trabajo.

« Para interceptar y reaccionar a la terminaciéon de errores,
utilice Try/Catch/Finally (preferido) o Trap (antiguo y en
desuso). Ambos le permiten especificar diferentes bloques de
secuencias de comandos para reaccionar a diferentes tipos de
excepciones.

+ Mediante el parametro ErrorAction, puede cambiar la forma
en que los Cmdlets y las funciones de PowerShell informan de
errores Non-Terminating. Establecer a un valor de Stop hace
que se conviertan en errores Terminating y entonces pueden
interceptarse con Try/Catch/Finally o Trap.

« $ErrorActionPreference funciona como ErrorAction, excepto
que también puede afectar al comportamiento de PowerShell
cuando se produce un error Terminating, incluso si esos
errores fueron ocasionados por el llamado a un método .NET
en lugar de un Cmdlet.

« SLASTEXITCODE contiene el codigo de salida de ejecutables
externos. Un codigo de salida cero normalmente indica una
operacion exitosa, pero eso depende del autor del programa.

Controlando el comportamiento de los errores 21

+ $? puede decirle si el comando anterior finalizo de forma
exitosa, aunque debe tener cuidado al utilizarlo con comandos
externos, si no siguen la convencién de usar un codigo de sa-
lida con valor cero como indicador de éxito. También necesita
asegurarse de comprobar el contenido de $? inmediatamente
después del comando que le interesa.

Analisis de los resultados
de las pruebas de manejo
de errores

Como se mencioné en la introduccién, el cédigo de prueba y
sus archivos de salida estan disponibles para su descarga. Vea la
seccion “acerca de”, al comienzo de este libro, para conocer la
ubicacién. Son un montén de datos, no muy bien formateados en un
documento de Word, por lo que no seran incluidos en el contenido
de los archivos en este libro. Si te cuestionas acerca de cualquiera
de los anélisis o conclusiones que he presentado en esta seccion, te
animo a descargar y revisar tanto el cédigo como los archivos de
resultados.

El codigo de prueba consta de dos archivos. El primero es un
moédulo de PowerShell (ErrorHandlingTestCommands.psm1) que
contiene un Cmdlet, una clase NET y varias funciones avanzadas
para producir errores Terminating y Non-Terminating a demanda,
o0 para probar el comportamiento de PowerShell cuando se produ-
cen tales errores. El segundo archivo es el script ErrorTests.ps1, que
importa el modulo, llama a sus comandos con varios parametros
y produce la salida que fue redirigida (incluyendo la secuencia
de errores) a los tres archivos de resultados: ErrorTests.v2.txt,
ErrorTests.v3. Txt y ErrorTests.v4.txt.

Hay tres secciones principales en el script ErrorTests.ps1. La prime-
ra seccion llama a los comandos para generar errores Terminating y
Non-Terminating, y envia informacién sobre el contenido de $_ (en
bloques Catch solamente), $Error y ErrorVariable. Estas pruebas
tenian como objetivo responder a las siguientes preguntas:

Anélisis de los resultados de las pruebas de manejo de errores 23

« Cuando se trata solo de errores Non-Terminating, ;hay di-
ferencias entre como $Error y ErrorVariable presentan la in-
formacién acerca de los errores que ocurrieron? ;Hay alguna
diferencia si los errores provienen de un Cmdlet o funcién
avanzada?

+ Cuando se utiliza un bloque Try/Catch, ;Hay diferencias en el
comportamiento entre la forma en como $Error, ErrorVaria-
ble y $_ proporcionan informacién sobre el error Terminating
que se produjo? ;Hay alguna diferencia si los errores proce-
den de un Cmdlet, funcién avanzada o un método .NET?

+ Cuando se producen errores Non-Terminating ademas del
error, ;Hay diferencias entre como $Error y ErrorVariable
presentan la informacion? jHay alguna diferencia cuando los
errores provienen de un Cmdlet o funcién avanzada?

+ En las pruebas anteriores, ;Hay alguna diferencia entre un
error Terminating que se produjo normalmente, en compa-
raciéon con un error Non-Terminating que se produjo cuan-
do ErrorAction o $ErrorActionPreference se establecieron a
Stop?

