THE BDD BOOKS

Formula¢ao

Documentando exemplos com Dado/Quando/Entao

Leitura obrigatérig para qualguer
pessoa que estejq embarcando
€m sua jornada Bpp

— Danijel Terhorst—/\/arth

Seb Rose
e Gaspar Nagy

Apresenta¢ao por Angie Jones
¢ Daniel Terhorst-North

Tradu¢io de Tula Valle Machado
¢ Vinicius Rodrigues Nunes

The BDD Books - Formulacao

Documentando exemplos com cenarios Gherkin

Seb Rose, Gaspar Nagy, Tula Valle Machado, e Vinicius
Rodrigues Nunes

Esse livro esta a venda em http://leanpub.com/bddbooks-formulation-pt

Essa versao foi publicada em 2024-12-03

)

Leanpub

Esse é um livro Leanpub. A Leanpub da poderes aos autores e editores a partir do
processo de Publicagdo Lean. Publicagdo Lean é a agdo de publicar um ebook em
desenvolvimento com ferramentas leves e muitas iteracdes para conseguir
feedbacks dos leitores, pivotar até que vocé tenha o livro ideal e entdo conseguir
tracao.

© 2024 Seb Rose, Gaspar Nagy, Tula Valle Machado, e Vinicius Rodrigues Nunes

http://leanpub.com/bddbooks-formulation-pt
https://leanpub.com/
https://leanpub.com/manifesto

Tweet Sobre Esse Livro!

Por favor ajude Seb Rose, Gaspar Nagy, Tula Valle Machado, e Vinicius Rodrigues
Nunes a divulgar esse livro no Twitter!

A hashtag sugerida para esse livro é #bddbooks.

Descubra o que as outras pessoas estdo falando sobre esse livro clicando nesse link
para buscar a hashtag no Twitter:

#bddbooks

http://twitter.com
https://twitter.com/search?q=%23bddbooks
https://twitter.com/search?q=%23bddbooks

Conteudo

Prefacio por Angie Jones o i
Prefacio por Daniel Terhorst-North ii
Prefacio iii
Oprojeto WIMP e iv
Paraqueméestelivro iv
Por que vocé deve lerestelivro L. v
Como lerestelivro L v
Regraseexemplos vii
BDD precisa de testadores qualificados viii
Por que vocé deverianos ouvir viii
Recursosonline ix
Agradecimentos X
Capitulo 2 - Limpando um cenario antigo
21-0Ocendrioantigo

2.2 — Mantenha seus cenarios BREVES (BRIEF, no inglés) 4

Prefacio por Angie Jones

Sou uma grande defensora da frase “mostre, ndo conte”, especialmente no que diz
respeito ao desenvolvimento de software. Muitos especialistas estdo constantemente
nos dizendo o que deveriamos estar fazendo, mas oferecem poucos exemplos que
realmente nos mostram como fazer isso.

Com o Gherkin néo é diferente. Uma simples pesquisa na internet resulta em artigo
apos artigo explicando como as equipes afirmam praticar o desenvolvimento guiado
por comportamento (BDD), mas falham no objetivo principal desse processo, que é
comunicar-se cedo no processo de desenvolvimento para garantir que a equipe esteja
construindo a coisa certa. Poucos desses artigos abordam como fazer isso de forma
eficaz.

Fiquei encantada ao saber que Seb e Gaspar aceitaram o desafio de abordar essa
lacuna, proporcionando um livro inteiro explicando como escrever cendrios em
Gherkin de maneira eficaz, o que ajudara nos seus esforcos gerais de BDD.

Eles fazem um trabalho maravilhoso ao compartilhar histérias para dar contexto ao
seu raciocinio. Eles tiram proveito de sua vasta experiéncia para cobrir minuciosa-
mente a rica linguagem Gherkin. Eles ndo poupam esfor¢os ao explicar o como e o
porqueé.

Este livro é para equipes comprometidas em colaborar de maneira eficaz para
construir software de qualidade. Se aplicadas, essas licoes abrangentes certamente
colocardo qualquer equipe de software no caminho certo, ndo importa qual tenha
sido sua experiéncia anterior com BDD.

Prepare-se! Vocé esta prestes a embarcar em uma jornada emocionante!

