Kai Niklas

BECOME ABETTER
SOFTWARE ARCHITECT

Actions and insights from
practical experience

Design - Theory Code

Design - Practice Document
Decide Communicate
Simplify Estimate

Balance
Coach
Consult
Market

Become a Better Software
Architect - Actions and insights
from practical experience

by Dr.-Ing. Kai Niklas

Publish date: 26th May 2019

Get updates and news on
bettersoftwarearchitect.com

Do you like the book? Tweet it: “Just became a E E
#betterSoftwareArchitect with these actions

and insights by @kniklas

bettersoftwarearchitect.com” E Er

iii

http://bettersoftwarearchitect.com
http://bit.ly/2IXzypC
https://twitter.com/search?q=%5C%23betterSoftwareArchitect
https://twitter.com/kniklas
http://bettersoftwarearchitect.com

Contents

Foreword

. About this book

1.1. What thingswillyoulearn?
1.2. Focusonthehuman
1.3. Are the things proventowork?

Introduction

The Software Architect

2.1. Definitions — Software Architect
2.2. Architecture Flight Levels and Domains
2.3. Typical Activities of Software Architects
2.4. Important Skills of Software Architects

I11. Skills of an Architect

3.

Design — Theory

3.1. Know the basic design patterns
3.2. Digdeeper into patterns and anti-pattern
3.3. Know quality measures and metrics

IV. Appendix

4,

About the author

15

17
18
19
22

27
29

Contents

Bibliography

vi

29

Part |I.

Foreword

1. About this book

Several years ago, I was asked: “How have you become a software
architect?”. We talked about necessary skills, experience and the
amount of time and dedication it took to build up knowledge. More-
over, I went through the steps which I took. Which technologies I
have worked with or tried out, and what I have learned during my
professional and non-professional career.

This conversation has triggered myself and I started to structure the
topics for my personal growth. “What makes a good software archi-
tect?”, l wondered, and “How can I improve to become a better soft-
ware architect?”. I read articles and books, and of course talked with
peers.

In this book, I want to share an overview of my insights with you.
Which skills are most important, and how to improve them to be-
come a (better) software architect.

This book addresses software engineers who want to learn and un-
derstand more about the work of an architect. Further, it gives
insights for software architects who want to extend their existing
knowledge.

1.1. What things will you learn?

The book is divided into two major sections:

1. About this book

> Understand the different roles and required skills of software
architects

> Insights on how to improve the skills based on my personal ex-
perience

This book will not get into each detail but tries to give you a broad
overview. Links to definitions, interesting books, videos or web-
pages are given to dig deeper into details there. It is not the goal of
this book to describe each existing concept again. Only major con-
cepts which are generating benefit within the context of this book
will be described and discussed in more details. Many concepts are
linked to the corresponding wikipedia article for quick look ups.

1.2. Focus on the human

From my experience, the human as such is highly important. Build-
ing up a “T” shape skill-set with broad and deep knowledge is im-
portant, but it is not enough to succeed in the domain of software
engineering or architecture. Humans are building software, not ma-
chines. Humans need more than facts to build great software.

I personally feel, that the human is often forgotten. Not only in liter-
ature, but also in day to day life. Hence, I decided to write this book
around a software architect: A human who is more than a walking
book. I tried to balance this book between hard and soft skills in the
area of software architecture.

1.3. Are the things proven to work?

The collection of insights, that are the foundation of this book, re-
flect my personal point of view, based on my experience of the last 15
years in IT. I try to be as unbiased as possible and refer to scientific

1.3. Are the things proven to work?

sources whenever possible. Moreover, I give reading recommenda-
tions to further resources with similar or opposite thoughts, when-
ever applicable. This gives you the ability to decide by yourself if my
saying is sound.

All actions and insights are written in small chunks, so that they are
easy to consume and understand. Every chunk includes a descrip-
tion, the benefits, and at least one concrete example. With this you
have a general applicable insight which can be adapted to your situa-
tion, as well as a demonstration on how to apply it. For many insights
I added further readings to books or interesting web-pages.

Part Il.

Introduction

2. The Software Architect

“Design and programming are human activities; forget
that and all is lost.”

(Bjarne Stroustrup)

To understand how a software architect can improve its skills, it is
beneficial to recap what software architecture is and what a software
architect does. For software architecture there are several good def-
initions. Further, it is important to also distinct between the tradi-
tional understanding of software architecture and agile software ar-
chitecture. Based on definition, understanding of different special-
izations, flight levels and typical activities, the core skills every soft-
ware architect should have is derived.

