
Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

1 | P a g e  
 

 

Simple RESTful API design guidelines that 
make sense  

[that Developers will (want to) use] 
Michalis ARGYRIOU 

 

 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

2 | P a g e  
 

s 

Table of Contents 

Chapter 1. Introduction ..................................................................................................................... 7 

1.1. Purpose of this book ................................................................................................................ 7 

1.2. About the author ..................................................................................................................... 7 

1.3. Acknowledgements .................................................................................................................. 7 

1.4. Why is this book different from the other “REST API” books? ................................................... 7 

1.5. Notation................................................................................................................................... 8 

1.6. Errata ....................................................................................................................................... 8 

1.7. Book Target Audience .............................................................................................................. 9 

1.8. Book Structure ....................................................................................................................... 10 

Chapter 2. REST API Cookbook ......................................................................................................... 11 

2.1. Principles ............................................................................................................................... 11 

2.2. URL Template ......................................................................................................................... 11 

2.3. Methods ................................................................................................................................ 12 

2.4. Data Dictionary ...................................................................................................................... 12 

2.5. Payload .................................................................................................................................. 12 

2.6. Parameters ............................................................................................................................ 14 

2.7. Filtering & Searching .............................................................................................................. 14 

2.8. API Composition ..................................................................................................................... 14 

2.9. Concurrency Control .............................................................................................................. 14 

2.10. Consistency ........................................................................................................................ 14 

2.11. Large File Transfers ............................................................................................................ 14 

2.12. Pushing data to Client ........................................................................................................ 15 

2.13. API Localization .................................................................................................................. 15 

2.14. Async API ........................................................................................................................... 15 

2.15. API Resiliency ..................................................................................................................... 16 

2.16. API Documentation ............................................................................................................ 16 

2.17. Extending HTTP .................................................................................................................. 16 

2.18. API Style Guide Automation ............................................................................................... 16 

2.19. API Security ........................................................................................................................ 16 

2.20. Observability ...................................................................................................................... 17 

2.21. API Deployment ................................................................................................................. 17 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

3 | P a g e  
 

2.22. API Testing ......................................................................................................................... 17 

2.23. Discouraged Practices ........................................................................................................ 17 

Chapter 3. Fictional Case Study ........................................................................................................ 19 

3.1. ACME Corporation ................................................................................................................. 19 

3.2. ACME’s organization model.................................................................................................... 19 

3.3. ACME’s domain model ........................................................................................................... 19 

3.4. Releases ................................................................................................................................. 20 

Chapter 4. The History and evolution of APIs ................................................................................... 26 

4.1. RPC (1970) ............................................................................................................................. 27 

4.2. SOAP (1998) ........................................................................................................................... 28 

4.3. REST (2000) ............................................................................................................................ 30 

4.4. Other non-REST Technologies ................................................................................................ 31 

Chapter 5. On the shoulders of giants .............................................................................................. 37 

5.1. Web Standards ....................................................................................................................... 37 

5.2. Architectural Styles and Patterns............................................................................................ 50 

Chapter 6. API Maturity Models ....................................................................................................... 59 

6.1. Alternatives ............................................................................................................................ 59 

6.2. Recommendation ................................................................................................................... 70 

Chapter 7. API Design Patterns Analysis ........................................................................................... 72 

7.1. URL Template ......................................................................................................................... 72 

7.2. Resource Modeling ................................................................................................................ 88 

7.3. Naming ................................................................................................................................ 104 

7.4. Methods .............................................................................................................................. 104 

7.5. Data Dictionary .................................................................................................................... 105 

7.6. Payload ................................................................................................................................ 106 

7.7. Parameters .......................................................................................................................... 117 

7.8. Filtering & Searching ............................................................................................................ 121 

7.9. API Composition ................................................................................................................... 129 

7.10. Concurrency Control ........................................................................................................ 131 

7.11. Consistency ...................................................................................................................... 131 

7.12. Large File Transfers .......................................................................................................... 131 

7.13. Pushing data to Client ...................................................................................................... 133 

7.14. API Localization ................................................................................................................ 139 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

4 | P a g e  
 

7.15. API Caching ...................................................................................................................... 141 

7.16. Async API ......................................................................................................................... 153 

7.17. API Resiliency ................................................................................................................... 156 

7.18. API Documentation .......................................................................................................... 162 

7.19. Extending HTTP ................................................................................................................ 166 

7.20. API Style Guide Automation ............................................................................................. 168 

