
Beginner's Python
Cheat Sheet

Variables and Strings
Variables are used to assign labels to values. A string is a
series of characters, surrounded by single or double quotes.
Python's f-strings allow you to use variables inside strings to
build dynamic messages.

Hello world
print("Hello world!")

Hello world with a variable
msg = "Hello world!"
print(msg)

f-strings (using variables in strings)
first_name = 'albert'
last_name = 'einstein'
full_name = f"{first_name} {last_name}"
print(full_name)

Lists
A list stores a series of items in a particular order. You
access items using an index, or within a loop.

Make a list
bikes = ['trek', 'redline', 'giant']

Get the first item in a list
first_bike = bikes[0]

Get the last item in a list
last_bike = bikes[-1]

Looping through a list
for bike in bikes:
 print(bike)

Adding items to a list
bikes = []
bikes.append('trek')
bikes.append('redline')
bikes.append('giant')

Making numerical lists
squares = []
for x in range(1, 11):
 squares.append(x**2)

Lists (cont.)
List comprehensions
squares = [x**2 for x in range(1, 11)]

Slicing a list
finishers = ['sam', 'bob', 'ada', 'bea']
first_two = finishers[:2]

Copying a list
copy_of_bikes = bikes[:]

Tuples
Tuples are similar to lists, but the items in a tuple can't be
modified.

Making a tuple
dimensions = (1920, 1080)
resolutions = ('720p', '1080p', '4K')

If statements
If statements are used to test for particular conditions and
respond appropriately.

Conditional tests
equal x == 42
not equal x != 42
greater than x > 42
 or equal to x >= 42
less than x < 42
 or equal to x <= 42

Conditional tests with lists
'trek' in bikes
'surly' not in bikes

Assigning boolean values
game_active = True
can_edit = False

A simple if test
if age >= 18:
 print("You can vote!")

If-elif-else statements
if age < 4:
 ticket_price = 0
elif age < 18:
 ticket_price = 10
elif age < 65:
 ticket_price = 40
else:
 ticket_price = 15

Dictionaries
Dictionaries store connections between pieces of
information. Each item in a dictionary is a key-value pair.

A simple dictionary
alien = {'color': 'green', 'points': 5}

Accessing a value
print(f"The alien's color is {alien['color']}.")

Adding a new key-value pair
alien['x_position'] = 0

Looping through all key-value pairs
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}

for name, number in fav_numbers.items():
 print(f"{name} loves {number}.")

Looping through all keys
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}

for name in fav_numbers.keys():
 print(f"{name} loves a number.")

Looping through all the values
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}

for number in fav_numbers.values():
 print(f"{number} is a favorite.")

User input
Your programs can prompt the user for input. All input is
stored as a string.

Prompting for a value
name = input("What's your name? ")
print(f"Hello, {name}!")

Prompting for numerical input
age = input("How old are you? ")
age = int(age)

pi = input("What's the value of pi? ")
pi = float(pi)

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
nostarch.com/pythoncrashcourse2e

While loops
A while loop repeats a block of code as long as a certain
condition is true. While loops are especially useful when you
can't know ahead of time how many times a loop should run.

A simple while loop
current_value = 1
while current_value <= 5:
 print(current_value)
 current_value += 1

Letting the user choose when to quit
msg = ''
while msg != 'quit':
 msg = input("What's your message? ")
 print(msg)

Functions
Functions are named blocks of code, designed to do one
specific job. Information passed to a function is called an
argument, and information received by a function is called a
parameter.

A simple function
def greet_user():
 """Display a simple greeting."""
 print("Hello!")

greet_user()

Passing an argument
def greet_user(username):
 """Display a personalized greeting."""
 print(f"Hello, {username}!")

greet_user('jesse')

Default values for parameters
def make_pizza(topping='pineapple'):
 """Make a single-topping pizza."""
 print(f"Have a {topping} pizza!")

make_pizza()
make_pizza('mushroom')

Returning a value
def add_numbers(x, y):
 """Add two numbers and return the sum."""
 return x + y

sum = add_numbers(3, 5)
print(sum)

Classes
A class defines the behavior of an object and the kind of
information an object can store. The information in a class
is stored in attributes, and functions that belong to a class
are called methods. A child class inherits the attributes and
methods from its parent class.

