

API Solutions
©2012 Boris Farber

Last published on 2012-03-29

is is a Leanpub book, for sale at:

http://leanpub.com/bfarber

Leanpub helps authors to self-publish in-progress ebooks.
We call this idea Lean Publishing. To learn more about
Lean Publishing, go to: http://leanpub.com/manifesto

To learn more about Leanpub, go to: http://leanpub.com

http://leanpub.com/bfarber
http://leanpub.com/manifesto
http://leanpub.com

Contents

Anowledgments i

Preface ii

1 Markdown 1
1.1 Why Should You Care? 1
1.2 How Markdown is Used in Leanpub . . . 1
1.3 Markdown Extensions in Leanpub 3

i

Acknowledgments
We’d like to thank all Leanpub authors for making the
product beer!

i

Preface
In this sample Leanpub book we will show you how to
write a Leanpub book.

Let’s start from small example: Update a function (in
our product) that returns list of word occurrences in the
given list of words be thread safe.

Easy, you fire up sear engine or your favorite book.
Look up for relevant APIs; not that big deal. All in all 5
minutes work, right? I lay (past of lie), let’s examine it
from real world perspective: is piece of code lives in
some application and uses frameworks. For this it has to
init and to call some APIs su as file reading or soets
(need to learn the APIs, some APIs are proprietary so no
Google help here) who said that they are thread safe. Cool
can use sync utilities (hmm have toe that some threads
might be sleeping …), and let’s make it even harder, our
lovely function performs that well so more and more data
is sent to it (aha yes the system is growing from 1,000 words
to 10,000 words) and latency and deadlos begin… and yes
it should be cross platform. Now it looks like a real life!

Something is being missed here. From something clear
and visible su as feature request to the piece of code (and
it is perfectly fine to get non trivial code). ere is a link
missing.

ere are some hidden artifacts here in between that
are not clearly visible but do have a clear impact. ese
artifacts include platform and framework complexity and
APIs, threading issues, platform and the list goes on. at
we don’t see theses artifacts doesn’t mean they don’t exist,

ii

Preface iii

they exist and kiing! e hard part is the understanding
is that if you (or your manager) don’t see those skills and
activities it doesn’t mean they have no impact, indeed they
have and a big one!

So seems we are laing skills not necessary coding
ones (we even find the relevant API relatively easy on
Google) but something more fundamental complex, per-
plex and invisible in order to solve our beginning main-
tenance problem effectively. is book is set of effective
design and coding practices and conceptual framework to
produce and sense good design and code. Let’s start with
working definitions (whi will be extended by the books
flow):

• Functional Requirements - for now simply said are
user’s problems (Problem Domain) for our soware
system to implement su as update word counting
program definition at the beginning.

• Coding Cra - skills and practices needed to imple-
ment particular functionality in piece of code include
testing.

• Design Skills – for the la of beer definitions I
define Design Skills as skills to perform all activities
and produce all artifacts between functional require-
ments and coding. ese triy artifacts are not
visual and this book is all about them. I see them
as art of soware development (compare to coding
and documentation whi is relatively cra based
and manageable process).

Preface iv

In all un-successful projects I have seen the coding
skills were not the scarcest resource. e scarcest and the
triy ones are the design skills and knowledge. Good
design somehow similar to Bla Swan, hard to judge
before seeing one. Also rules to benefit for Bla Swan and
design are the same, care for worst (use practices described
in book) and let the best take care of his own. Soware
is complex and multivariable and any myopia looking
on soware as simple code (or small subset of problem)
to implement functional requirements misses the whole
point and gets the wrong picture. Looking at soware
developer as coder (similar to the shoe cobbler), wemiss the
important part by only looking at visible and easy. Coding
skills are important do have their respected place (and a
apter in book), but they don’t count for everything. Even
in my teaing practice the demand for delivering coding
courses (Android, Java, C++) is higher than the demand for
the design courses.

Every capable soware student, beginning or medium
engineer can write (or take from Google) piece of code be
it a function or a class with methods that accept X and
return Y. It takes experience, learning and most important
mistakes to design and to sense a good design and them
as a derivative to write good code. You wrote function
excellent, nowwhat if 100 (and then 1000) threads access it.
You wrote function that draws triangle, great what about
drawing 1000 triangles in a second, and yes it should be
easily portable to other platforms (some with GPUs some
without).You fixed some code here, how to make sure that
your ange doesn’t introduce new problems.

Preface v

e Soware Industry is facing with following al-
lenges: 1.Larger programs – rule programs become larger
and larger and dependent of more and more components.

2.Larger quantities of data that the programs handle
3.Concurrency (Multi Cores/reads/Processes …) is a

norm rather than exception
4.Human Factor is the same; we are bounded by same

brain activities to comprehend the above allenges.
As you see from above the ea of the allenges

above is basically design issues. In order to be beer than
competitors or survive in market we need to apply effective
design and coding practices to set them right. I collected
a few of them and present them now in this book. Ea
sentence or rule reflects mine and others mistakes I have
done and decided to write down in order not to repeat them
and have a professional compass. Override these rules only
with a good reason.