Contents
2.1. Definitions - Software Architect 10
2.2. Architecture Flight Levels and Domains 11
2.3. Typical Activities of Software Architects 13
2.4. Important Skills of Software Architects 14

2. The Software Architect

2.1. Definitions — Software Architect

Before diving into details, let’s have a look at two definitions first to
align on the term “software architecture” and what a software archi-
tectis:

“Software architecture is the fundamental organization
of a system, represented by its components, their relation-
ships to each other and to the environment, and the prin-
ciples that determine the design and evolution of the sys-
tem.” [8]

‘A software architect is a software expert who makes
high-level design choices and dictates technical stan-
dards, including software coding standards, tools, and
platforms. The leading expert is referred to as the chief
architect.” [12]

Agile Software Architecture

The classical definition for software architecture is still valid for agile
software architecture. But there is one main difference: It’s the mind-
set and the derived mechanics how to tackle architecture questions
and design.

In the classical world, the whole design is determined at the very be-
ginning. This is called Big Design Up Front (BDUF or BUFD) [6].
Within agile software development the concrete design decision is
kept open as long as possible, until enough information is available
and key learning have been made to decide on a concrete design.
The assumption is, that at the beginning the functional and non-
functional requirements are too vague to determine the concrete de-
sign.

Agile architecture evolves over time (growth mindset), whereas clas-
sic architecture is fixed at the very beginning (fixed mindset). If you

10

2.2. Architecture Flight Levels and Domains

want to learn more about the differences of those two mindsets, have
alook at the following video:

Growth Mindset vs. Fixed Mindset (YouTube)

by John Spencer (http://bit.ly/2HOFBrg)

2.2. Architecture Flight Levels and Domains

Architecture is applied on several “flight levels” of abstractness. The
level influences the importance of necessary skills. Different levels
require different skills. Clustering or naming the levels can be done
differently. I prefer the segmentation into these 3 levels:

> Application Architecture: The lowest level of architecture.
Focus on one single application. Very detailed, low level de-
sign. Communication usually within one development team.
Driven by concrete functional and non-functional require-
ments.

> Solution Architecture: The mid-level of architecture. Focus
on one or more applications which fulfill a business need
(business solution). Some high, but mainly low-level design.
Communication between many development teams. Aligning
functional and non-functional requirements with overarching
business goals.

> Enterprise Architecture: The highest level of architecture. Fo-
cus on many solutions. High level, abstract design, which is
detailed out by solution or application architects. Communi-
cation across the organization. Highly business goal driven.

11

http://bit.ly/2H0FBrg

2. The Software Architect

Architects are often seen as the glue between different stakeholders.
Three examples:

> Horizontal: Bridge communication between business and de-
velopers or different development teams.

> Vertical: Bridge communication between developers and
managers or managers and senior management.

> Technology: Integrate different technologies or applications
with each other.

Another dimension of architects is their specialization in a specific
domain. Some common examples are:

> Software / Application
> Infrastructure / Network
> Database / Data

> Security

> Integration

> DevOps / Automation
> Business / Process

> Organization

Figure 2.1 puts all the dimensions together. Different architecture
“specializations” can be applied on different levels. For example, a
data architect on application level is concerned about data models
within the application, whereas the data architect on enterprise level
is driving the overall data-warehouse (DWH) initiative. Both are data
architects, but with different goals and challenges.

12

Architecture Domain

2.3. Typical Activities of Software Architects

Architecture Level

Application Solution Enterprise
Architecture Architecture Architecture

Software Architecture

Infrastructure Architecture

Integration Architecture

Data Architecture

... Architecture

Figure 2.1.: Levels and domains of software architects

2.3. Typical Activities of Software Architects

To understand the necessary skills an architect needs, we need to
understand typical activities. The following (non-final) list contains
from my perspective the most important activities:

>
>

Define and decide development technology and platform

Define development standards, e.g., coding standards, tools,
review processes, test approach, etc.

Support identifying and understanding business requirements
Design systems and take decisions based on requirements

Document and communicate architectural definitions, design
and decisions

Check and review architecture and code, e.g., check if defined
patterns and coding standards are implemented

Collaborate with other architects and stakeholders

> Coach and consult developers

13

2. The Software Architect

> Define, detail out and refine higher level design into lower level
design

Note: Architecture is a continuous activity. Especially, when applied
in agile software development. Thus, these activities need to be re-
peated.

