

The BDD Books - Formulação
Documentando exemplos com cenários Gherkin

Seb Rose, Gáspár Nagy, Tula Valle Machado, e Vinícius
Rodrigues Nunes

Esse livro está à venda em http://leanpub.com/bddbooks-formulation-pt

Essa versão foi publicada em 2024-12-03

Esse é um livro Leanpub. A Leanpub dá poderes aos autores e editores a partir do
processo de Publicação Lean. Publicação Lean é a ação de publicar um ebook em
desenvolvimento com ferramentas leves e muitas iterações para conseguir
feedbacks dos leitores, pivotar até que você tenha o livro ideal e então conseguir
tração.

© 2024 Seb Rose, Gáspár Nagy, Tula Valle Machado, e Vinícius Rodrigues Nunes

http://leanpub.com/bddbooks-formulation-pt
https://leanpub.com/
https://leanpub.com/manifesto

Tweet Sobre Esse Livro!
Por favor ajude Seb Rose, Gáspár Nagy, Tula Valle Machado, e Vinícius Rodrigues
Nunes a divulgar esse livro no Twitter!

A hashtag sugerida para esse livro é #bddbooks.

Descubra o que as outras pessoas estão falando sobre esse livro clicando nesse link
para buscar a hashtag no Twitter:

#bddbooks

http://twitter.com
https://twitter.com/search?q=%23bddbooks
https://twitter.com/search?q=%23bddbooks

Conteúdo

Prefácio por Angie Jones . i

Prefácio por Daniel Terhorst-North . ii

Prefácio . iii
O projeto WIMP . iv
Para quem é este livro . iv
Por que você deve ler este livro . v
Como ler este livro . v
Regras e exemplos . vii
BDD precisa de testadores qualificados . viii
Por que você deveria nos ouvir . viii
Recursos online . ix
Agradecimentos . x

Capítulo 2 – Limpando um cenário antigo . 1
2.1 – O cenário antigo . 1
2.2 – Mantenha seus cenários BREVES (BRIEF, no inglês) 4

Prefácio por Angie Jones
Sou uma grande defensora da frase “mostre, não conte”, especialmente no que diz
respeito ao desenvolvimento de software. Muitos especialistas estão constantemente
nos dizendo o que deveríamos estar fazendo, mas oferecem poucos exemplos que
realmente nos mostram como fazer isso.

Com o Gherkin não é diferente. Uma simples pesquisa na internet resulta em artigo
após artigo explicando como as equipes afirmam praticar o desenvolvimento guiado
por comportamento (BDD), mas falham no objetivo principal desse processo, que é
comunicar-se cedo no processo de desenvolvimento para garantir que a equipe esteja
construindo a coisa certa. Poucos desses artigos abordam como fazer isso de forma
eficaz.

Fiquei encantada ao saber que Seb e Gáspár aceitaram o desafio de abordar essa
lacuna, proporcionando um livro inteiro explicando como escrever cenários em
Gherkin de maneira eficaz, o que ajudará nos seus esforços gerais de BDD.

Eles fazem um trabalho maravilhoso ao compartilhar histórias para dar contexto ao
seu raciocínio. Eles tiram proveito de sua vasta experiência para cobrir minuciosa-
mente a rica linguagem Gherkin. Eles não poupam esforços ao explicar o como e o
porquê.

Este livro é para equipes comprometidas em colaborar de maneira eficaz para
construir software de qualidade. Se aplicadas, essas lições abrangentes certamente
colocarão qualquer equipe de software no caminho certo, não importa qual tenha
sido sua experiência anterior com BDD.

Prepare-se! Você está prestes a embarcar em uma jornada emocionante!

Angie Jones

Prefácio por Daniel
Terhorst-North
Em 2003, quando tentei pela primeira vez enquadrar o desenvolvimento guiado por
testes sem usar a palavra “teste””, eu não fazia ideia de onde isso levaria. Ao longo do
caminho, tive a sorte de conhecer pessoas brilhantes como Seb Rose e Gáspár Nagy
que, ao longo de quase duas décadas, foram fundamentais na evolução do BDD em
um panorama rico e detalhado de colaboração e criação de valor.