Chapters Flow
I ordered the apters according to importance and

time spent on various aspects, the most important come
first:

1.Requirements Engineering– the fundamentals of un-
derstanding conceptual elements i.e. problem and solutions
domains. Good design covers both functional and non-
functional requirements.

2.Frameworks – the lion’s share of our time spent on
using and understanding frameworks. Soware designed
properly lives peacefully and allows easy transfer of knowl-
edge with underlying framework or platform.

3.Programming Paradigms – before and while coding

Preface vi

you need to make sure you master the key programming
paradigms. Paradigms are means to represent paerns (not
only design paerns) and to reuse knowledge.

4.Coding as Cra – set of effective practices while
coding.

5.API Design & Soware Aritectures – we actually
spent a very limited time of actual aritecture and API
design, but it is important to set it right, especially the
effective API Design practices and the costly design de-
cisions. Another look for book’s outline; where external
circles are visible skills while the big internal are design,
invisible skills.

e idea of this book is developing the design sense—not
necessarily the ability to produce good design on demand,
but the ability to recognize good design. While looking for
design/code I look for the following items described in the
upcoming apters. ere is positive correlation between
good design and the subjects above. Note the division to
apters there are might be other divisions, but this order
suits me the best.

Anowledgments Avner Ben

• Chief Aritect at Elisra Systems

• Skill Tree ® designer

Sco Whitmire - Enterprise Aritect at T-Mobile -
Vice Chair, Board of Education at International Association
of Soware Aritects (IASA) - Author of “Object Oriented
Design and Measurement” book.

Mark Poyas - Senior ality Analyst at Redbend

1

Markdown

1.1 Why Should You Care?
ALeanpub book is composed of a bun ofMarkdown files.

e order of these files is defined in a file called
Book.txt, whi is in the same folder as this file.

To learn about the syntax and philosophy of Mark-
down, see this article by John Gruber¹.

Briefly, Markdown is a nice way of writing content
whi is easily transformed into HTML. For example, #
at the beginning of a line becomes an h1, ## becomes an
h2, ### becomes an h3, etc. Lists, paragraphs and other
formaing is also intuitive.

1.2 How Markdown is Used in
Leanpub

Even if you know Markdown, you need to learn a few
things about how we use it at Leanpub.

¹http://daringfireball.net/projects/markdown/syntax

1

http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax

Markdown 2

Heading Levels Become Chapters and
Sections

First, we use # apters, ## for sections and ### for sub-
sections. (You can also use #### for sub-sub-sections, but
don’t get carried away! Most tenical books are good with
just #, ## and ###, and most business and fiction books are
good with just # and possibly ##.)

So, if you look at the top of theMarkdown.txt file you’ll
see that it has one #, meaning it is a Chapter.

Another thing this means is that one file can contain
as many apters or sections as you want: every # makes
a new apter; it has nothing to do with what file it is
in. However, we strongly recommend having one file per
apter (or one file per apter section), since it makes
creating sample books easier and keeps your book directory
cleaner. Since we recommend this, that’s what we’ll do in
this example book.

Links Become Footnotes
We support Markdown syntax for links, as well as normal
HTML links. Both of these are converted into functioning
footnotes in the PDF. Here’s an example of a link to
Leanpub².

²http://leanpub.com

http://leanpub.com
http://leanpub.com

Markdown 3

1.3 Markdown Extensions in
Leanpub

We’ve made a few additions to Markdown for use in Lean-
pub. Two of the most important are tables and crosslinks.
Furthermore, since Leanpub is so good for tenical books,
we also support extensions for external code samples, spe-
cial directives for code syntnax highlighting, etc. If this is
a tenical book, you will see these discussed in the Code
Samples apter.

Tables
Creating a table in a Leanpub book is relatively simple.
Here’s an example:

First Name Last Name Email

Peter Armstrong peter@leanpub.com

Sco Paen sco@leanpub.com

Yes, that’s it!

Crosslinks
A crosslink lets you refer to another element of your book.
For example, you can refer to another section or figure,
even if it’s in a different apter.

Creating crosslinks is a two-step process.

Markdown 4

1. You need to set a name for the thing you want to link
to. For example, you can name anyapter or section
by puing {#some-name} aer the apter title.

2. You need to link to it in the text. You do this with
a regular Markdown link with a target of “#some-
name”; for example this is a cross-link to the Why
Sample Books section in the Sample Books apter.

Note that for standalone crosslinks, this only works
when the anor {#some-name} is at the beginning of a
section.

Footnotes
To add a footnote, you insert it like this³ and then you define
the footnote content later.

at’s it. en you can keep writing content aer the
footnote content definition as well.

³is is the footnote text.

	Contents
	Acknowledgments
	Preface
	Markdown
	Why Should You Care?
	How Markdown is Used in Leanpub
	Markdown Extensions in Leanpub