Angie Jones

Prefacio por Daniel
Terhorst-North

Em 2003, quando tentei pela primeira vez enquadrar o desenvolvimento guiado por
testes sem usar a palavra “teste””, eu nao fazia ideia de onde isso levaria. Ao longo do
caminho, tive a sorte de conhecer pessoas brilhantes como Seb Rose e Gaspar Nagy
que, ao longo de quase duas décadas, foram fundamentais na evolugdo do BDD em
um panorama rico e detalhado de colaboragao e criagao de valor.

Pode-se argumentar que a formulagdo é a disciplina menos compreendida do
BDD. Muito tem sido escrito sobre colaboracdo e entendimento compartilhado, e a
automacao é onde a maioria das pessoas comega com o BDD. Para mim, a formulagao
¢ onde reside o verdadeiro poder e alavancagem do BDD.

E necesséario habilidade e experiéncia para capturar “o contexto, todo o contexto e
nada além do contexto” de um cenério para descrever o comportamento desejado
de um produto digital. Gaspar e Seb fizeram um trabalho magistral ao fornecer um
tratamento abrangente e acessivel de um tdépico complexo, com muitos exemplos e
ilustragoes para guiar o caminho.

Me peguei concordando com cada capitulo e cada historia. As notas de rodapé por si
s6 sdo ouro puro. Como exemplo, ndo sei se foi deliberado, mas a secao deles sobre o
acronimo BRIEF é uma mini-aula autorreferencial. Ela usa a Linguagem de Negocios
do BDD, trabalha através de um exemplo Real, é Reveladora de Intencgoes, contém
apenas informacoes Essenciais e € Focada em uma coisa.

Reconhec¢o muito da minha propria experiéncia nestas paginas, mas além disso, uma
articulacdo de coisas que sdo “6bvias quando vocé as diz em voz alta”. Este livro
deve ser leitura obrigatéria para qualquer um que esteja comecando sua jornada
com BDD e servira como um refresco oportuno e uma referéncia indispensavel para
aqueles que estdo mais adiantados.

Daniel Terhorst-North

Prefacio

Desenvolvimento Guiado por Comportamento (BDD) é uma abordagem agil para
entregar software, compreendendo trés praticas centrais do BDD: descoberta, for-
mulacido e automacao.

« Descoberta — cria uma compreensdo compartilhada dos requisitos através da
colaboracdo, geralmente alcancada por meio de uma conversa estruturada
centrada em regras e exemplos.

« Formulacdo - exemplos do comportamento do sistema sdo documentados
usando terminologia de negocios.

» Automacio — a documentacao é automatizada, criando uma documentacao viva
que verifica o comportamento do sistema.

A série de livros BDD Books guia vocé na adogdo completa do BDD, incluindo
praticas especificas necessarias para conduzir o desenvolvimento usando especifica-
cOes escritas colaborativamente e documentacio viva. Este é o segundo livro da série
de livros de BDD e apresenta uma imersdo profunda na pratica de formulagao do
BDD - a escrita de especificagdes executaveis em um formato legivel por pessoas de
negocios.

O primeiro livro cobriu a pratica de descoberta do BDD e recomendamos fortemente
que vocé leia primeiro o Descoberta — Explorar comportamento usando exemplos
(Livro 1) [Nagy2018]. Uma vez que vocé tenha praticado a formulag¢do usando os
principios que delineamos neste livro, vocé pode ler Automacdo com SpecFlow (Livro
3) [NagyInPrep].

Muitas equipes de desenvolvimento adotam o BDD com o desejo de melhorar
sua automacdo de testes. Melhorar a automacdo de testes é um dos resultados
significativos de seguir a abordagem BDD, mas é um resultado secundario. A menos
que vocé adote as praticas na ordem descrita (descoberta, formulagdao, automacgao),
vocé nao obtera os beneficios esperados.

Prefacio iv

Por outro lado, vocé alcangara melhorias significativas em suas atividades de desen-
volvimento de software apenas praticando descoberta por si s6. Adicione formulagdo
e vocé obtera beneficios adicionais ao desenvolver uma linguagem verdadeiramente
ubiqua através de um processo ativo de revisdo e feedback. Automacdo entdo
transforma os cenarios em uma especificagio executavel que guia o desenvolvimento
e fornece uma rede de segurancga durante a manutencao, além de documentacéo viva
legivel por pessoas de negdcios que é garantida estar atualizada.