Pode-se argumentar que a formulação é a disciplina menos compreendida do
BDD. Muito tem sido escrito sobre colaboração e entendimento compartilhado, e a
automação é onde amaioria das pessoas começa com o BDD. Para mim, a formulação
é onde reside o verdadeiro poder e alavancagem do BDD.

É necessário habilidade e experiência para capturar “o contexto, todo o contexto e
nada além do contexto”” de um cenário para descrever o comportamento desejado
de um produto digital. Gáspár e Seb fizeram um trabalho magistral ao fornecer um
tratamento abrangente e acessível de um tópico complexo, com muitos exemplos e
ilustrações para guiar o caminho.

Me peguei concordando com cada capítulo e cada história. As notas de rodapé por si
só são ouro puro. Como exemplo, não sei se foi deliberado, mas a seção deles sobre o
acrônimo BRIEF é uma mini-aula autorreferencial. Ela usa a Linguagem de Negócios
do BDD, trabalha através de um exemplo Real, é Reveladora de Intenções, contém
apenas informações Essenciais e é Focada em uma coisa.

Reconheço muito da minha própria experiência nestas páginas, mas além disso, uma
articulação de coisas que são “óbvias quando você as diz em voz alta””. Este livro
deve ser leitura obrigatória para qualquer um que esteja começando sua jornada
com BDD e servirá como um refresco oportuno e uma referência indispensável para
aqueles que estão mais adiantados.

Daniel Terhorst-North

Prefácio
Desenvolvimento Guiado por Comportamento (BDD) é uma abordagem ágil para
entregar software, compreendendo três práticas centrais do BDD: descoberta, for-
mulação e automação.

• Descoberta – cria uma compreensão compartilhada dos requisitos através da
colaboração, geralmente alcançada por meio de uma conversa estruturada
centrada em regras e exemplos.

• Formulação – exemplos do comportamento do sistema são documentados
usando terminologia de negócios.

• Automação – a documentação é automatizada, criando uma documentação viva
que verifica o comportamento do sistema.

A série de livros BDD Books guia você na adoção completa do BDD, incluindo
práticas específicas necessárias para conduzir o desenvolvimento usando especifica-
ções escritas colaborativamente e documentação viva. Este é o segundo livro da série
de livros de BDD e apresenta uma imersão profunda na prática de formulação do
BDD – a escrita de especificações executáveis em um formato legível por pessoas de
negócios.

O primeiro livro cobriu a prática de descoberta do BDD e recomendamos fortemente
que você leia primeiro o Descoberta – Explorar comportamento usando exemplos
(Livro 1) [Nagy2018]. Uma vez que você tenha praticado a formulação usando os
princípios que delineamos neste livro, você pode ler Automação com SpecFlow (Livro
3) [NagyInPrep].

Muitas equipes de desenvolvimento adotam o BDD com o desejo de melhorar
sua automação de testes. Melhorar a automação de testes é um dos resultados
significativos de seguir a abordagem BDD, mas é um resultado secundário. A menos
que você adote as práticas na ordem descrita (descoberta, formulação, automação),
você não obterá os benefícios esperados.

Prefácio iv

Por outro lado, você alcançará melhorias significativas em suas atividades de desen-
volvimento de software apenas praticando descoberta por si só. Adicione formulação
e você obterá benefícios adicionais ao desenvolver uma linguagem verdadeiramente
ubíqua através de um processo ativo de revisão e feedback. Automação então
transforma os cenários em uma especificação executável que guia o desenvolvimento
e fornece uma rede de segurança durante a manutenção, além de documentação viva
legível por pessoas de negócios que é garantida estar atualizada.

Equipes que seguem o conselho que apresentamos têm a melhor chance de criar uma
documentação viva valiosa que guiará o desenvolvimento, envolverá stakeholders de
negócios e reduzirá o custo de manutenção e melhorias.