Creating a dog class
class Dog:
 """Represent a dog."""

 def __init__(self, name):
 """Initialize dog object."""
 self.name = name

 def sit(self):
 """Simulate sitting."""
 print(f"{self.name} is sitting.")

my_dog = Dog('Peso')

print(f"{my_dog.name} is a great dog!")
my_dog.sit()

Inheritance
class SARDog(Dog):
 """Represent a search dog."""

 def __init__(self, name):
 """Initialize the sardog."""
 super().__init__(name)

 def search(self):
 """Simulate searching."""
 print(f"{self.name} is searching.")

my_dog = SARDog('Willie')

print(f"{my_dog.name} is a search dog.")
my_dog.sit()
my_dog.search()

Infinite Skills
If you had infinite programming skills, what would you build?

As you're learning to program, it's helpful to think
about the real-world projects you'd like to create. It's a
good habit to keep an "ideas" notebook that you can
refer to whenever you want to start a new project.
 If you haven't done so already, take a few minutes
and describe three projects you'd like to create. As
you're learning you can write mall sprograms that
relate to these ideas, so you can get practice writing
code relevant to topics you're interested in.

Working with files
Your programs can read from files and write to files. Files
are opened in read mode by default, but can also be opened
in write mode and append mode.

Reading a file and storing its lines
filename = 'siddhartha.txt'
with open(filename) as file_object:
 lines = file_object.readlines()

for line in lines:
 print(line)

Writing to a file
The variable referring to the file object is often shortened to f.

filename = 'journal.txt'
with open(filename, 'w') as f:
 f.write("I love programming.")

Appending to a file
filename = 'journal.txt'
with open(filename, 'a') as f:
 f.write("\nI love making games.")

Exceptions
Exceptions help you respond appropriately to errors that are
likely to occur. You place code that might cause an error in
the try block. Code that should run in response to an error
goes in the except block. Code that should run only if the try
block was successful goes in the else block.

Catching an exception
prompt = "How many tickets do you need? "
num_tickets = input(prompt)

try:
 num_tickets = int(num_tickets)
except ValueError:
 print("Please try again.")
else:
 print("Your tickets are printing.")

Zen of Python
Simple is better than complex

If you have a choice between a simple and a complex
solution, and both work, use the simple solution. Your
code will be easier to maintain, and it will be easier
for you and others to build on that code later on.

More cheat sheets available at
ehmatthes.github.io/pcc_2e/

Beginner's Python
Cheat Sheet - Lists

What are lists?
A list stores a series of items in a particular order. Lists
allow you to store sets of information in one place,
whether you have just a few items or millions of items.
Lists are one of Python's most powerful features
readily accessible to new programmers, and they tie
together many important concepts in programming.

Defining a list
Use square brackets to define a list, and use commas to
separate individual items in the list. Use plural names for
lists, to make it clear that the variable represents more than
one item.

Making a list
users = ['val', 'bob', 'mia', 'ron', 'ned']

Accessing elements
Individual elements in a list are accessed according to their
position, called the index. The index of the first element is 0,
the index of the second element is 1, and so forth. Negative
indices refer to items at the end of the list. To get a particular
element, write the name of the list and then the index of the
element in square brackets.

Getting the first element
first_user = users[0]

Getting the second element
second_user = users[1]

Getting the last elements
newest_user = users[-1]

Modifying individual items
Once you've defined a list, you can change the value of
individual elements in the list. You do this by referring to the
index of the item you want to modify.

Changing an element
users[0] = 'valerie'
users[1] = 'robert'
users[-2] = 'ronald'

Adding elements
You can add elements to the end of a list, or you can insert
them wherever you like in a list. This allows you to modify
existing lists, or start with an empty list and then add items to
it as the program develops.