Equipes que seguem o conselho que apresentamos tém a melhor chance de criar uma
documentacéo viva valiosa que guiara o desenvolvimento, envolvera stakeholders de
negocios e reduzira o custo de manutencao e melhorias.

O projeto WIMP

A série de livros de BDD segue uma equipe imaginaria desenvolvendo o Onde Esta
Minha Pizza (WIMP) O WIMP é um aplicativo de gerenciamento de entrega de pizzas
para uma grande empresa de pizzas. O aplicativo permitira que os clientes rastreiem
a localizacdo em tempo real de seus pedidos. A equipe WIMP é composta pelos
seguintes membros, sendo a primeira letra de seus nomes indicativa de seu papel
na equipe:

« Patricia — dono do produto (PO, no inglés)

« Daniel — desenvolvedor

« Daiana — desenvolvedor

+ Eva - estagiario

+ Tula - testador (QA, no inglés)

« Ulisses — experiéncia do usuario (UX, no inglés)

Em Formulagdo, seguimos a equipe WIMP enquanto eles praticam suas habilidades
de formulacdo usando Gherkin, o formato de especificacdo compreendido pelo
Cucumber, Reqnroll e SpecFlow.

Para quem é este livro

Este livro é escrito para todos envolvidos na especificacdo e entrega de software
(incluindo donos de produtos, analistas de negécios, desenvolvedores e testadores).

Prefacio \%

Vocé néo precisa de experiéncia prévia com BDD. O livro descreve como todos os
stakeholders precisam estar envolvidos na criacdo da especificagdo de um produto.
Como vocé se envolve dependera de suas habilidades, seus outros compromissos e
uma série de outros fatores, mas o envolvimento de todos é essencial. Se vocé cria as
palavras, digita ou fornece feedback construtivo, encontrara este livro indispensavel.

Vale ressaltar que enquanto Discovery [Nagy2018] é completamente agndstico em
relacdo a ferramentas, este livro esta focado em ferramentas que entendem a sintaxe
Gherkin. Isso engloba uma grande quantidade de ferramentas, incluindo Cucumber,
SpecFlow?, Reqnroll®, JBehave*, Behave®, e Behat®.

Por que vocé deve ler este livro

Sua equipe pode entender o que precisa ser entregue ao sair de uma oficina de
requisitos, mas e as pessoas que ndo estavam na reunido, ou os proprios participantes
no futuro quando forem encarregados de corrigir um defeito um ano depois? Neste
livro, mostramos como capturar essa compreensao usando Gherkin. Gherkin permite
que vocé escreva especificagdes usando sua propria linguagem de negocios que é
compreensivel por todos na equipe, mas suficientemente estruturada para também
ser entendida por ferramentas de automacao.

Porque a estrutura do Gherkin é tao simples de escrever, é facil, mas é mais dificil
garantir que seja escrito de uma maneira facil de entender, facil de manter e valioso
o suficiente para que membros da equipe nao técnicos participem ativamente de sua
criacdo. Essa é a arte da formulagdo que ensinamos neste livro.

Como ler este livro

Este livro contém muitas dicas e truques para ajuda-lo a escrever cenarios de
BDD melhores, além de apontar algumas praticas a serem evitadas. Para facilitar

'https://cucumber.io/
*https://specflow.org/
*https://reqnroll.net/
“https://jbehave.org/
*https://github.com/behave/behave
“https://docs.behat.org/

https://cucumber.io/
https://specflow.org/
https://reqnroll.net/
https://jbehave.org/
https://github.com/behave/behave
https://docs.behat.org/
https://cucumber.io/
https://specflow.org/
https://reqnroll.net/
https://jbehave.org/
https://github.com/behave/behave
https://docs.behat.org/

Prefacio vi

o entendimento, agrupamos nossos conselhos de acordo com o tipo de problema que
nossa equipe WIMP esta tentando resolver.