O projeto WIMP

A série de livros de BDD segue uma equipe imaginária desenvolvendo o Onde Está
Minha Pizza (WIMP) OWIMP é um aplicativo de gerenciamento de entrega de pizzas
para uma grande empresa de pizzas. O aplicativo permitirá que os clientes rastreiem
a localização em tempo real de seus pedidos. A equipe WIMP é composta pelos
seguintes membros, sendo a primeira letra de seus nomes indicativa de seu papel
na equipe:

• Patricia – dono do produto (PO, no inglês)
• Daniel – desenvolvedor
• Daiana – desenvolvedor
• Eva – estagiário
• Tula – testador (QA, no inglês)
• Ulisses – experiência do usuário (UX, no inglês)

Em Formulação, seguimos a equipe WIMP enquanto eles praticam suas habilidades
de formulação usando Gherkin, o formato de especificação compreendido pelo
Cucumber, Reqnroll e SpecFlow.

Para quem é este livro

Este livro é escrito para todos envolvidos na especificação e entrega de software
(incluindo donos de produtos, analistas de negócios, desenvolvedores e testadores).

Prefácio v

Você não precisa de experiência prévia com BDD. O livro descreve como todos os
stakeholders precisam estar envolvidos na criação da especificação de um produto.
Como você se envolve dependerá de suas habilidades, seus outros compromissos e
uma série de outros fatores, mas o envolvimento de todos é essencial. Se você cria as
palavras, digita ou fornece feedback construtivo, encontrará este livro indispensável.

Vale ressaltar que enquanto Discovery [Nagy2018] é completamente agnóstico em
relação a ferramentas, este livro está focado em ferramentas que entendem a sintaxe
Gherkin. Isso engloba uma grande quantidade de ferramentas, incluindo Cucumber¹,
SpecFlow², Reqnroll³, JBehave⁴, Behave⁵, e Behat⁶.

Por que você deve ler este livro

Sua equipe pode entender o que precisa ser entregue ao sair de uma oficina de
requisitos, mas e as pessoas que não estavam na reunião, ou os próprios participantes
no futuro quando forem encarregados de corrigir um defeito um ano depois? Neste
livro, mostramos como capturar essa compreensão usando Gherkin. Gherkin permite
que você escreva especificações usando sua própria linguagem de negócios que é
compreensível por todos na equipe, mas suficientemente estruturada para também
ser entendida por ferramentas de automação.

Porque a estrutura do Gherkin é tão simples de escrever, é fácil, mas é mais difícil
garantir que seja escrito de uma maneira fácil de entender, fácil de manter e valioso
o suficiente para que membros da equipe não técnicos participem ativamente de sua
criação. Essa é a arte da formulação que ensinamos neste livro.

Como ler este livro

Este livro contém muitas dicas e truques para ajudá-lo a escrever cenários de
BDD melhores, além de apontar algumas práticas a serem evitadas. Para facilitar

¹https://cucumber.io/
²https://specflow.org/
³https://reqnroll.net/
⁴https://jbehave.org/
⁵https://github.com/behave/behave
⁶https://docs.behat.org/

https://cucumber.io/
https://specflow.org/
https://reqnroll.net/
https://jbehave.org/
https://github.com/behave/behave
https://docs.behat.org/
https://cucumber.io/
https://specflow.org/
https://reqnroll.net/
https://jbehave.org/
https://github.com/behave/behave
https://docs.behat.org/

Prefácio vi

o entendimento, agrupamos nossos conselhos de acordo com o tipo de problema que
nossa equipe WIMP está tentando resolver.

• Capítulo 1, “O que é formulação??”, introduz o conceito de formulação, seu
papel entre as práticas comuns de BDD (descoberta, formulação, automação) e
define os elementos mais importantes de terminologia.

• Capítulo 2, “Limpando um cenário antigo”, mostra como um cenário de BDD
“ruim” pode ser corrigido e introduz o acrônimo BRIEF que captura os seis
princípios essenciais de bons cenários.

• Capítulo 3, “Nossa primeira funcionalidade”, guia você através de um arquivo
de funcionalidade completo criado pela equipe WIMP. Através disso, mostra-
mos a conexão entre os cenários de BDD e os requisitos discutidos durante
a descoberta. Também aprendemos sobre os elementos fundamentais de um
arquivo de funcionalidade.