La segunda seccion consiste en algunas pruebas para determinar
si ErrorAction o $ ErrorActionPreference afectan a los errores
Terminating, o s6lo a los errores Non-Terminating.

La seccion final prueba como se comporta PowerShell cuando
encuentra errores Terminating no controlados de cada origen po-
sible (un Cmdlet que utiliza PSCmdlet. ThrowTerminatingError(),
una funcién avanzada utiliza la sentencia Throw de PowerShell,
un método NET que genera una excepciéon, un Cmdlet o una
Funcién avanzada que produce errores Non-Terminating cuando
ErrorAction se establece en Stop en un comando desconocido).

Los resultados de todas las pruebas fueron idénticos en PowerShell
3.0 y 4.0. Powershell 2.0 tuvo un par de diferencias, que veremos en
el analisis.

Anélisis de los resultados de las pruebas de manejo de errores 24

Interceptando errores
Non-Terminating

Comencemos hablando de errores Non-Terminating.

ErrorVariable versus $Error

Cuando se trata de errores Non-Terminating, sélo hay una dife-
rencia entre $Error y ErrorVariable: el orden de los errores en las
listas se invierte. El error méas reciente que se produce siempre se
encuentra al principio de la variable $Error (indice cero) mientras
que el error mas reciente se encuentra al final de ErrorVariable.

Interceptando errores Terminating

Esta es la verdadera “carne de la tarea” Trabajar con errores
Terminating, o excepciones.

$

Al principio de un bloque Catch, la variable $_ siempre se refiere
a un objeto ErrorRecord para el error Terminating, independiente-
mente de como se produjo ese error.

$Error

Al principio de un bloque Catch, $Error[0] siempre se refiere a un
objeto ErrorRecord para el error Terminating, independientemente
de como se produjo ese error.

Anélisis de los resultados de las pruebas de manejo de errores 25

ErrorVariable

Aqui, las cosas empiezan a complicarse. Cuando un error Termi-
nating se produce por un Cmdlet o una funcién y esta utilizando
ErrorVariable, la variable contendra algunos elementos inesperados
y los resultados son bastante diferentes en las distintas pruebas
realizadas:

+ Cuando se llama a una funcién avanzada que genera un error
Terminating, ErrorVariable contiene dos objetos de Erro-
rRecord idénticos para el error. Ademas, si estd ejecutando
PowerShell 2.0, estos registros de errores son seguidos por dos
objetos idénticos de tipo System.Management.Automation.RuntimeException.
Estos objetos RuntimeException contienen una propiedad
ErrorRecord, que hace referencia a los objetos ErrorRecord
idénticos al par que también figuraba en la lista ErrorVariable.
Los objetos adicionales RuntimeException no estan presentes
en PowerShell 3.0 o posterior.

+ Cuando se llama a un Cmdlet que genera un error Termi-
nating, ErrorVariable contiene un solo registro, pero no es
un objeto ErrorRecord. En su lugar, es una instancia de Sys-
tem.Management.Automation.CmdletInvocationException. Co-
mo los objetos RuntimeException mencionados en el ultimo
punto, CmdletInvocationException tiene una propiedad Erro-
rRecord y esa propiedad se refiere al objeto ErrorRecord que
se esperaba que estuviera contenido en la lista ErrorVariable.

« Cuando se llama a una funcién avanzada con ErrorAction
establecido a Stop, ErrorVariable contiene un objeto del tipo
System.Management.Automation.ActionPreferenceStopException,
seguido por dos objetos de ErrorRecord idénticos. Como con
los tipos RuntimeException y CmdletInvocationException,
ActionPreferenceStopException todos contiene una propie-
dad ErrorRecord, que se refiere a un objeto ErrorRecord que
es idéntico a los dos que se incluyeron directamente en la lista
ErrorVariable. Ademas, si se ejecuta PowerShell 2.0, hay dos

Anélisis de los resultados de las pruebas de manejo de errores 26

objetos mas idénticos al tipo ActionPreferenceStopException,
para un total de 5 entradas relacionadas con el mismo error
de Terminating.