2.4. Important Skills of Software Architects

To support the laid-out activities, specific skills are required. From
my experience, read books and discussions, the skills every software
architect should have can be boiled down to the following:

Design, Decide, Simplify, Code, Docu-
ment, Communicate, Estimate, Balance,
Coach, Consult, Market

Depending on the level of architecture, and the concrete role, some
skills are more important than others. For example, an enterprise ar-
chitect does not need to have deep coding skills. But an understand-
ing of what developers are doing all day is helpful. Whereas appli-
cation architects should be involved in coding. Hence, improving in
this area is beneficial.

You can use this list as a compass to determine the areas in which
you are strong and where you can potentially improve yourself. Let’s
go through one by one. For every skill [have laid out some actions or
insights to follow up and to improve in that area.

14

Part III.

Skills of an Architect

15

3. Design — Theory

“If you think good architecture is expensive, try bad
architecture.”

(Brian Foote and Joseph Yoder)

What makes a good software design? This is one of the most often
stated question I receive. I will make a distinction between design
in theory and in practice. To my experience, having a mix of both is
most valuable. Let’s start with theory.

In this section you will learn more about the classic design patterns,
patterns and anti-patterns in general and how they will help to cre-
ate applications. Further, you will learn more about quality measures
and metrics to increase understanding of why architects put an em-
phasize on design and non-functional requirements.

Contents
3.1. Know thebasicdesignpatterns 18
3.2. Digdeeper into patterns and anti-pattern . . . 19
3.3. Know quality measures and metrics 22

17

3. Design — Theory

3.1. Know the basic design patterns

Design patterns are one of the most important tool architects need to
have to develop maintainable code and systems. With patterns you
can reuse design to solve common problems with proven solutions.
Patterns are not libraries or functions which can be copy and pasted.
They are rather solution blueprints and need to be implemented and
adapted to the realities in the code.

Benefits

Design patterns are a toolkit of tried and tested solutions to com-
mon problems in software design. Knowing patterns is useful as
it teaches how to solve various problems, e.g., using principles of
object-oriented design.

Design patterns define a common language, which is helpful to com-
municate more efficiently. Further, you can build on top of existing
knowledge and adapt to your problems.

Example

Let’s assume you want to lay out the code structure for a user in-
terface, have little experience and using no frameworks. You start
programming, and after every iteration and every new feature, it
gets harder and harder to maintain the code. At this point you may
ask yourself: “I am not the first person on earth who did something
like that. Isn't there a common solution to structure code for front-
ends?”. And the answer is yes. There are many patterns to structure
your front-end code, e.g., Model-View-Controller (MVC) [14]. With
MVC you get a very clear structure of the code. And the best is, that
everyone who already knows MVC understands your code as well.

18

https://en.wikipedia.org/wiki/Model-view-controller

3.2. Dig deeper into patterns and anti-pattern

You may say, that MVC is old and outdated. But the base concept
of MVC is still valid, and it is still around in many applications and
frameworks. For example, the framework “Spring MVC” is using
it as its base architecture. Based on MVC, new patterns emerged
which are used in recent frameworks, e.g. Model View ViewModel
(MVVM)[15] is used in Angular, Ember.js, Vue.js, React]S, etc.

Further Reading

> Design Patterns: Elements of Reusable Object-Oriented Soft-
ware [1] written by the “Gang of Four” (GoF) is one of the most
important books about design patterns, and a must read to ev-
eryone who is in software development. Although, the patterns
were published more than 20 years ago, they are still the basis
of modern software architecture.

[=] e =]
[=] i

Find an overview of popular patterns on
wikipedia (http://bit.ly/2PPuW5B)

3.2. Dig deeper into patterns and anti-pattern

If you already know the basic GoF patterns, then extend your knowl-
edge with more software design patterns. Or dig deeper into your
area of interest.

Additionally, learn about anti-patterns, which are the opposite of
patterns. Whenever they occur in your design, the risk is high, that
the solution will be ineffective or leads to massive problems.

Important: Patterns and anti-patterns are not only applicable to
design, e.g., object-oriented programming. You can find them every-

19

https://en.wikipedia.org/wiki/Model-view-viewmodel
https://en.wikipedia.org/wiki/Model-view-viewmodel
http://bit.ly/2PPuW5B

3. Design — Theory

where, e.g., enterprise organization, project management, software
design, software development, software maintenance, program-
ming, configuration management and many more.