• Capítulo 4, “Uma nova história de usuário”, guia você pelas discussões e
decisões importantes da equipe WIMP enquanto formulam um novo cenário.
Mostramos como os acordos resultantes levam a um progresso mais rápido para
cenários subsequentes.

• Capítulo 5, “Organizando a documentação”, foca nos desafios que as equipes
frequentemente enfrentam quando têm muitos arquivos de funcionalidade.
Conforme a equipe WIMP estrutura seu arquivo de funcionalidade, esclare-
cemos a diferença entre estrutura baseada em histórias e em funcionalidade,
explicamos como os cenários podem ser usados eficientemente como documen-
tação e exploramos a formulação de funcionalidades compartilhadas e cenários
de jornada.

• Capítulo 6, “Lidando com o legado”, discute como o BDD pode ser introduzido
em um projeto legado. Você verá quais estratégias incrementais podem funcio-
nar e como lidar com scripts de teste manual existentes.

Em cada capítulo, a equipe WIMP enfrenta novos problemas e considera quais
técnicas aplicar. Para enfatizar que não há “melhores práticas” gerais, seguimos as
discussões da equipe enquanto consideram alternativas, efeitos colaterais e com-
pensações. Lembre-se, no entanto, que este é um exemplo simplificado e, portanto,
algumas discussões podem ser incompletas.

Prefácio vii

Todas as informações necessárias para acompanhar estão no texto do livro, mas se
preferir, você pode baixar o código-fonte para cada capítulo (veja Recursos online,
mais adiante neste capítulo).

Além dos seis capítulos principais, os Apêndices contêm uma folha de referência
rápida de Gherkin para fornecer uma visão geral rápida dos recursos do Gherkin.
Em seguida, há duas listas de navegação que ajudam você a encontrar detalhes no
livro relacionados aos elementos do Gherkin e aos “problemas de formulação”. Os
Apêndices também incluem os arquivos finais de funcionalidades que a equipeWIMP
criou.

Regras e exemplos

A descoberta é alcançada em uma sessão colaborativa durante a qual a equipe de
entrega explora sua compreensão dos requisitos de uma história usando exemplos
concretos. No mínimo, as perspectivas de negócios, desenvolvimento e teste devem
estar representadas. Recomendamos que a oficina utilize o Mapeamento de Exem-
plos⁷.

O escopo de uma história de usuário é definido pelas regras que serão implementadas
por sua entrega. Regra é um sinônimo para requisito de negócio e critério de aceitação.

Cada regra é ilustrada por vários exemplos concretos que garantem que não haja
ambiguidade na interpretação da regra. Cada exemplo descreve uma instância
concreta da aplicação da regra ao documentar o resultado esperado que deve resultar
de uma ação específica ocorrendo em um determinado contexto.

Exemplos devem ser capturados em qualquer formato relevante e conciso (como
listas de itens, wireframes, diagramas de fluxo ou tabelas verdade). Neste livro,
mostraremos como formular exemplos concretos em uma documentação legível para
negócios. Uma vez automatizados, isso se torna uma documentação viva que pode ser
confiavelmente usada para descrever com precisão o comportamento real do sistema.

Juntas, as regras e exemplos especificam o comportamento esperado do sistema.

⁷https://cucumber.io/blog/bdd/example-mapping-introduction/

https://cucumber.io/blog/bdd/example-mapping-introduction/
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://cucumber.io/blog/bdd/example-mapping-introduction/

Prefácio viii

BDD precisa de testadores qualificados

Os testadores continuam desempenhando um papel crucial em equipes que ado-
tam uma abordagem orientada pelo comportamento. Ainda assim, frequentemente
ouvimos falar de organizações que parecem acreditar que a automação de testes
reduz a necessidade de testadores. Sentimos que é importante reiterar que isso não
é verdadeiro. Pode chegar um momento em que a inteligência artificial consiga
automatizar todos os aspectos do desenvolvimento de software, mas por enquanto
continuamos a depender de profissionais qualificados e humanos em todas as etapas
da especificação e entrega.