« Cuando se llama a un Cmdlet con ErrorAction establecido
a Stop, ErrorVariable contiene un unico objeto del tipo Sys-
tem.Management.Automation.ActionPreferenceStopException.
La propiedad ErrorRecord de este objeto ActionPreferenceS-
topException contiene el objeto ErrorRecord que se esperaba
que estuviera directamente en la lista ErrorVariable.

Efectos de establecer ErrorAction o
$ErrorActionPreference

Cuando se ejecuta un Cmdlet o una funcién avanzada y establece
el parametro ErrorAction, se afecta el comportamiento de todos los
errores Non-Terminating. Sin embargo, también parece afectar a
los errores Terminating producidos por la sentencia Throw en una
funcién avanzada (aunque no afecta los procedentes de los Cmdlets
a través del método PSCmdlet. ThrowTerminatingError())

Si establece la variable $ErrorActionPreference antes de llamar
al comando, su valor afecta a los errores Terminating and Non-
Terminating.

Esto es comportamiento no se encuentra documentado. Los ar-
chivos de ayuda de PowerShell indican que tanto la variable de
preferencia como el pardmetro sélo deberian afectar a los errores
Non-Terminating.

TN

O © 00 N O O b wWw N o=

Anélisis de los resultados de las pruebas de manejo de errores 27

Cémo se comporta PowerShell
cuando se encuentra errores
Terminating no controlados

Esta seccion del cédigo demostr6 ser un poco molesta de probar,
porque el manejo de los errores en el alcance del padre (el script),
afect6 el comportamiento del cddigo dentro de las funciones. Si el
ambito de la secuencia de comandos no tenia ningun tratamiento
de errores, en muchos casos, el error no controlado abort6 el script
también. Como resultado, el script ErrorTests.ps1 y los archivos de
texto que contienen su salida se escriben para mostrar sélo los casos
en que se produce un error Terminating, pero la ejecucion de la
funcion continua y pasa al siguiente comando.

Sidesea ejecutar la bateria completa de pruebas para este comporta-
miento, importe el médulo ErrorHandlingTests.psm1 y ejecute ma-
nualmente los siguientes comandos en una consola de PowerShell.
Como los va a ejecutar uno a la vez, no encontrara problemas con
que algunos de los comandos fallen su ejecucion debido a un error
no controlado anterior. Caso distinto seria si estuvieran todos en
un script.

Test-WithoutRethrow -Cmdlet -Terminating
Test-WithoutRethrow -Function -Terminating
Test-WithoutRethrow -Cmdlet -NonTerminating
Test-WithoutRethrow -Function -NonTerminating
Test-WithoutRethrow -Method

Test-WithoutRethrow -UnknownCommand

Anélisis de los resultados de las pruebas de manejo de errores 28

También hay una funcion Test-WithRethrow que se puede llamar
con los mismos parametros, para comprobar que los resultados son
consistentes en los 6 casos cuando se maneja cada error y se elige
si se aborta la funcién.

PowerShell continta la ejecucion después
de producirse un error Terminating,
cuando:

+ Un Cmdlet genera un error Terminating
» Un método .NET genera una excepcién
+ PowerShell encuentra un comando desconocido

PowerShell detiene la ejecucién después de
producirse un error Terminating, cuando:

+ Una funcién utiliza la sentencia Throw

« Cualquier error Non-Terminating en conjunto con ErrorAc-
tion establecido a Stop

« En cualquier momento cuando $ErrorActionPreference se
establece a Stop en el ambito del llamador

Con el fin de lograr un comportamiento coherente entre estas dife-
rentes fuentes de errores Terminating, puede colocar los comandos
que potencialmente podrian producir un error de terminacion en
un bloque try. En el bloque catch, puede decidir si aborta o no la
ejecucion del bloque de secuencia de comandos actual. La figura 3.1
muestra un ejemplo de como forzar una funcién a abortar cuando
se genera una excepciéon de terminacién desde un Cmdlet (una
situacién en la que PowerShell normalmente solo continuaria y
ejecuta la sentencia “after terminating error”), volviendo a lanzar
el error del bloque Catch. Cuando se usa Throw sin argumentos

Anélisis de los resultados de las pruebas de manejo de errores 29

dentro de un bloque Catch, se pasa el mismo error hacia el ambito
padre.

ershe11.0rg\Powershell Err,

image013.png

Figura 3.1: Volviendo a lanzar un error Terminating para forzar a
una funcién a detener la ejecucion.