Capitulo 1, “O que é formula¢ido??”, introduz o conceito de formulagdo, seu
papel entre as praticas comuns de BDD (descoberta, formulacao, automacéo) e
define os elementos mais importantes de terminologia.
Capitulo 2, “Limpando um cenério antigo”, mostra como um cenario de BDD
“ruim” pode ser corrigido e introduz o acrénimo BRIEF que captura os seis
principios essenciais de bons cenarios.
Capitulo 3, “Nossa primeira funcionalidade”, guia vocé através de um arquivo
de funcionalidade completo criado pela equipe WIMP. Através disso, mostra-
mos a conexao entre os cenarios de BDD e os requisitos discutidos durante
a descoberta. Também aprendemos sobre os elementos fundamentais de um
arquivo de funcionalidade.
Capitulo 4, “Uma nova histéria de usuario”, guia vocé pelas discussdes e
decisdes importantes da equipe WIMP enquanto formulam um novo cenario.
Mostramos como os acordos resultantes levam a um progresso mais rapido para
cenarios subsequentes.
Capitulo 5, “Organizando a documentacio”, foca nos desafios que as equipes
frequentemente enfrentam quando tém muitos arquivos de funcionalidade.
Conforme a equipe WIMP estrutura seu arquivo de funcionalidade, esclare-
cemos a diferenca entre estrutura baseada em histdorias e em funcionalidade,
explicamos como os cenarios podem ser usados eficientemente como documen-
S0 6 ex ulaca uncionali . .
tacdo e exploramos a formulacdo de funcionalidades compartilhadas e cenarios
de jornada.
Capitulo 6, “Lidando com o legado”, discute como o BDD pode ser introduzido
em um projeto legado. Vocé vera quais estratégias incrementais podem funcio-
nar e como lidar com scripts de teste manual existentes.

Em cada capitulo, a equipe WIMP enfrenta novos problemas e considera quais
técnicas aplicar. Para enfatizar que ndo ha “melhores praticas” gerais, seguimos as
discussdes da equipe enquanto consideram alternativas, efeitos colaterais e com-
pensagdes. Lembre-se, no entanto, que este é um exemplo simplificado e, portanto,
algumas discussdes podem ser incompletas.

Prefacio vii

Todas as informagdes necessarias para acompanhar estdo no texto do livro, mas se
preferir, vocé pode baixar o cédigo-fonte para cada capitulo (veja Recursos online,
mais adiante neste capitulo).

Além dos seis capitulos principais, os Apéndices contém uma folha de referéncia
rapida de Gherkin para fornecer uma visdo geral rapida dos recursos do Gherkin.
Em seguida, ha duas listas de navegagido que ajudam vocé a encontrar detalhes no
livro relacionados aos elementos do Gherkin e aos “problemas de formulagdo”. Os
Apéndices também incluem os arquivos finais de funcionalidades que a equipe WIMP
criou.

Regras e exemplos

A descoberta é alcancada em uma sessdo colaborativa durante a qual a equipe de
entrega explora sua compreensao dos requisitos de uma historia usando exemplos
concretos. No minimo, as perspectivas de negdcios, desenvolvimento e teste devem
estar representadas. Recomendamos que a oficina utilize 0 Mapeamento de Exem-

plos’.

O escopo de uma historia de usudrio é definido pelas regras que serdo implementadas
por sua entrega. Regra é um sindnimo para requisito de negdcio e critério de aceitagao.

Cada regra ¢é ilustrada por varios exemplos concretos que garantem que nao haja
ambiguidade na interpretacdo da regra. Cada exemplo descreve uma instancia
concreta da aplicagdo da regra ao documentar o resultado esperado que deve resultar
de uma acdo especifica ocorrendo em um determinado contexto.

Exemplos devem ser capturados em qualquer formato relevante e conciso (como
listas de itens, wireframes, diagramas de fluxo ou tabelas verdade). Neste livro,
mostraremos como formular exemplos concretos em uma documentagao legivel para
negoécios. Uma vez automatizados, isso se torna uma documentacdo viva que pode ser
confiavelmente usada para descrever com precisdo o comportamento real do sistema.

Juntas, as regras e exemplos especificam o comportamento esperado do sistema.