Apesar dos enormes benefícios da automação de testes, as organizações devem fazer
tudo o que podem para manter testadores qualificados, especialmente aqueles com
um extenso conhecimento de domínio, porque:

• a experiência e perspectiva de um testador são essenciais durante a descoberta;
• existem uma ampla gama de técnicas de teste especializadas que são valiosas
ao longo do ciclo de vida do desenvolvimento, e;

• o teste exploratório requer um profundo conhecimento de teste e do domínio
do problema.

Certamente faz sentido oferecer treinamento em habilidades de desenvolvimento
para testadores, da mesma forma que faz sentido oferecer treinamento em habili-
dades de teste para desenvolvedores. No entanto, a organização deve reconhecer
que o conhecimento de domínio é muito valioso para ser desperdiçado. Ofertas
de desenvolvimento de habilidades cruzadas devem ser voluntárias, tanto na teoria
quanto na prática.

Por que você deveria nos ouvir

Gáspár é o criador do SpecFlow, o framework BDD mais amplamente utilizado para
.NET.

Ele é um coach independente, treinador e especialista em automação de testes, focado
em ajudar equipes a implementar BDD e SpecFlow através de sua empresa, Spec

Prefácio ix

Solutions. Com mais de 20 anos de experiência no desenvolvimento de software
empresarial, atuou como arquiteto e coach ágil de desenvolvedores.

le compartilha dicas úteis relacionadas ao BDD e automação de testes em seu blog⁸
e no Twitter (@gasparnagy). Ele também edita um boletim mensal⁹ com artigos
interessantes, vídeos e notícias sobre BDD, SpecFlow e Cucumber.

Ele também trabalha em uma extensão de código aberto para Visual Studio para
SpecFlow, chamada Deveroom¹⁰ e em uma ferramenta que pode sincronizar cenários
com o Azure DevOps, chamada SpecSync¹¹.

Seb tem sido consultor, coach, designer, analista e desenvolvedor por mais de 40
anos. Ele esteve envolvido no ciclo completo de desenvolvimento, com experiência
que vai desde arquitetura até suporte técnico, e trabalhou para empresas grandes
(como IBM e Amazon) e pequenas. Seb possui ampla experiência em projetos que
não tiveram sucesso. Atualmente, ele é líder de Melhoria Contínua na SmartBear,
ajudando a aplicar as lições que aprendeu nas práticas internas de desenvolvimento
e nos roteiros de produtos.

Seb é palestrante regular em conferências, autor colaborador do livro 97 Things Every
Programmer Should Know (O’Reilly) e autor principal do The Cucumber for Java
Book (Pragmatic Programmers).

Ele escreve em seu blog em cucumber.io¹² e compartilha conteúdo no Twitter como
@sebrose.

Juntos, Seb e Gáspár possuem mais de 60 anos de experiência em software, que eles
utilizam para desenvolver e fornecer treinamento e coaching para organizações em
todo o mundo. Se você estiver interessado nos serviços que eles oferecem, entre em
contato pelo email services@bddbooks.com.

Recursos online

• Série de Livros BDD: http://bddbooks.com

⁸http://gasparnagy.com
⁹http://bddaddict.com
¹⁰https://github.com/specsolutions/deveroom-visualstudio
¹¹https://www.specsolutions.eu/services/specsync/
¹²https://cucumber.io/blog

http://gasparnagy.com/
http://bddaddict.com/
https://github.com/specsolutions/deveroom-visualstudio
https://www.specsolutions.eu/services/specsync/
https://cucumber.io/blog
http://gasparnagy.com/
http://bddaddict.com/
https://github.com/specsolutions/deveroom-visualstudio
https://www.specsolutions.eu/services/specsync/
https://cucumber.io/blog

Prefácio x

• Recursos para este livro: http://bddbooks.com/resources/formulation
• Figuras do livro: http://bddbooks.com/resources/formulation/figures
• Arquivos do projeto WIMP (arquivos de funcionalidade):
https://github.com/bddbooks/bddbooks-formulation-wimp