Conclusiones

Para errores Non-Terminating, puede utilizar $Error o ErrorVaria-
ble sin distincién. Solo debe tener presente en que el orden de los
ErrorRecords se invierte, pero usted puede facilmente controlar eso
en su codigo, suponiendo que considere que eso sea un problema.
Sin embargo, tan pronto como los errores Terminating entran en
juego, ErrorVariable tiene un comportamiento muy molesto: a
veces contiene objetos de excepcion en lugar de ErrorRecords, y en
otros casos, tiene uno o mas objetos duplicados, todos relacionados
con el error Terminating. Si bien es posible codificar alrededor
de estas peculiaridades, realmente no parece que valga la pena el
esfuerzo cuando se puede utilizar facilmente $_ o $Error[0].

Cuando esta llamando a un comando que puede producir un error
Terminating y no maneja ese error dentro una sentencia Try/-
Catch o Trap, el comportamiento de PowerShell es inconsistente,
dependiendo de como se gener6 el error Terminating. Para lograr

Analisis de los resultados de las pruebas de manejo de errores 30

resultados consistentes, independientemente de los comandos que
esté llamando, coloque dichos comandos en un bloque Try y elija
si desea volver a lanzar el error en el bloque Catch.

File Edit View Tools Debug Addons Help

Dedd&co0x» 906 38 = 8| o0 @&,

| singleObjectHandling.ps1 X

try

El

{ %0s = Get-CimInstance -ClassName Win32_OperatingSystem -ComputerName SomeComputer -ErrorAction Stop
3

catch

=}
3_ refers to the ErrorRecord of the terminating error; handle it in whatever way is
appropriate for this script.
H

[FERNE T RN

image018.png

Poniéndolo todo junto

Ahora que hemos examinado todas las herramientas de manejo de
errores e identificado algunos posibles escenarios de “engafiosos”,
he aqui algunos consejos y ejemplos de como abordar el manejo de
errores en sus propios scripts.

Supresion de errores (no haga esto)

Hay ocasiones en las que puede “procesar” un error sin la in-
tencion de manejarlo. En realidad, las situaciones validas para
estos escenarios son pocas. Procure no establecer ErrorAction o
$ErrorActionPreference en SilentlyContinue a menos que tenga la
intencion de examinar y verificar cada posible error, usted mismo
mas adelante en su codigo. Utilizar un bloque Try/Catch con un
bloque Catch vacio equivale a la misma cosa. Por lo general esto no
es lo correcto.

Es mejor al menos mostrar al usuario la salida de error por defecto
en la consola, que tener un comando que falle sin indicacién alguna
de que algo salié mal.

Uso de la variable $? (uselo bajo su
propio riesgo)

La variable $? parece una buena idea al principio, pero hay muchas
cosas que podrian salir mfia como para simplemente confiar en
esta variable en un script de produccién. Por ejemplo, si el error
es generado por un comando que esta entre paréntesis o una sub-
expresion, la variable $? se establecera en true en lugar de false:

Poniéndolo todo junto 32

Windows PowerShell IS|

File Edit View Tools Debug Add-ons Help
0e | & o x 9 P W = B oo ;e
\ QuestionVariable.psl X

1 Write-Host *Normal behavior of §7°

3 Get-Item c:\does\not\exist.txt
4 Write-Host "§? = $7°
5
write-Host
7 Write-Host 'Error-generating command in parentheses’
s

9 (Get-Ttem c:\does\not\exist.txt)

10 Write-Host "'§? - §7"

11

12 Write-Host

13 Write-Host 'Error-generating command in a sub-expression’
14

15 $(Get-Ttem c:\does\mot'\exist.txt)

16 Write-Host "'§7 = 57"

PS C:\User ments\Gi tHub\ebooks\ErrorHand1ing\WorkInProgress_ErrorHand]ing\Code\Examples> C :\Users\Dave\Documents\GitHub\
Normal bet

$2? = False

Error-generating command in parentheses

$2 = True

Error-generating command in a sub-expression

€\Documents\GitHub\ebooks\Errortandling\WorkInProgress_Errortandling\Code\Examples>

image015.png

Figura 4.1: Falsos positivos con la variable $?