Benefits

Having the knowledge of patterns, especially in your domain, helps
you to get your work done more efficiently. The experience you made
by yourself is probably the most important. But your time is limited,
and you cannot try out everything by yourself. You need to rely on
others. Patterns are a great source of knowledge. Especially, those
written by trustworthy people, including their rationale.

With anti-patterns you can more easily stop implementations or be-
haviors which are leading into the wrong direction. Your gut feeling
will most likely tell you, that something is wrong with the design, but
you cannot find the right arguments. With anti-patterns this is easier,
as they often come with concrete examples.

Important: Patterns and anti-patterns are important, but it is easy
to over-engineer and apply too many patterns. This will lead to inef-
fective systems. I observed this once in an university project where
they tried to solve every problem with a pattern. I would call that an
anti-pattern, too. Keep the right balance.

Example — Pattern Deep Dive

If your job or interest is to integrate applications with each other,
then you could do aresearch for common patterns and anti-patterns.
As said above, you are not the first person on earth and you should
build on top of existing knowledge to avoid mistakes others did al-
ready. For application integration the book “Enterprise Integration
Patterns” [2] written by Gregor Hohpe is a great source for patterns.

20

3.2. Dig deeper into patterns and anti-pattern

This book is applicable in various areas, whenever two applications
need to exchange data. Whether it is an old-school file exchange
from some legacy systems or a modern microservice architecture.

Example — Anti-Patterns

You can find many resources of design anti-patterns. Especially, the
“new” way of building applications in a microservice architecture
style has many pitfalls. To succeed with microservices, patterns and
anti-patterns are very helpful to better understand the mechanics
and what to avoid in your design. Often you do not see the impact
of your decisions in the early stage of development, but late, when it
gets costly to change.

One good resource to get you started is for example the book Mi-
croservices antipatterns and pitfalls [9] by Mark Richards. Mark lays
out 10 common anti-patterns and pitfalls and provides solutions to
avoid them.

There are many more resources for anti-patterns. Not only in the de-
sign area. But also, for software development itself. For example Ste-
fan Wolpers described roughly 160 Scrum Anti-Patterns in his guide
[17].

Further Reading

> Enterprise Integration Patterns [2] by Gregor Hohpe
> Microservices antipatterns and pitfalls [9] by Mark Richards

> Scrum Anti-Patterns Guide [17] by Stefan Wolpers

21

https://www.oreilly.com/ideas/microservices-antipatterns-and-pitfalls
https://www.oreilly.com/ideas/microservices-antipatterns-and-pitfalls
https://www.oreilly.com/ideas/microservices-antipatterns-and-pitfalls
https://age-of-product.com/scrum-anti-patterns/

3. Design — Theory

3.3. Know quality measures and metrics

Defining and applying architecture is not an end in itself. There are
good reasons why patterns, guidelines and coding standards are de-
fined, applied and controlled. It is to build high quality software
products.

Software quality has various definitions. For the context of this book
I would like to highlight the following two closely related notions
(compare [16]):

> Software functionality: Indicates how good the software ful-
fills functional requirements or business needs. This is tightly
related with the term fif to purpose, which stands for how ideal
the software is for the given use and context.

> Software structure: Indicates how good the software meets
non-functional requirements, which directly influence the de-
livery of the functional requirements, e.g., maintainability or
extensibility.

There are many quality measures for different purposes. Probably
the most known and common measures are the following, according
to ISO 9126 [13], but there are many more:

> Functionality: Suitability, Accuracy, Interoperability, Security
> Reliability: Maturity, Fault tolerance, Recoverability

>> Usability: Understandability, Learnability, Operability, Attrac-
tiveness

> Efficiency: Time behavior, Resource utilization

> Maintainability: Analyzability, Changeability, Stability, Testa-
bility

> Portability: Adaptability, Installability, Co-existence, Replace-
ability

22

3.3. Know quality measures and metrics

To meet non-functional as well as functional requirements, the fol-
lowing actions can be taken:

1. Patterns & Guidelines: The usage of proven patterns and
avoidance of anti-patterns can help to increase non-functional
requirements. For every quality aspect, specific guidelines can
be defined, e.g., write and document code in a specific way so
that it stays maintainable.