Agradecimentos

Este livro não teria sido possível sem a ajuda de: Gojko Adzic, Emily Bache, Abby
Bangser, Lisa Crispin, Gary Fleming, Markus Gärtner, Janet Gregory, John Ferguson
Smart, Aslak Hellesøy, Claude Hanhart, Kevlin Henney, Angie Jones, Heidi Kinsey,
Liz Keogh, Ailsa Laing, Cyrille Martaire, Rob McBryde, Ken Pugh, Tom Roden,
Johanna Rothman, Daniel Terhorst-North, Joe Wright, Matt Wynne.

Esta tradução não teria sido possível sem a ajuda de nossos revisores:

• Jonas Lima Fleck
• Marcos Machado Duarte

Seb Rose e Gáspár Nagy, 2021

Capítulo 2 – Limpando um
cenário antigo
A linguagem Gherkin é usada por milhares de organizações em todo o mundo,
e é comum encontrar cenários longos, complexos e ilegíveis em seus projetos.
Infelizmente cenários longos, complexos e ilegíveis não promovem entendimento
compartilhado em sua organização e exigem da sua equipe esforços constantes para
mantê-los. Limpar cenários como esses atenuam os problemas citados e também
oferecem uma boa oportunidade para aprender mais sobre o seu domínio.

Nesse capítulo você vai aprender os princípios básicos da formulação ao seguir a
equipe WIMP enquanto eles pegam um cenário mal formulado e o melhoram. Nós
olharemos mais a fundo a aplicação do BDD em projetos legados no Capítulo 6,
“Lidando com o legado”.

2.1 – O cenário antigo

A aplicação Onde Está Minha Pizza (WIMP, no inglês) permite que os clientes
façam pedidos e os busque no restaurante (retirada pelo cliente)”. Também é possível
pagar o pedido apenas na retirada (pagamento na retirada). Houve alguns problemas
com pedidos que nunca foram retirados ou pagos. Patricia, a dona do produto
(PO, no inglês), recebeu a tarefa de desenvolver uma funcionalidade que reduza
este problema, então ela está tentando entender a implementação existente das
funcionalidades de retirada pelo cliente e pagamento na retirada.

Na preparação para a oficina de requisitos Patricia, Tula e Daiana se encontraram
para identificar os cenários existentes que ilustram o processo de pedido em que o
cliente faz a retirada. Elas encontraram somente um cenário (ver Listagem 1 abaixo),
que foi escrito quando o projeto usou cenários para testes, ao invés de usá-los para
facilitar a colaboração e o BDD.

Capítulo 2 – Limpando um cenário antigo 2

Membros da equipe WIMP
Para tornar mais fácil acompanhar, as iniciais dos membros descrevem seus
papéis:

• Daniel – desenvolvedor
• Daiana – desenvolvedora
• Eva – estagiária
• Patricia – dona do produto (PO, no inglês)
• Tula – testadora (QA, no inglês)
• Ulisses – experiência de usuário (UX, no inglês)

Patricia projeta o cenário para todos lerem.

Listagem 1 – O cenário antigo

1 Cenário: Teste de Pedido
2 Dado que o horário é "11:00"
3 Dado que o cliente acessa "http://teste.WIMP.com/"
4 E preenche "Margherita" para "TextoDaBusca"
5 Quando clica em "Buscar"
6 Então deve ver "Marguerita" em "ResultadosDaBusca"
7 E seleciona "Médio" em "Tamanho"
8 Quando clica em "Adicionar ao carrinho"
9 Então deve ver "1 item" em "ContadorDeItensDoCarrinho"

10 Quando ele clica em "Fechar pedido"
11 E ele seleciona "Retirar no restaurante" em "InstrucoesDeEntrega"
12 E ele seleciona "Pagar na retirada" em "OpcoesDePagamento"
13 E preenche "Marvin" para "NomeDoContato"
14 E preenche "12334456" para "NumeroDeTelefoneDoContato"
15 Quando ele clica em "Fechar pedido"
16 Então ele deve ver "MensagemDeSucesso"
17 Então ele não vê "MensagemDeErro"
18 E ele deve ver "Obrigado pelo seu pedido!" em "MensagemDeSucesso"
19 E ele deve ver "11:20" em "HoraDaRetirada"
20 E ele deve ver "$14" em "ValorTotal"