Determinar qué tipos de errores
puede producir un comando

Antes de que pueda decidir la mejor manera de manejar los errores
de un comando en particular, a menudo necesitara saber qué tipo de
errores puede producir. ; Terminating o Non-Terminating? ;Cuales
son los tipos de excepcion que se pueden producir? Desafortunada-
mente, la documentacién del Cmdlet de PowerShell no proporciona
esta informacion, por lo que necesita recurrir a algin tipo de prueba
y error. Aqui hay un ejemplo de como puede averiguar si los errores
de un Cmdlet son Terminating or Non-Terminating:

Poniéndolo todo junto 33

[55] Windows PowerShell IS

File Edit View Tools Debug Add-ons Help

N & =3 & B » |9 P = E w8 [FHoolmmE

DetermineErrorType.psl X

1 trap

5 Write-Host "Caught Terminating Error” -ForegroundColor Red
4 continue

5

7 $ErrorActionPreference 'SilentlyContinue’

8

Write-Host "Executing Get-Item (non-existent path)"
10 Sitem Get-Item -Path C:%Does\Not\Exist.txt

12 Write-Host "Executing Get-Acl (permission denied)”
13 sacl Get-Acl -Path C:“PerfLogs\Admin

15 Write-Host "Executing Get-Acl (non-existent path)”
16 sacl Get-Ac]l -Path C:%\Does'\Not\Exist.txt

\UsersiDavelSkyDrivi cuments’PowerShell.0rg\PowerShell Error Handling\Code\Examples> C
Executing Get-Item (no tent path)
Executing Get-Acl (permission denied)

Executing Get-Acl (non-existent path)

PS C:\Users\Dave\SkyDrive\Documents\PowerShell.0Org\PowerShell Error Handling\Code\Examples>

image016.png
Figura 4.2: Identificacion de errores

Irénicamente, este era un lugar practico tanto para usar la sentencia
Trap como para establecer $ErrorActionPreference a SilentlyCon-
tinue, cosas que casi nunca haria en un script de produccion.
Como se puede ver en la figura 4.2, Get-Acl produce excepciones
Terminating cuando el archivo existe, pero el Cmdlet no puede leer
el ACL. Get-Item y Get-Acl producen errores Non-Terminating si
el archivo no existe.

Pasar por este tipo de ensayo y error puede ser un proceso que
consume mucho tiempo, sin embargo, es necesario que conozca
las diferentes formas en que un comando puede fallar y, a conti-
nuacion, reproducir esas condiciones para ver si el error resultante
era Terminating o Non-Terminating. Como resultado de lo molesto
que puede ser, ademaés de este libro electrénico, el repositorio de
Github contendra una hoja de calculo con una lista de errores
Terminating conocidos de algunos Cmdlets. Sera un documento
“vivo”, posiblemente convertido en un wiki en algiin momento,
pero probablemente nunca sera una referencia completa, debido a
la gran cantidad de Cmdlets de PowerShell que existen por ahi,

Poniéndolo todo junto 34

aunque esto es mucho mejor que nada.

Ademas de saber silos errores son Terminating o Non- Terminating,
es posible que también desee conocer qué tipos de excepciones
se producen. La figura 4.3 muestra como puede enumerar los
tipos de excepcion que estan asociados con diferentes tipos de
errores. Cada objeto de excepcion puede contener opcionalmente
una InnerException, y puede usar cualquiera de ellos en un bloque
Catch o Trap:

Lol

File Edit View Tools Debug Add-ons Help

=R = B »x |9 P B = |8 Bloo| @& e

DetermineExceptionType.ps1 X

-

function Show-ExceptionType
ing()
ter (Mandatory)

= .Exception
ZException

param

W g

10 $indent 0

12 Je SException

14 while (%e)