Adding an element to the end of the list
users.append('amy')

Starting with an empty list
users = []
users.append('amy')
users.append('val')
users.append('bob')
users.append('mia')

Inserting elements at a particular position
users.insert(0, 'joe')
users.insert(3, 'bea')

Removing elements
You can remove elements by their position in a list, or by the
value of the item. If you remove an item by its value, Python
removes only the first item that has that value.

Deleting an element by its position
del users[-1]

Removing an item by its value
users.remove('mia')

Popping elements
If you want to work with an element that you're removing
from the list, you can "pop" the item. If you think of the list as
a stack of items, pop() takes an item off the top of the stack.
 By default pop() returns the last element in the list, but
you can also pop elements from any position in the list.

Pop the last item from a list
most_recent_user = users.pop()
print(most_recent_user)

Pop the first item in a list
first_user = users.pop(0)
print(first_user)

List length
The len() function returns the number of items in a list.

Find the length of a list
num_users = len(users)
print(f"We have {num_users} users.")

Sorting a list
The sort() method changes the order of a list permanently.
The sorted() function returns a copy of the list, leaving the
original list unchanged.
 You can sort the items in a list in alphabetical order, or
reverse alphabetical order. You can also reverse the original
order of the list. Keep in mind that lowercase and uppercase
letters may affect the sort order.

Sorting a list permanently
users.sort()

Sorting a list permanently in reverse alphabetical order
users.sort(reverse=True)

Sorting a list temporarily
print(sorted(users))
print(sorted(users, reverse=True))

Reversing the order of a list
users.reverse()

Looping through a list
Lists can contain millions of items, so Python provides an
efficient way to loop through all the items in a list. When
you set up a loop, Python pulls each item from the list one
at a time and assigns it to a temporary variable, which
you provide a name for. This name should be the singular
version of the list name.
 The indented block of code makes up the body of the
loop, where you can work with each individual item. Any
lines that are not indented run after the loop is completed.

Printing all items in a list
for user in users:
 print(user)

Printing a message for each item, and a separate
message afterwards
for user in users:
 print(f"\nWelcome, {user}!")
 print("We're so glad you joined!")

print("\nWelcome, we're glad to see you all!")

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
nostarch.com/pythoncrashcourse2e

The range() function
You can use the range() function to work with a set of
numbers efficiently. The range() function starts at 0 by
default, and stops one number below the number passed to
it. You can use the list() function to efficiently generate a
large list of numbers.

Printing the numbers 0 to 1000
for number in range(1001):
 print(number)

Printing the numbers 1 to 1000
for number in range(1, 1001):
 print(number)

Making a list of numbers from 1 to a million
numbers = list(range(1, 1000001))

Simple statistics
There are a number of simple statistical operations you can
run on a list containing numerical data.

Finding the minimum value in a list
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
youngest = min(ages)

Finding the maximum value
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
oldest = max(ages)

Finding the sum of all values
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
total_years = sum(ages)

Slicing a list
You can work with any subset of elements from a list. A
portion of a list is called a slice. To slice a list start with the
index of the first item you want, then add a colon and the
index after the last item you want. Leave off the first index
to start at the beginning of the list, and leave off the second
index to slice through the end of the list.

Getting the first three items
finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
first_three = finishers[:3]

Getting the middle three items
middle_three = finishers[1:4]

Getting the last three items
last_three = finishers[-3:]

Copying a list
To copy a list make a slice that starts at the first item and
ends at the last item. If you try to copy a list without using
this approach, whatever you do to the copied list will affect
the original list as well.

Making a copy of a list
finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
copy_of_finishers = finishers[:]

List comprehensions
You can use a loop to generate a list based on a range of
numbers or on another list. This is a common operation,
so Python offers a more efficient way to do it. List
comprehensions may look complicated at first; if so, use
the for loop approach until you're ready to start using
comprehensions.
 To write a comprehension, define an expression for the
values you want to store in the list. Then write a for loop to
generate input values needed to make the list.