7.21. API Security ...................................................................................................................... 169 

7.22. API Observability .............................................................................................................. 180 

7.23. API Deployment ............................................................................................................... 182 

7.24. API Testing ....................................................................................................................... 182 

7.25. Discouraged Practices ...................................................................................................... 189 

Annex. Terminology ............................................................................................................................ 191 

 

Table of Figures 

Figure 1 Acme Domain Model................................................................................................................ 19 

Figure 2 Acme Domain Model (following DDD) ...................................................................................... 20 

Figure 2 API ........................................................................................................................................... 26 

Figure 4 SDK API .................................................................................................................................... 27 

Figure 5 Web API ................................................................................................................................... 27 

Figure 6 RPC .......................................................................................................................................... 28 

Figure 7 SOAP ........................................................................................................................................ 29 

Figure 8 REST ......................................................................................................................................... 30 

Figure 9 SSE (example for browser as client) .......................................................................................... 31 

Figure 10 WebSockets (example for browser as client) ........................................................................... 34 

Figure 11 GraphQL ................................................................................................................................. 35 

Figure 12 URI ......................................................................................................................................... 37 

Figure 13dd Dissecting the anatomy of a URI ......................................................................................... 38 

Figure 14 URI vs URL vs URN .................................................................................................................. 39 

Figure 15 HTTP ...................................................................................................................................... 40 

Figure 16 HTTP as a communication protocol for fetching resources ...................................................... 41 

Figure 17 Intermediary Caching Proxies ................................................................................................. 45 

Figure 18 Weak ETAg generation ............................................................................................................ 46 

Figure 19 Strong ETag generation ........................................................................................................... 47 

Figure 20 HTTP Message Structure ........................................................................................................ 48 

Figure 21 Content Negotiation ............................................................................................................... 49 

Figure 22 Setting and using a Cookie ...................................................................................................... 50 

Figure 23 REST API ................................................................................................................................. 51 

Figure 24 DDD - Domain Objects ............................................................................................................ 53 

Figure 25 Bounded Contexts Integration ................................................................................................ 53 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

5 | P a g e  
 

Figure 26 Message Hierarchy ................................................................................................................. 54 

Figure 27 CQS ........................................................................................................................................ 55 

Figure 28 CQRS ...................................................................................................................................... 56 

Figure 29 Event Sourcing (ES) ................................................................................................................. 57 

Figure 30 CQRS+ES ................................................................................................................................ 58 

Figure 31 Richardson Maturity Model (RMM) ........................................................................................ 61 

Figure 32 URL Collision .......................................................................................................................... 85 

Figure 33 Identifying concepts ............................................................................................................... 90 

Figure 34 Mapping concepts to resource with Conformist Context Mapping .......................................... 91 

Figure 35 Mapping concepts to resource with Open/Host and Published Language Context Mappings .. 92 

Figure 36 Mapping concepts to resource with ACL Context Mappings .................................................... 93 

Figure 37 Resource Archetypes .............................................................................................................. 94 

Figure 37 Document Archetype ............................................................................................................. 95 

Figure 39 Sub-collection ........................................................................................................................ 98 

Figure 40 Collection Archetype .............................................................................................................. 98 

Figure 41 Controller Archetype ............................................................................................................ 101 

Figure 42 UI Types ............................................................................................................................... 102 

Figure 43 Content Negotiation ............................................................................................................. 109 

Figure 44 PrimeNG Paginator ............................................................................................................... 128 

Figure 45 PrimeReact Paginator ........................................................................................................... 128 

Figure 46 Fetching localized content .................................................................................................... 139 

Figure 47 Timezone e2e processing (example for Java and Oracle DB) .................................................. 140 

Figure 48 Fetching (GET) a resource caching flow ................................................................................. 150 

Figure 49 Upserting (POST, PUT, PATCH) a resource caching flow .......................................................... 151 

Figure 50 Creating (POST) a resource caching flow ............................................................................... 152 

Figure 51 Modifying (PATCH) a resource caching flow .......................................................................... 152 

Figure 52 Replacing (PUT) a resource caching flow ............................................................................... 153 

Figure 53 Long Operations: Submit operation ...................................................................................... 154 

Figure 54 Long Operations: Checking status (still processing) ............................................................... 154 

Figure 55 Long Operation: Checking status (operation failed) ............................................................... 155 

Figure 56 Long Operation: Checking status (operation finished successfully) ........................................ 155 

Figure 57 Long Operation: Get result of the long operation .................................................................. 155 