16 wWrite-Host ("{0,3indent}{1}" "', Se.GetType().FullName)

18 $indent 2
19 Se Se. InnerException

21

try

jcontents System.I0.File ReadAl1Text ('C:%\DoesNot“Exist.txt")

MR R R BRI R
[RNEE R T]
T

H

catch

29

3 Show-ExceptionType -Exception i_.Exception

P5 C:\Users\Dave\SkyDrive\Documents\Powershell.Org\PowerShell Error Handlingh\Code\Examples>
System.Management. Automation.MethodInvocationException
System. I0. DirectoryNotFoundException

PS C:\Users\Dave\SkyDrive\Documents\PowerShell.0Org\PowerShell Error HandlingyCode\Examples>

image017.png

Figura 4.3: Visualizacion de los tipos de Excepciones y de cualquier
InnerException.

Poniéndolo todo junto 35

Tratamiento de errores Terminating

Esta es la parte facil. Solo use try/catch, y consulte $_ o $Error[0]
en sus bloques Catch para obtener informacion sobre el error.

Tratamiento de errores
Non-Terminating

Tiendo a clasificar los comandos que pueden producir errores Non-
Terminating (Cmdlets, funciones y secuencias de comandos) de
una de tres maneras: comandos que necesitan procesar un solo
objeto de entrada, comandos que sélo pueden producir errores Non-
Terminating y comandos que podrian producir errores Terminating
o Non-Terminating. Suelo manejar cada una de estas categorias de
las siguientes formas:

Si el comando sélo necesita procesar un nico objeto de entrada,
como en la figura 4.4, uso ErrorAction en Stop y manejo los errores
en un bloque Try /Catch. Debido a que el Cmdlet sélo trata con un
unico objeto de entrada, el concepto de un error Non-Terminating
no es terriblemente util de todos modos.

E) Windows Power!
File Edit View Tools Debug Add-ons Help

0@ 3 & o»|9 » 3B | x| 8| oo &,

SingleCbjectHandling.ps1 X
1 try
2 @ .) .
3 $05 = Get-CimInstance -ClassName win3z_OperatingSystem -ComputerName SomeComputer -ErrorAction Stop

catch

3_ refers to the ErrorRecord of the terminating error; handle it in whatever way is
appropriate for this script.

]
image018.png

Figura 4.4: Utilizar Try/Catch y ErrorAction en Stop cuando se trata
de un solo objeto.

Poniéndolo todo junto 36

Si el comando sélo produce errores Non-Terminating, utilizé Erro-
rAction, pero esta categoria es mas grande de lo que usted pensaria.
La mayoria de los errores de un Cmdlet de PowerShell son Non-
Terminating:
=) Wind
File Edit View Tools Debug Add-ons Help

R~ = O x| 9 EN BR-RN> RN =R -

ErrorVariable.ps1™ X
1 Serr $null

Get-ChildItem -Path C:\Temp -File -Recurse |ErrorVariable +err -ErrorAction SilentlyContinue
Where-Object { 3_.LastWriteTime (Get-Date) . AddDays (-60) }
5 Remove-Item -Force -ErrorVariable +err -ErrorAction SilentlyContinue

foreach (SerrorRecord in $err)

Take action based on the error(s) that occurred, if any.

image019.png
Figura 4.5: Uso de ErrorVariable en errores Terminating.

Cuando estid examinando el contenido de ErrorVariable, recuerde
que normalmente puede obtener informacién util acerca de lo que
fallé al examinar la propiedad Categorylnfo.Activity del objeto
ErrorRecord (cuyo Cmdlet produjo el error) y la propiedad Targe-
tObject (cuyo objeto estaba procesando cuando el error ocurrid).
Sin embargo, no todos los Cmdlets rellenan el ErrorRecord con un
TargetObject, por lo que querra realizar algunas comprobaciones
para determinar cudn util serd esta técnica. Si encuentra una
situacién en la que un Cmdlet debe estar informandole sobre el
TargetObject pero no lo hace, considere cambiar su estructura de
codigo para procesar un objeto a la vez, como se muestra en la figura
4.4. De esa manera, ya sabra qué objeto se esta procesando.