Using a loop to generate a list of square numbers
squares = []
for x in range(1, 11):
 square = x**2
 squares.append(square)

Using a comprehension to generate a list of square
numbers
squares = [x**2 for x in range(1, 11)]

Using a loop to convert a list of names to upper case
names = ['kai', 'abe', 'ada', 'gus', 'zoe']

upper_names = []
for name in names:
 upper_names.append(name.upper())

Using a comprehension to convert a list of names to
upper case
names = ['kai', 'abe', 'ada', 'gus', 'zoe']

upper_names = [name.upper() for name in names]

Styling your code
Readability counts

Follow common Python formatting conventions:
• Use four spaces per indentation level.
• Keep your lines to 79 characters or fewer.
• Use single blank lines to group parts of your

program visually.

Tuples
A tuple is like a list, except you can't change the values
in a tuple once it's defined. Tuples are good for storing
information that shouldn't be changed throughout the life of a
program. Tuples are usually designated by parentheses.
 You can overwrite an entire tuple, but you can't change
the values of individual elements.

Defining a tuple
dimensions = (800, 600)

Looping through a tuple
for dimension in dimensions:
 print(dimension)

Overwriting a tuple
dimensions = (800, 600)
print(dimensions)

dimensions = (1200, 900)
print(dimensions)

Visualizing your code
When you're first learning about data structures such as
lists, it helps to visualize how Python is working with the
information in your program. Python Tutor is a great tool for
seeing how Python keeps track of the information in a list.
Try running the following code on pythontutor.com, and then
run your own code.

Build a list and print the items in the list
dogs = []
dogs.append('willie')
dogs.append('hootz')
dogs.append('peso')
dogs.append('goblin')

for dog in dogs:
 print(f"Hello {dog}!")
print("I love these dogs!")

print("\nThese were my first two dogs:")
old_dogs = dogs[:2]
for old_dog in old_dogs:
 print(old_dog)

del dogs[0]
dogs.remove('peso')
print(dogs)

More cheat sheets available at
ehmatthes.github.io/pcc_2e/

Beginner's Python
Cheat Sheet

Variables and Strings
Variables are used to assign labels to values. A string is a
series of characters, surrounded by single or double quotes.
Python's f-strings allow you to use variables inside strings to
build dynamic messages.

Hello world
print("Hello world!")

Hello world with a variable
msg = "Hello world!"
print(msg)

f-strings (using variables in strings)
first_name = 'albert'
last_name = 'einstein'
full_name = f"{first_name} {last_name}"
print(full_name)

Lists
A list stores a series of items in a particular order. You
access items using an index, or within a loop.

Make a list
bikes = ['trek', 'redline', 'giant']

Get the first item in a list
first_bike = bikes[0]

Get the last item in a list
last_bike = bikes[-1]

Looping through a list
for bike in bikes:
 print(bike)

Adding items to a list
bikes = []
bikes.append('trek')
bikes.append('redline')
bikes.append('giant')

Making numerical lists
squares = []
for x in range(1, 11):
 squares.append(x**2)

Lists (cont.)
List comprehensions
squares = [x**2 for x in range(1, 11)]

Slicing a list
finishers = ['sam', 'bob', 'ada', 'bea']
first_two = finishers[:2]

Copying a list
copy_of_bikes = bikes[:]

Tuples
Tuples are similar to lists, but the items in a tuple can't be
modified.

Making a tuple
dimensions = (1920, 1080)
resolutions = ('720p', '1080p', '4K')

If statements
If statements are used to test for particular conditions and
respond appropriately.

Conditional tests
equal x == 42
not equal x != 42
greater than x > 42
 or equal to x >= 42
less than x < 42
 or equal to x <= 42

Conditional tests with lists
'trek' in bikes
'surly' not in bikes

Assigning boolean values
game_active = True
can_edit = False

A simple if test
if age >= 18:
 print("You can vote!")

If-elif-else statements
if age < 4:
 ticket_price = 0
elif age < 18:
 ticket_price = 10
elif age < 65:
 ticket_price = 40
else:
 ticket_price = 15

Dictionaries
Dictionaries store connections between pieces of
information. Each item in a dictionary is a key-value pair.