"https://cucumber.io/blog/bdd/example- mapping-introduction/

https://cucumber.io/blog/bdd/example-mapping-introduction/
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://cucumber.io/blog/bdd/example-mapping-introduction/

Prefécio viii
BDD precisa de testadores qualificados

Os testadores continuam desempenhando um papel crucial em equipes que ado-
tam uma abordagem orientada pelo comportamento. Ainda assim, frequentemente
ouvimos falar de organizagdes que parecem acreditar que a automacdo de testes
reduz a necessidade de testadores. Sentimos que é importante reiterar que isso nao
¢ verdadeiro. Pode chegar um momento em que a inteligéncia artificial consiga
automatizar todos os aspectos do desenvolvimento de software, mas por enquanto
continuamos a depender de profissionais qualificados e humanos em todas as etapas
da especificacdo e entrega.

Apesar dos enormes beneficios da automacao de testes, as organizagdes devem fazer
tudo o que podem para manter testadores qualificados, especialmente aqueles com
um extenso conhecimento de dominio, porque:

« a experiéncia e perspectiva de um testador sdo essenciais durante a descoberta;

« existem uma ampla gama de técnicas de teste especializadas que sao valiosas
ao longo do ciclo de vida do desenvolvimento, e;

« 0 teste exploratério requer um profundo conhecimento de teste e do dominio
do problema.

Certamente faz sentido oferecer treinamento em habilidades de desenvolvimento
para testadores, da mesma forma que faz sentido oferecer treinamento em habili-
dades de teste para desenvolvedores. No entanto, a organizacido deve reconhecer
que o conhecimento de dominio é muito valioso para ser desperdigado. Ofertas
de desenvolvimento de habilidades cruzadas devem ser voluntarias, tanto na teoria
quanto na pratica.

Por que vocé deveria nos ouvir

Gaspar ¢ o criador do SpecFlow, o framework BDD mais amplamente utilizado para
NET.

Ele é um coach independente, treinador e especialista em automacao de testes, focado
em ajudar equipes a implementar BDD e SpecFlow através de sua empresa, Spec

Prefacio ix

Solutions. Com mais de 20 anos de experiéncia no desenvolvimento de software
empresarial, atuou como arquiteto e coach agil de desenvolvedores.

le compartilha dicas uteis relacionadas ao BDD e automacéao de testes em seu blog®
e no Twitter (@gasparnagy). Ele também edita um boletim mensal® com artigos
interessantes, videos e noticias sobre BDD, SpecFlow e Cucumber.

Ele também trabalha em uma extensao de codigo aberto para Visual Studio para
SpecFlow, chamada Deveroom' e em uma ferramenta que pode sincronizar cenarios
com o Azure DevOps, chamada SpecSync''.

Seb tem sido consultor, coach, designer, analista e desenvolvedor por mais de 40
anos. Ele esteve envolvido no ciclo completo de desenvolvimento, com experiéncia
que vai desde arquitetura até suporte técnico, e trabalhou para empresas grandes
(como IBM e Amazon) e pequenas. Seb possui ampla experiéncia em projetos que
nao tiveram sucesso. Atualmente, ele é lider de Melhoria Continua na SmartBear,
ajudando a aplicar as licdes que aprendeu nas praticas internas de desenvolvimento
e nos roteiros de produtos.

Seb é palestrante regular em conferéncias, autor colaborador do livro 97 Things Every
Programmer Should Know (O’Reilly) e autor principal do The Cucumber for Java
Book (Pragmatic Programmers).

Ele escreve em seu blog em cucumber.io'” e compartilha conteudo no Twitter como
@sebrose.

Juntos, Seb e Gaspar possuem mais de 60 anos de experiéncia em software, que eles
utilizam para desenvolver e fornecer treinamento e coaching para organizacoes em
todo o mundo. Se vocé estiver interessado nos servigos que eles oferecem, entre em
contato pelo email services@bddbooks.com.

Recursos online

« Série de Livros BDD: http://bddbooks.com

*http://gasparnagy.com

*http://bddaddict.com
°https://github.com/specsolutions/deveroom-visualstudio
"https://www.specsolutions.eu/services/specsync/
*https://cucumber.io/blog

http://gasparnagy.com/
http://bddaddict.com/
https://github.com/specsolutions/deveroom-visualstudio
https://www.specsolutions.eu/services/specsync/
https://cucumber.io/blog
http://gasparnagy.com/
http://bddaddict.com/
https://github.com/specsolutions/deveroom-visualstudio
https://www.specsolutions.eu/services/specsync/
https://cucumber.io/blog