Surge un escenario mas complicado si un comando en particular
puede producir errores Terminating y Non- Terminating. En esas
situaciones, si es practico, intenté cambiar mi codigo para llamar al
comando en un objeto a la vez. Si se encuentra en una situacion en
la que esto no es deseable (aunque me parece dificil de encontrar un
ejemplo), recomiendo el siguiente enfoque para evitar el comporta-
miento peculiar de ErrorVariable y evitar llamar a $Error.Clear():

Poniéndolo todo junto 37

=]
File Edit View Tools Debug Add-ons Help
0 & - d & O » 9 P =B = | & B OO E
| $ErrarWithoutClear.ps1 X
1 SpreviousError ferror [0
5 try
; sacls Get-ChildItem -Path C:% -Recurse -ErrorAction SilentlyContinue
6 Get-Acl -ErrorAction 5ilentlwContinue
7L}
8 catch { 1
1‘5 foreach (SerrorRecord in %error)
1 =4
12 if (SerrorRecord $previousError)
13 &
14 break|
15 ¥

17 # Handle $errorRecord
1

image020.png

Figura 4.6: usando $Error sin llamar a Clear() e ignorando los
registros de errores previamente existentes.

Como se puede ver, la estructura de este cddigo es casi igual que
cuando se utiliza el parametro ErrorVariable, con la adicién de
un bloque Try alrededor del cédigo “problematico” y el uso de
la variable $ previousError para asegurarnos de que solo estamos
reaccionando a nuevos errores en la coleccién $Error. En este caso,
tengo un bloque Catch vacio, porque el error Terminating (si se
produce) va a ser afiadido también a $Error y manejado en el bucle
foreach de todos modos. Es posible que prefiera manejar el error
Terminating en el bloque Catch y los errores Non- Terminating en
el bucle. De cualquier manera funciona.

Llamando a programas externos

Cuando necesite llamar a un ejecutable externo, la mayor parte
del tiempo obtendra los mejores resultados comprobando $LASTE-
XITCODE, sin embargo, tendra que asegurarse que el programa
externo devuelve informacion util a través de su cddigo de salida.

Poniéndolo todo junto 38

Hay algunos ejecutables “raros” por ahi que siempre devuelven 0,
independientemente de si se encontraron o no errores.

Siun ejecutable externo escribe algo en el flujo StdErr, PowerShell a
veces se percata de esto y envuelve el texto en un ErrorRecord, pero
este comportamiento no parece ser consistente. No estoy seguro
ain en qué condiciones se produciran estos errores, por lo que
tiendo a utilizar SLASTEXITCODE cuando necesito establecer si
un comando externo funcion6 o no.

Epilogo

iEsperamos que haya encontrado ttil esta guia! Esto siempre va a
ser un trabajo en progreso; asi que a medida que la gente aporte
materiales y sugerencias, incorporaremos lo mejor que podamos y
publicaremos una nueva edicién.

	Tabla de contenidos
	El gran libro de manejo de errores en PowerShell
	Introducción
	¿Qué es el manejo de errores?
	¿Cómo está organizado este libro?

	Fundamentos para el manejo de errores en PowerShell
	ErrorRecords y Exceptions
	Terminating versus Non-Terminating Errors

	Controlando el comportamiento de los errores
	La variable $Error
	ErrorVariable
	$MaximumErrorCount
	ErrorAction y $ErrorActionPreference
	Try/Catch/Finally
	Trap
	La variable $LASTEXITCODE
	La variable $?
	Resumen

	Análisis de los resultados de las pruebas de manejo de errores
	Interceptando errores Non-Terminating
	Interceptando errores Terminating
	Efectos de establecer ErrorAction o $ErrorActionPreference
	Cómo se comporta PowerShell cuando se encuentra errores Terminating no controlados
	Conclusiones

	Poniéndolo todo junto
	Supresión de errores (no haga esto)
	Uso de la variable $? (úselo bajo su propio riesgo)
	Determinar qué tipos de errores puede producir un comando
	Tratamiento de errores Terminating
	Tratamiento de errores Non-Terminating
	Llamando a programas externos

	Epílogo