A simple dictionary
alien = {'color': 'green', 'points': 5}

Accessing a value
print(f"The alien's color is {alien['color']}.")

Adding a new key-value pair
alien['x_position'] = 0

Looping through all key-value pairs
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}

for name, number in fav_numbers.items():
 print(f"{name} loves {number}.")

Looping through all keys
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}

for name in fav_numbers.keys():
 print(f"{name} loves a number.")

Looping through all the values
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}

for number in fav_numbers.values():
 print(f"{number} is a favorite.")

User input
Your programs can prompt the user for input. All input is
stored as a string.

Prompting for a value
name = input("What's your name? ")
print(f"Hello, {name}!")

Prompting for numerical input
age = input("How old are you? ")
age = int(age)

pi = input("What's the value of pi? ")
pi = float(pi)

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
nostarch.com/pythoncrashcourse2e

While loops
A while loop repeats a block of code as long as a certain
condition is true. While loops are especially useful when you
can't know ahead of time how many times a loop should run.

A simple while loop
current_value = 1
while current_value <= 5:
 print(current_value)
 current_value += 1

Letting the user choose when to quit
msg = ''
while msg != 'quit':
 msg = input("What's your message? ")
 print(msg)

Functions
Functions are named blocks of code, designed to do one
specific job. Information passed to a function is called an
argument, and information received by a function is called a
parameter.

A simple function
def greet_user():
 """Display a simple greeting."""
 print("Hello!")

greet_user()

Passing an argument
def greet_user(username):
 """Display a personalized greeting."""
 print(f"Hello, {username}!")

greet_user('jesse')

Default values for parameters
def make_pizza(topping='pineapple'):
 """Make a single-topping pizza."""
 print(f"Have a {topping} pizza!")

make_pizza()
make_pizza('mushroom')

Returning a value
def add_numbers(x, y):
 """Add two numbers and return the sum."""
 return x + y

sum = add_numbers(3, 5)
print(sum)

Classes
A class defines the behavior of an object and the kind of
information an object can store. The information in a class
is stored in attributes, and functions that belong to a class
are called methods. A child class inherits the attributes and
methods from its parent class.

Creating a dog class
class Dog:
 """Represent a dog."""

 def __init__(self, name):
 """Initialize dog object."""
 self.name = name

 def sit(self):
 """Simulate sitting."""
 print(f"{self.name} is sitting.")

my_dog = Dog('Peso')

print(f"{my_dog.name} is a great dog!")
my_dog.sit()

Inheritance
class SARDog(Dog):
 """Represent a search dog."""

 def __init__(self, name):
 """Initialize the sardog."""
 super().__init__(name)

 def search(self):
 """Simulate searching."""
 print(f"{self.name} is searching.")

my_dog = SARDog('Willie')

print(f"{my_dog.name} is a search dog.")
my_dog.sit()
my_dog.search()

Infinite Skills
If you had infinite programming skills, what would you build?

As you're learning to program, it's helpful to think
about the real-world projects you'd like to create. It's a
good habit to keep an "ideas" notebook that you can
refer to whenever you want to start a new project.
 If you haven't done so already, take a few minutes
and describe three projects you'd like to create. As
you're learning you can write mall sprograms that
relate to these ideas, so you can get practice writing
code relevant to topics you're interested in.

Working with files
Your programs can read from files and write to files. Files
are opened in read mode by default, but can also be opened
in write mode and append mode.

Reading a file and storing its lines
filename = 'siddhartha.txt'
with open(filename) as file_object:
 lines = file_object.readlines()

for line in lines:
 print(line)

Writing to a file
The variable referring to the file object is often shortened to f.

filename = 'journal.txt'
with open(filename, 'w') as f:
 f.write("I love programming.")

Appending to a file
filename = 'journal.txt'
with open(filename, 'a') as f:
 f.write("\nI love making games.")