Prefacio X

« Recursos para este livro: http://bddbooks.com/resources/formulation

« Figuras do livro: http://bddbooks.com/resources/formulation/figures

« Arquivos do projeto WIMP (arquivos de funcionalidade):
https://github.com/bddbooks/bddbooks-formulation-wimp

Agradecimentos

Este livro ndo teria sido possivel sem a ajuda de: Gojko Adzic, Emily Bache, Abby
Bangser, Lisa Crispin, Gary Fleming, Markus Gértner, Janet Gregory, John Ferguson
Smart, Aslak Hellesgy, Claude Hanhart, Kevlin Henney, Angie Jones, Heidi Kinsey,
Liz Keogh, Ailsa Laing, Cyrille Martaire, Rob McBryde, Ken Pugh, Tom Roden,
Johanna Rothman, Daniel Terhorst-North, Joe Wright, Matt Wynne.

Esta traducdo nao teria sido possivel sem a ajuda de nossos revisores:

« Jonas Lima Fleck
« Marcos Machado Duarte

Seb Rose e Gaspar Nagy, 2021

Capitulo 2 - Limpando um
cenario antigo

A linguagem Gherkin é usada por milhares de organizacdes em todo o mundo,
e € comum encontrar cenarios longos, complexos e ilegiveis em seus projetos.
Infelizmente cenarios longos, complexos e ilegiveis ndo promovem entendimento
compartilhado em sua organizacio e exigem da sua equipe esforcos constantes para
manté-los. Limpar cenarios como esses atenuam os problemas citados e também
oferecem uma boa oportunidade para aprender mais sobre o seu dominio.

Nesse capitulo vocé vai aprender os principios basicos da formulacdo ao seguir a
equipe WIMP enquanto eles pegam um cenario mal formulado e o melhoram. Nos
olharemos mais a fundo a aplicacdo do BDD em projetos legados no Capitulo 6,
“Lidando com o legado”.

2.1 - O cenario antigo

A aplicacdo Onde Esta Minha Pizza (WIMP, no inglés) permite que os clientes
facam pedidos e os busque no restaurante (retirada pelo cliente)”. Também é possivel
pagar o pedido apenas na retirada (pagamento na retirada). Houve alguns problemas
com pedidos que nunca foram retirados ou pagos. Patricia, a dona do produto
(PO, no inglés), recebeu a tarefa de desenvolver uma funcionalidade que reduza
este problema, entdo ela estd tentando entender a implementagdo existente das
funcionalidades de retirada pelo cliente e pagamento na retirada.

Na preparacdo para a oficina de requisitos Patricia, Tula e Daiana se encontraram
para identificar os cenarios existentes que ilustram o processo de pedido em que o
cliente faz a retirada. Elas encontraram somente um cenario (ver Listagem 1 abaixo),
que foi escrito quando o projeto usou cenarios para testes, ao invés de usa-los para
facilitar a colaboracdo e o BDD.

Capitulo 2 — Limpando um cenério antigo

Membros da equipe WIMP

Para tornar mais facil acompanhar, as iniciais dos membros descrevem seus
papéis:

« Daniel - desenvolvedor

+ Daiana - desenvolvedora

» Eva - estagiaria

« Patricia — dona do produto (PO, no inglés)

« Tula - testadora (QA, no inglés)

« Ulisses — experiéncia de usuario (UX, no inglés)

Patricia projeta o cenario para todos lerem.

Listagem 1 — O cenario antigo

Cenario: Teste de Pedido

Dado que o horario é "11:00"

Dado que o cliente acessa "http://teste.WIMP.com/"

E preenche "Margherita" para "TextoDaBusca"

Quando clica em "Buscar"

Entdo deve ver "Marguerita" em "ResultadosDaBusca"

E seleciona "Médio" em "Tamanho"

Quando clica em "Adicionar ao carrinho"

Entdo deve ver "1 jtem" em "ContadorDeItensDoCarrinho"

Quando ele clica em "Fechar pedido"

E ele seleciona "Retirar no restaurante" em "InstrucoesDeEntrega"
E ele seleciona "Pagar na retirada" em "OpcoesDePagamento"

E preenche "Marvin" para "NomeDoContato"

E preenche "12334456" para "NumeroDeTelefoneDoContato"