Figure 58 Resilient API - Retry Design Pattern....................................................................................... 159 

Figure 59 API Deployment ................................................................................................................... 182 

Figure 60 Testing Strategy .................................................................................................................... 183 

Figure 61 Test Automation Pyramid ..................................................................................................... 183 

Figure 62 API Test Automation Pyramid ............................................................................................... 184 

Figure 63 Integration Testing ................................................................................................................ 185 

Figure 64 Component Testing .............................................................................................................. 186 

 

Table of Tables 

Table 1 Notation ...................................................................................................................................... 8 

Table 2 Book Target Audience ................................................................................................................ 10 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

6 | P a g e  
 

Table 3 Resource definition in RFC2068.................................................................................................. 41 

Table 4 HTTP Verbs ................................................................................................................................ 42 

Table 5 HTTP Verbs -  Accept/Return ...................................................................................................... 42 

Table 6 HTTP Verbs - Idempotency, Safety .............................................................................................. 43 

Table 7 HTTP Status Codes ..................................................................................................................... 48 

Table 8 CoHA - REST Compliancy ............................................................................................................ 60 

Table 9 CRUD API vs Intent API............................................................................................................. 103 

Table 10 HTTP Verbs used by CRUD API ............................................................................................... 104 

Table 11 HTTP Verbs used by Intent API ............................................................................................... 104 

Table 12 CRUD API Request Content-Type ............................................................................................ 110 

Table 13 Intent API Request Content-Type ........................................................................................... 110 

Table 14 CRUD API Response Content-Type.......................................................................................... 111 

Table 15 Intent API Response Content-Type ......................................................................................... 111 

Table 16 CRUD API HTTP Codes............................................................................................................ 114 

Table 17 Intent API HTTP Codes ........................................................................................................... 115 

Table 18 HTTP Status Code .................................................................................................................. 115 

Table 19 CRUD API HTTP Status Codes if request fails........................................................................... 116 

Table 20 Intent API HTTP Status Codes if request fails .......................................................................... 116 

Table 21 HTTP Long Polling .................................................................................................................. 133 

Table 22 OWASP API Security Top 10 .................................................................................................... 180 

 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

7 | P a g e  
 

Chapter 1. Introduction 

1.1. Purpose of this book 

This book provides a small cookbook of simple guidelines for designing RESTful APIs. They have been 

validated: 

• by different points-of-view, for example, backend developer, frontend developer, enterprise 

architect, system architect, solution architect, etc.  

• on various frameworks, such as Spring Boot, Angular, React, etc. 

Each guideline is duly justified in its own section later in the book. 

1.2. About the author 

Michalis ARGYRIOU1 has been involved as developer or architect in numerous projects for the 

European Commission, EU Agencies, and International organizations for the last 15 years. 

Currently, M. ARGYRIOU is serving as Head of Development and Architecture in Sword Services 

Greece S.A. M. ARGYRIOU is the author of the WIPO Standard ST.902 and the original author of ST.973 for 

the standardization of the exchange of IP data using APIs. Therefore, M. ARGYRIOU is familiar with various 

standards and industry practices on designing APIs. 

1.3. Acknowledgements 

The people that have reviewed this book – in no particular order: 

 

1.4. Why is this book different from the other “REST API” books? 

This book is purely technical. Its intention is to be practical and simple. It targets RESTful APIs for typical 

System (not large-scale systems that have extreme peculiar needs). 

Practical because it follows a top-down approach by providing first a cookbook of guidelines in a few 

pages and if someone wants to better understand why each guideline is provide may delve into detail into 

the respective section that justifies each guideline. 

Simple because it prioritizes simplicity to simplify the guidelines. For example, CRUD APIs and Intent APIs 

are described but it is recommended Intent APIs to be converted to CRUD APIs. 

This book is published on leanpub.com following a lean-based approach. As a result, it will be evolving, 

and its content will always be improving. 

 
1 https://www.linkedin.com/in/micharg/ 
2 https://www.wipo.int/export/sites/www/standards/en/pdf/03-90-01.pdf 
3 https://www.ompi.int/export/sites/www/standards/en/pdf/03-97-01.pdf 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

8 | P a g e  
 

1.5. Notation 

The following notation is used in the book: 

 

This paragraph provides an important information. Make sure you do not miss 
it! 

 
This paragraph lists pros. 

 

This paragraph lists cons. 

 

This paragraph provides a guideline. 