Exceptions
Exceptions help you respond appropriately to errors that are
likely to occur. You place code that might cause an error in
the try block. Code that should run in response to an error
goes in the except block. Code that should run only if the try
block was successful goes in the else block.

Catching an exception
prompt = "How many tickets do you need? "
num_tickets = input(prompt)

try:
 num_tickets = int(num_tickets)
except ValueError:
 print("Please try again.")
else:
 print("Your tickets are printing.")

Zen of Python
Simple is better than complex

If you have a choice between a simple and a complex
solution, and both work, use the simple solution. Your
code will be easier to maintain, and it will be easier
for you and others to build on that code later on.

More cheat sheets available at
ehmatthes.github.io/pcc_2e/

Beginner's Python
Cheat Sheet - Lists

What are lists?
A list stores a series of items in a particular order. Lists
allow you to store sets of information in one place,
whether you have just a few items or millions of items.
Lists are one of Python's most powerful features
readily accessible to new programmers, and they tie
together many important concepts in programming.

Defining a list
Use square brackets to define a list, and use commas to
separate individual items in the list. Use plural names for
lists, to make it clear that the variable represents more than
one item.

Making a list
users = ['val', 'bob', 'mia', 'ron', 'ned']

Accessing elements
Individual elements in a list are accessed according to their
position, called the index. The index of the first element is 0,
the index of the second element is 1, and so forth. Negative
indices refer to items at the end of the list. To get a particular
element, write the name of the list and then the index of the
element in square brackets.

Getting the first element
first_user = users[0]

Getting the second element
second_user = users[1]

Getting the last elements
newest_user = users[-1]

Modifying individual items
Once you've defined a list, you can change the value of
individual elements in the list. You do this by referring to the
index of the item you want to modify.

Changing an element
users[0] = 'valerie'
users[1] = 'robert'
users[-2] = 'ronald'

Adding elements
You can add elements to the end of a list, or you can insert
them wherever you like in a list. This allows you to modify
existing lists, or start with an empty list and then add items to
it as the program develops.

Adding an element to the end of the list
users.append('amy')

Starting with an empty list
users = []
users.append('amy')
users.append('val')
users.append('bob')
users.append('mia')

Inserting elements at a particular position
users.insert(0, 'joe')
users.insert(3, 'bea')

Removing elements
You can remove elements by their position in a list, or by the
value of the item. If you remove an item by its value, Python
removes only the first item that has that value.

Deleting an element by its position
del users[-1]

Removing an item by its value
users.remove('mia')

Popping elements
If you want to work with an element that you're removing
from the list, you can "pop" the item. If you think of the list as
a stack of items, pop() takes an item off the top of the stack.
 By default pop() returns the last element in the list, but
you can also pop elements from any position in the list.

Pop the last item from a list
most_recent_user = users.pop()
print(most_recent_user)

Pop the first item in a list
first_user = users.pop(0)
print(first_user)

List length
The len() function returns the number of items in a list.

Find the length of a list
num_users = len(users)
print(f"We have {num_users} users.")

Sorting a list
The sort() method changes the order of a list permanently.
The sorted() function returns a copy of the list, leaving the
original list unchanged.
 You can sort the items in a list in alphabetical order, or
reverse alphabetical order. You can also reverse the original
order of the list. Keep in mind that lowercase and uppercase
letters may affect the sort order.

Sorting a list permanently
users.sort()

Sorting a list permanently in reverse alphabetical order
users.sort(reverse=True)

Sorting a list temporarily
print(sorted(users))
print(sorted(users, reverse=True))

Reversing the order of a list
users.reverse()

Looping through a list
Lists can contain millions of items, so Python provides an
efficient way to loop through all the items in a list. When
you set up a loop, Python pulls each item from the list one
at a time and assigns it to a temporary variable, which
you provide a name for. This name should be the singular
version of the list name.
 The indented block of code makes up the body of the
loop, where you can work with each individual item. Any
lines that are not indented run after the loop is completed.