Quando ele clica em "Fechar pedido"

Entdo ele deve ver "MensagemDeSucesso"

Entdo ele ndo vé "MensagemDeErro"

E ele deve ver "Obrigado pelo seu pedido!" em "MensagemDeSucesso"
E ele deve ver "11:20" em "HoraDaRetirada"

E ele deve ver "$14" em "ValorTotal"

Capitulo 2 — Limpando um cenério antigo

Principios basicos do Gherkin

A linguagem Gherkin permite que as organizagdes escrevam especificacdes
de negdcio legiveis que também podem ser usadas como testes automati-
zados. E escrita em feature files, que sdo arquivos de texto nao formatado
com a extensdo . feature.

Cada arquivo de funcionalidade (feature file, em inglés) contém um ou mais
cenarios. Cada cenario é composto de um ou mais passos. Cada passo inicia
com uma das 5 palavras chave: Dado, Quando, Entdo, E, Mas

“Dado’, “Quando”, “Entdo” introduzem respectivamente as se¢des de con-
texto, acdo e resultado esperado de um cenério. (Veja Discovery [Nagy2018,
Capitulo 3]). “E” e “Mas” sdo conjungdes que continuam a se¢éo atual. Nos
cobrimos a maior parte da sintaxe da linguagem Gherkin em Secéo 3.1,
“Arquivos de funcionalidade” e Secéo 3.3, “Fundamentos do Gherkin”. Veja
Lista de Atalhos do Gherkin? in the Apéndices para mais detalhes.

“Eu ndo acho que eu ja tenha visto este cenario antes,” diz Patricia. “Ele
nao ¢ facil de ler como aqueles noés geralmente escrevemos.”

“Vocé esta certa,” responde Tula, “Ele nao foi escrito para ilustrar uma
regra especifica. Eu o escrevi como um teste de regressdo automatizado.
Ha muito aqui que queremos reescrever.’

“E muito longo e envolve muitas regras diferentes,” diz Daiana. “Deve ser
por essa razao que ele é dificil de manter atualizado. Na ultima vez que
este cenario falhou nés passamos muito tempo tentando entender o que
havia dado errado”

“Vamos melhorar esse cenario, entdo?” diz Patricia. “Talvez nds deveria-
mos tentar aplicar os principios BRIEF aqui”

Capitulo 2 — Limpando um cenério antigo 4

2.2 - Mantenha seus cenarios BREVES (BRIEF,
no inglés)

Ao longo dos anos que a linguagem Gherkin tem sido usada, uma proposta para
escrever cenarios tem evoluido. Porque a linguagem Gherkin é muito préxima da
linguagem natural ela se torna facil de aprender, mas assim como escrever relatérios
e historias, requer pratica para fazer bem. Existem trés objetivos principais que
nods temos que ter em mente quando escrevemos cenarios, que dao origem aos seis
principios encapsulados pelo acronimo BRIEF.

Os objetivos

Cenarios devem ser pensados como documentacgio, nio como testes Nos escre-
vemos cenarios para ilustrar e esclarecer o comportamento esperado do sistema. O
objetivo é ser descritivo, ndo exaustivo.

Cenarios devem habilitar colaboracio entre negoécio e entrega, nido inibir.
Cenarios devem ser escritos de modo que possam ser entendidos por todos que
contribuem para a criagio e a evolugao do sistema.

Cenarios devem suportar a evolucio do produto, nido obstruir. Cenarios que
ilustram um comportamento especifico ndo precisam ser alterados quando mudancas
de comportamento ndo relacionadas alteram.

Os principios

Os 6 principios abaixo trabalham juntos para suportar os objetivos descritos acima.
Para serem mais faceis de lembrar, nés os organizamos de modo que a primeira letra
de cada principio encaixe em um acronimo, BRIEF, que por sua vez representa o sexto
principio.