2. Static code analysis (SCA): At design time it is possible to
check the code automatically against common coding stan-
dards or calculate metrics. The most prominent example
where we can see this live in action is Eclipse. During coding
the IDE is constantly checking not only the syntax, but applies
additional checks, which for example detect missing exception
handling or potential null-pointer issues. One popular tool for
managing and checking code regularly is SonarQube [11].

3. Dynamic (runtime) analysis: Unfortunately, software cannot
be judged solely by analyzing the code. Thus, it is necessary to
run and “play” with the software (system). Performance analy-
sis, security testing, or memory leak detection are three exam-
ples which run the software and simultaneously capture data
to identify the potential cause within the code.

4. Chaos Engineering: Playing and experimenting with software
systems in production gained some popularity recently, to
build confidence of the system’s capability to handle unex-
pected conditions. Chaos Monkey [5] by Netflix is one popular
tool which can for example shut down servers automatically
and test the fault tolerance of the system.

Benefits

Often developers or architects do not understand or even know the
reasons why they are applying and following specific architecture

23

https://www.sonarqube.org
https://github.com/Netflix/chaosmonkey

3. Design — Theory

styles, patterns or guideline. This leads to frustration and ignorance.
If you are only told to do something, you are unlikely or even unwill-
ing to follow. This does not help to craft good software. But if you
can give reasons, it helps to establish the right mindset. Of course,
the initial effort is higher, but in the long run, you will gain the ben-
efits, as everyone has understood and applies it. Physiologic experi-
ments demonstrate, that providing reasons to kids why they should
not take a specific toy is twice as effective in the long run as simply
forcing them to not take the toy'.

With static code analysis tools, e.g., SonarQube, you can measure
code and detect potential problems. You can do this continuously
and integrate it into your automation tools, e.g., Jenkins. You could
even define a threshold and stop deployments or releases if the qual-
ity is too low based on the defined metrics.

When applying static or dynamic code analysis tools, it is important
to set the right mindset with developers and managers. Itis not about
controlling people or teams. It is not about judging that one team is
better than another. It is not about monetary penalties for external
vendors. The reason is, to support and help developers to create bet-
ter software.

Note: If the culture and mindset in your company cannot handle
transparency and handling errors well, I would discourage from in-
troducing such tools. A missing mindset will start quality discussions
and reduce the overall productivity and moral. Thus, first establish
the mindset.

Example — Testability

The more often you want to release your software, the more needs
to be automated, so that you can assure the speed of delivery and

lUnfortunately, I do not find the source for that experiment. It was stated by Vera E
Birkenbihl, a German management trainer and author in one of her great talks.

24

3.3. Know quality measures and metrics

quality. For example, amazon released already in 2011 their software
every 11.6 seconds?.

In particular, the automation includes test automation. You are not
only testing code fully automatically, but also the environments.
Hence, software, and even environments, need to be build in a way
that they are testable. One popular solution is to use docker, so that
the environment looks the same everywhere.

To achieve a high testability of software, guidelines and patterns are
also important. For example, the usage of interfaces in combina-
tion with dependency injection allows to exchange classes during
test runs with mocks. Mocks could for example return dummy val-
ues, instead of establishing a connection to a database, or simulate
network outages by returning an error after a longer period.

One option to measure testability at design time is to measure the
“Cyclomatic Complexity”, which calculates the complexity of soft-
ware [4]. The metric calculates how many linear independent paths
the code can take. The more paths the code can take, the more test
cases are necessary to have a proper test coverage. It is possible to
reduce the complexity by breaking down complex code into smaller
pieces and hence, simplify testing.

Further Reading

> Introduction to Software Quality [7] by Gerard O’'Regan

> Metrics and Models in Software Quality Engineering [3] by
Stephen Kan

> Chaos Engineering [10] by Rosenthal et al.

2https://news.ycombinator.com/item?id=2971521

25

Part 1V.

Appendix

27

4. About the author

Dr.-Ing. Kai Niklas has been working
for more than 15 years in the IT sec-
tor in various roles and different in-
dustries. Currently he helps clients
in the finance sector as principal con-
sultant to innovate in the role of a
software architect. Kai is specialized
in modern software architecture and
agile software development practices,
application integration, DevOps, busi-
ness process automation and SAP for
insurance. He has a broad background
in software engineering and architec-
ture in different roles: Software engi-

neer, software architect, application architect, solution architect, in-
tegration architect, system engineer and enterprise architect. He
studied mathematics, computer science and did his doctoral degree
in the field of service-oriented architectures.