Printing all items in a list
for user in users:
 print(user)

Printing a message for each item, and a separate
message afterwards
for user in users:
 print(f"\nWelcome, {user}!")
 print("We're so glad you joined!")

print("\nWelcome, we're glad to see you all!")

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
nostarch.com/pythoncrashcourse2e

The range() function
You can use the range() function to work with a set of
numbers efficiently. The range() function starts at 0 by
default, and stops one number below the number passed to
it. You can use the list() function to efficiently generate a
large list of numbers.

Printing the numbers 0 to 1000
for number in range(1001):
 print(number)

Printing the numbers 1 to 1000
for number in range(1, 1001):
 print(number)

Making a list of numbers from 1 to a million
numbers = list(range(1, 1000001))

Simple statistics
There are a number of simple statistical operations you can
run on a list containing numerical data.

Finding the minimum value in a list
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
youngest = min(ages)

Finding the maximum value
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
oldest = max(ages)

Finding the sum of all values
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
total_years = sum(ages)

Slicing a list
You can work with any subset of elements from a list. A
portion of a list is called a slice. To slice a list start with the
index of the first item you want, then add a colon and the
index after the last item you want. Leave off the first index
to start at the beginning of the list, and leave off the second
index to slice through the end of the list.

Getting the first three items
finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
first_three = finishers[:3]

Getting the middle three items
middle_three = finishers[1:4]

Getting the last three items
last_three = finishers[-3:]

Copying a list
To copy a list make a slice that starts at the first item and
ends at the last item. If you try to copy a list without using
this approach, whatever you do to the copied list will affect
the original list as well.

Making a copy of a list
finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
copy_of_finishers = finishers[:]

List comprehensions
You can use a loop to generate a list based on a range of
numbers or on another list. This is a common operation,
so Python offers a more efficient way to do it. List
comprehensions may look complicated at first; if so, use
the for loop approach until you're ready to start using
comprehensions.
 To write a comprehension, define an expression for the
values you want to store in the list. Then write a for loop to
generate input values needed to make the list.

Using a loop to generate a list of square numbers
squares = []
for x in range(1, 11):
 square = x**2
 squares.append(square)

Using a comprehension to generate a list of square
numbers
squares = [x**2 for x in range(1, 11)]

Using a loop to convert a list of names to upper case
names = ['kai', 'abe', 'ada', 'gus', 'zoe']

upper_names = []
for name in names:
 upper_names.append(name.upper())

Using a comprehension to convert a list of names to
upper case
names = ['kai', 'abe', 'ada', 'gus', 'zoe']

upper_names = [name.upper() for name in names]

Styling your code
Readability counts

Follow common Python formatting conventions:
• Use four spaces per indentation level.
• Keep your lines to 79 characters or fewer.
• Use single blank lines to group parts of your

program visually.

Tuples
A tuple is like a list, except you can't change the values
in a tuple once it's defined. Tuples are good for storing
information that shouldn't be changed throughout the life of a
program. Tuples are usually designated by parentheses.
 You can overwrite an entire tuple, but you can't change
the values of individual elements.

Defining a tuple
dimensions = (800, 600)

Looping through a tuple
for dimension in dimensions:
 print(dimension)

Overwriting a tuple
dimensions = (800, 600)
print(dimensions)

dimensions = (1200, 900)
print(dimensions)

Visualizing your code
When you're first learning about data structures such as
lists, it helps to visualize how Python is working with the
information in your program. Python Tutor is a great tool for
seeing how Python keeps track of the information in a list.
Try running the following code on pythontutor.com, and then
run your own code.

Build a list and print the items in the list
dogs = []
dogs.append('willie')
dogs.append('hootz')
dogs.append('peso')
dogs.append('goblin')

for dog in dogs:
 print(f"Hello {dog}!")
print("I love these dogs!")

print("\nThese were my first two dogs:")
old_dogs = dogs[:2]
for old_dog in old_dogs:
 print(old_dog)

del dogs[0]
dogs.remove('peso')
print(dogs)

More cheat sheets available at
ehmatthes.github.io/pcc_2e/