Capítulo 2 – Limpando um cenário antigo 3

Princípios básicos do Gherkin
A linguagemGherkin permite que as organizações escrevam especificações
de negócio legíveis que também podem ser usadas como testes automati-
zados. É escrita em feature files, que são arquivos de texto não formatado
com a extensão .feature.

Cada arquivo de funcionalidade (feature file, em inglês) contém umoumais
cenários. Cada cenário é composto de um oumais passos. Cada passo inicia
com uma das 5 palavras chave: Dado, Quando, Então, E, Mas

“Dado”, “Quando”, “Então” introduzem respectivamente as seções de con-
texto, ação e resultado esperado de um cenário. (VejaDiscovery [Nagy2018,
Capítulo 3]). “E” e “Mas” são conjunções que continuam a seção atual. Nós
cobrimos a maior parte da sintaxe da linguagem Gherkin em Seção 3.1,
“Arquivos de funcionalidade” e Seção 3.3, “Fundamentos do Gherkin”. Veja
Lista de Atalhos do Gherkin? in the Apêndices para mais detalhes.

“Eu não acho que eu já tenha visto este cenário antes,” diz Patricia. “Ele
não é fácil de ler como aqueles nós geralmente escrevemos.”

“Você está certa,” responde Tula, “Ele não foi escrito para ilustrar uma
regra específica. Eu o escrevi como um teste de regressão automatizado.
Há muito aqui que queremos reescrever.”

“É muito longo e envolve muitas regras diferentes,” diz Daiana. “Deve ser
por essa razão que ele é difícil de manter atualizado. Na última vez que
este cenário falhou nós passamos muito tempo tentando entender o que
havia dado errado.”

“Vamos melhorar esse cenário, então?” diz Patricia. “Talvez nós devería-
mos tentar aplicar os princípios BRIEF aqui.”

Capítulo 2 – Limpando um cenário antigo 4

2.2 – Mantenha seus cenários BREVES (BRIEF,
no inglês)

Ao longo dos anos que a linguagem Gherkin tem sido usada, uma proposta para
escrever cenários tem evoluído. Porque a linguagem Gherkin é muito próxima da
linguagem natural ela se torna fácil de aprender, mas assim como escrever relatórios
e histórias, requer prática para fazer bem. Existem três objetivos principais que
nós temos que ter em mente quando escrevemos cenários, que dão origem aos seis
princípios encapsulados pelo acrônimo BRIEF.

Os objetivos

Cenários devem ser pensados como documentação, não como testes Nós escre-
vemos cenários para ilustrar e esclarecer o comportamento esperado do sistema. O
objetivo é ser descritivo, não exaustivo.

Cenários devem habilitar colaboração entre negócio e entrega, não inibir.
Cenários devem ser escritos de modo que possam ser entendidos por todos que
contribuem para a criação e a evolução do sistema.

Cenários devem suportar a evolução do produto, não obstruir. Cenários que
ilustram um comportamento específico não precisam ser alterados quandomudanças
de comportamento não relacionadas alteram.

Os princípios

Os 6 princípios abaixo trabalham juntos para suportar os objetivos descritos acima.
Para serem mais fáceis de lembrar, nós os organizamos de modo que a primeira letra
de cada princípio encaixe em um acrônimo, BRIEF, que por sua vez representa o sexto
princípio.