Capitulo 2 — Limpando um cenério antigo 5

B linguagem de negécio, B de business Terminologia de negdcio facilita a
colaboracio entre as disciplinas

R Dados reais, R de real Uso de dados reais ajuda a revelar
suposicoes e casos limite

I Intencio revelada Descreve os resultados desejados, ao invés
do mecanismo de como eles sdo alcangados

E Essencial Omite qualquer informacio que néo ilustra
diretamente o comportamento

F Focado Cada cenario deve ilustrar uma Unica regra

Breve Cenérios curtos sao mais faceis de ler, de
entender e de manter

Linguagem de negodcio: As palavras usadas em um cenario devem ser extraidas do
dominio de negdcio. Sistema de software precisam entregar valor de negécio, sendo
assim os termos de negdcio devem entendidos por todos os envolvidos na entrega
do sistema. Portanto, noés deveriamos usar a linguagem de negécio para habilitar
colaboracdo e garantir alinhamento.

Dados reais: Em Discovery [Nagy2018, Secdo 3.1], nds explicamos que os exemplos
devem usar dados reais e concretos. Isto ajuda a expor mais cedo no processo de
desenvolvimento as condicoes limitrofes (também conhecidas como casos limitrofes)
e as suposi¢des subentendidas. Quando escrevendo cenarios, nés deveriamos também
usar dados reais quando isto ajuda a revelar intencao.

Intencdo revelada: Cenarios deveriam relevar a intencdo que os atores no cenarios
estao tentando alcancar, ao invés de descrever o mecanismo usado para alcancar algo.
Nos deveriamos iniciar definindo um nome pro cenario que revela sua intencao, e
em seguida garantir que cada linha no cenario descreva intencdo, e ndo mecanismo.

Essencial: O propdsito de um cenario é ilustrar como uma regra deveria se comportar.
Qualquer parte de um cenéario que nao contribui diretamente para este proposito é
incidental e deveria ser removida. Se eles sdo importantes para o sistema, eles serdo
cobertos em outros cenarios que ilustram outras regras. Adicionalmente, qualquer
cenario que nao adicione entendimento ao leitor sobre o comportamento esperado
nao tem lugar na documentacéo.

Focado: A maior parte dos cenarios devem ser focas em ilustrar uma tnica regra.

Capitulo 2 — Limpando um cenério antigo 6

E mais facil atender esse principio se vocé deriva seus cenarios dos exemplos
capturados durante uma oficina de requisitos.

Por ultimo, mas ndo menos importante, cenarios devem ser breves, tanto quanto
devem ser BRIEF.

Breve: Nos sugerimos que vocé tente restringir a maior parte de seus cenarios a cinco
passos ou menos. Isto os fard mais faceis de ler e muito mais faceis de entender.

No restante deste capitulo, vocé vera a equipe aplicar estes principios. Nos proximos
capitulos, nés iremos nos aprofundar e ver o BRIEF aplicado a escrita de novos
cenarios. Nos indicaremos quais principios do BRIEF a equipe aplica em cada secdo
ao destaca-los com este simbolo:

g Linguagem de negdcio (B), Essencial

Historia do Seb: Acronimos

Gaspar e eu temos explicado os conceitos por trads por muitos anos, mas nos
nunca conseguimos criar um acrénimo memoravel. em uma das nossas oficinas
“Escrevendo Cenarios BDD Melhores” na European Testing Conference em 2018
nods tivemos Gojko Adzic na audiéncia. Ele pareceu curtir a oficina, mas gastou
algum tempo rabiscando em um pedaco de papel. No fim da oficina ele veio e nos
contou que ele tinha tentado (mas falhado) em transformar nossos tépicos em um
acrénimo. “Isto funcionou para o acronimo INVEST?do Bill Wake.”

Nos seguimos o conselho, e BRIEF ¢é o resultado. Agradecemos por nos encorajar,
Gojko!
*https://en.wikipedia.org/wiki/INVEST_(mnemonic)

https://en.wikipedia.org/wiki/INVEST_(mnemonic)
https://en.wikipedia.org/wiki/INVEST_(mnemonic)

	Sumário
	Prefácio por Angie Jones
	Prefácio por Daniel Terhorst-North
	Prefácio
	O projeto WIMP
	Para quem é este livro
	Por que você deve ler este livro
	Como ler este livro
	Regras e exemplos
	BDD precisa de testadores qualificados
	Por que você deveria nos ouvir
	Recursos online
	Agradecimentos

	Capítulo 2 – Limpando um cenário antigo
	2.1 – O cenário antigo
	2.2 – Mantenha seus cenários BREVES (BRIEF, no inglês)