[=] g% [u]
E-.

Connect with me on LinkedIn
(http://bit.ly/3029T19)

29

http://bit.ly/3029Tl9

Bibliography

(1]

(2]

Erich Gamma. Design patterns: elements of reusable object-
oriented software. Pearson Education India, 1995.

Gregor Hohpe and Bobby Woolf. Enterprise integration pat-
terns: Designing, building, and deploying messaging solutions.
Addison-Wesley Professional, 2004.

Stephen H. Kan. Metrics and Models in Software Quality Engi-
neering. Addison-Wesley, 2003.

T.]. McCabe. A complexity measure. IEEE Transactions on Soft-
ware Engineering, SE-2(4):308-320, Dec 1976.

Netflix. = Chaos Monkey, 2019. https://github.com/
Netflix/chaosmonkey [Online; accessed 16-April-2019].

Kai Niklas. Big Design Up Front, 2019. https://en.
wikipedia.org/wiki/Big_Design_Up_Front [Online; ac-
cessed 16-April-2019].

Gerard O’Regan. Introduction to Software Quality. Undergrad-
uate Topics in Computer Science. Springer International Pub-
lishing, 2014.

Ralf H. Reussner and Wilhelm Hasselbring. Soft-
ware architect. dpunkt.verlag, 2008. http://wuw.
handbuch-softwarearchitektur.de/ [Online; accessed
16-July-2018].

M. Richards. Microservices Antipatterns and Pitfalls. O’Reilly
Media, 2016.

31

https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://en.wikipedia.org/wiki/Big_Design_Up_Front
https://en.wikipedia.org/wiki/Big_Design_Up_Front
http://www.handbuch-softwarearchitektur.de/
http://www.handbuch-softwarearchitektur.de/

Bibliography

[10]

[11]

[12]

[15]

[16]

32

Casey Rosenthal, Lorin Hochstein, Aaron Blohowiak, Nora
Jones, and Ali Basiri. Chaos Engineering. O’Reilly Media,, 2017.

Switzerland SonarSource S.A. Continuous Inspection | Sonar-
Qube, 2019. https://www.sonarqube.org [Online; accessed
16-April-2019].

Wikipedia. Software architect, 2018. https://en.wikipedia.
org/wiki/Software_architect [Online; accessed 16-July-
2018].

Wikipedia. ISO/IEC 9126, 2019. https://en.wikipedia.org/
wiki/IS0/IEC_9126 [Online; accessed 10-January-2019].

Wikipedia. = Model view controller, 2019. https://en.
wikipedia.org/wiki/Model-view-controller [Online; ac-
cessed 03-May-2019].

Wikipedia. Model view viewmodel, 2019. https://en.
wikipedia.org/wiki/Model-view-viewmodel [Online; ac-
cessed 03-May-2019].

Wikipedia. Software quality, 2019. https://en.wikipedia.
org/wiki/Software_quality [Online; accessed 10-January-
2019].

Stefan Wolpers. Scrum Anti-Patterns Guide, 2019. https://
age-of-product.com/scrum-anti-patterns [Online; ac-
cessed 05-April-2019].

https://www.sonarqube.org
https://en.wikipedia.org/wiki/Software_architect
https://en.wikipedia.org/wiki/Software_architect
https://en.wikipedia.org/wiki/ISO/IEC_9126
https://en.wikipedia.org/wiki/ISO/IEC_9126
https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Model-view-viewmodel
https://en.wikipedia.org/wiki/Model-view-viewmodel
https://en.wikipedia.org/wiki/Software_quality
https://en.wikipedia.org/wiki/Software_quality
https://age-of-product.com/scrum-anti-patterns
https://age-of-product.com/scrum-anti-patterns

	I Foreword
	1 About this book
	1.1 What things will you learn?
	1.2 Focus on the human
	1.3 Are the things proven to work?

	II Introduction
	2 The Software Architect
	2.1 Definitions – Software Architect
	2.2 Architecture Flight Levels and Domains
	2.3 Typical Activities of Software Architects
	2.4 Important Skills of Software Architects

	III Skills of an Architect
	3 Design – Theory
	3.1 Know the basic design patterns
	3.2 Dig deeper into patterns and anti-pattern
	3.3 Know quality measures and metrics

	IV Appendix
	4 About the author
	Bibliography