Capítulo 2 – Limpando um cenário antigo 5

B linguagem de negócio, B de business Terminologia de negócio facilita a
colaboração entre as disciplinas

R Dados reais, R de real Uso de dados reais ajuda a revelar
suposições e casos limite

I Intenção revelada Descreve os resultados desejados, ao invés
do mecanismo de como eles são alcançados

E Essencial Omite qualquer informação que não ilustra
diretamente o comportamento

F Focado Cada cenário deve ilustrar uma única regra

Breve Cenários curtos são mais fáceis de ler, de
entender e de manter

Linguagem de negócio: As palavras usadas em um cenário devem ser extraídas do
domínio de negócio. Sistema de software precisam entregar valor de negócio, sendo
assim os termos de negócio devem entendidos por todos os envolvidos na entrega
do sistema. Portanto, nós deveríamos usar a linguagem de negócio para habilitar
colaboração e garantir alinhamento.

Dados reais: Em Discovery [Nagy2018, Seção 3.1], nós explicamos que os exemplos
devem usar dados reais e concretos. Isto ajuda a expor mais cedo no processo de
desenvolvimento as condições limítrofes (também conhecidas como casos limítrofes)
e as suposições subentendidas. Quando escrevendo cenários, nós deveríamos também
usar dados reais quando isto ajuda a revelar intenção.

Intenção revelada: Cenários deveriam relevar a intenção que os atores no cenários
estão tentando alcançar, ao invés de descrever omecanismo usado para alcançar algo.
Nós deveríamos iniciar definindo um nome pro cenário que revela sua intenção, e
em seguida garantir que cada linha no cenário descreva intenção, e não mecanismo.

Essencial: O propósito de um cenário é ilustrar como uma regra deveria se comportar.
Qualquer parte de um cenário que não contribui diretamente para este propósito é
incidental e deveria ser removida. Se eles são importantes para o sistema, eles serão
cobertos em outros cenários que ilustram outras regras. Adicionalmente, qualquer
cenário que não adicione entendimento ao leitor sobre o comportamento esperado
não tem lugar na documentação.

Focado: A maior parte dos cenários devem ser focas em ilustrar uma única regra.

Capítulo 2 – Limpando um cenário antigo 6

É mais fácil atender esse princípio se você deriva seus cenários dos exemplos
capturados durante uma oficina de requisitos.

Por último, mas não menos importante, cenários devem ser breves, tanto quanto
devem ser BRIEF.

Breve: Nós sugerimos que você tente restringir a maior parte de seus cenários a cinco
passos ou menos. Isto os fará mais fáceis de ler e muito mais fáceis de entender.

No restante deste capítulo, você verá a equipe aplicar estes princípios. Nos próximos
capítulos, nós iremos nos aprofundar e ver o BRIEF aplicado à escrita de novos
cenários. Nós indicaremos quais princípios do BRIEF a equipe aplica em cada seção
ao destacá-los com este símbolo:

Linguagem de negócio (B), Essencial

História do Seb: Acrônimos
Gáspár e eu temos explicado os conceitos por trás por muitos anos, mas nós
nunca conseguimos criar um acrônimo memorável. em uma das nossas oficinas
“Escrevendo Cenários BDD Melhores” na European Testing Conference em 2018
nós tivemos Gojko Adzic na audiência. Ele pareceu curtir a oficina, mas gastou
algum tempo rabiscando em um pedaço de papel. No fim da oficina ele veio e nos
contou que ele tinha tentado (mas falhado) em transformar nossos tópicos em um
acrônimo. “Isto funcionou para o acrônimo INVEST do Bill Wake.”

Nós seguimos o conselho, e BRIEF é o resultado. Agradecemos por nos encorajar,
Gojko!

https://en.wikipedia.org/wiki/INVEST_(mnemonic)

https://en.wikipedia.org/wiki/INVEST_(mnemonic)
https://en.wikipedia.org/wiki/INVEST_(mnemonic)

	Sumário
	Prefácio por Angie Jones
	Prefácio por Daniel Terhorst-North
	Prefácio
	O projeto WIMP
	Para quem é este livro
	Por que você deve ler este livro
	Como ler este livro
	Regras e exemplos
	BDD precisa de testadores qualificados
	Por que você deveria nos ouvir
	Recursos online
	Agradecimentos

	Capítulo 2 – Limpando um cenário antigo
	2.1 – O cenário antigo
	2.2 – Mantenha seus cenários BREVES (BRIEF, no inglês)