 
This paragraph describes information how to realize a guideline. 

 
Case Study from the IT Industry 

 

Alternative 

 

Paragraph is in progress. 

Table 1 Notation 

For all the examples provided in JSON, the naming convention is lowerCamelCase (for example, for Java 

implementation of JSON serialization and deserialization). 

 

1.6. Errata 

For any typo or mistake identified or any improvement proposed, please send an email to 

micharg@gmail.com. 

mailto:micharg@gmail.com


Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

9 | P a g e  
 

1.7. Book Target Audience 

This book answers the following concerns: 

 

Backend Developer 

Should I expose the physical model (DB tables) 
or the logical model (classes) as API resources?  

What naming conventions should I use to 
serialize classes to DTOs? 

 

Frontend Developer 

 

Does the API support the UI components needs, 
such as pagination, sorting, etc? 

 

Tester 

 

What aspects of the REST API should I test?  

How should I test it? 

 

System Architect 

 

Should API support our DDD’s Ubiquitous 
Language?  

Is it possible to use REST API with CQRS? 

 

Solution Architect 

 

How can I make sure that developers will create 
System RESTful APIs that follow consistent rules? 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

10 | P a g e  
 

 

Security Architect 

 

What to check to verify that API does not expose 
sensitive information? 

 
Enterprise Architect 

Which API Design Guidelines should the, such as 
naming conventions) should the APIs in the 
Application Architecture follow? Can I enforce 
them? 

Table 2 Book Target Audience 

1.8. Book Structure 

• Chapter 1. Introduction: This Chapter provides the goal of this book and instructions how to read 

it to get value as fat as possible. 

• Chapter 2. REST API Cookbook: This Chapter provides a summary of the RESTful API guidelines. 

• Chapter 3. Fictional Case StudyError! Reference source not found.: This Chapter applies the 

Cookbook of the previous Chapter to design the API for a fictitious Case Study. 

• Chapter 4. The History and evolution of APIs: This Chapter provides a brief history from RPC to 

RESTful APIs to connect the dots why RESTful APIs are so popular. It also presents a few other 

solutions to better describe how RESTful APIs compare with them.  

• Chapter 5. On the shoulders of giants.: This Chapter provides in a central location the 

fundamental concepts from the Internet Standards that RESTful APIs use to avoid repeatedly 

cluttering the book with definitions or/and references. 

• Chapter 6. API Maturity Models: This Chapter describes industry frameworks that compare APIs 

based on quality criteria. Then it concludes how “mature” an API should be to balance maturity 

with simplicity. 

• Chapter 7. API Design Patterns Analysis: This Chapter lists for each problem alternative solutions. 

Then it concludes to a guideline considering the previous Chapter’s selected API maturity level. 

• Annex. Terminology: Provides an index for terms defined in the book. 

 

To make this book useful as soon as possible jump to Section Chapter 2 - REST API 
Cookbook. To understand the reasoning that supports each design decision, just to the 
relative referenced paragraph in Chapter 7. 

 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

11 | P a g e  
 

Chapter 2. REST API Cookbook 

2.1. Principles 

A Beautiful & Simple RESTful API should respect the following principles4: 

• Use URI-identifiable APIs. 

• Use multiple uniquely URI-identified resources that have a single resource representation. 

• Support multiple resources representations. 

• Design server as stateless. 

• Use HTTP semantics. 

• Use self-described messages. 

• Label server responses as cacheable or not. 

• Design server as layered, for example, security, business logic, application. 

2.2. URL Template 

2.2.1. API Versioning 

Versioning Strategy 

For API Versioning, use Path Segment Versioning 

Versioning Scheme 

For API Versioning Scheme, use Semantic Versioning (only MAJOR) 

Deployment Strategy 

• Backward compatible change ➔ new API uses only the major version and replaces previous 

version (transparent to clients) 

• Non-backward compatible change ➔ deploy new API version using only the major version + 

preserve previous API version (for a transient period to give time to clients to migrate 

2.2.2. Multi-environment APIs 

For multi-environment APIs, use Subdomains to indicate each environment (for example, qa, dev). For 
the production environment the subdomain <env.> should not be used. 
Wildcard certificates are required to support all the environments (subdomains). 

2.2.3. URL Collision 

To avoid URL Collision, use the Path Segment “api” for the URI, for example, 
acme.com/api/. 

2.2.4. Resource Modelling 

Resource Location 

 
4 See Section Chapter 6 - API Maturity Models 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

12 | P a g e  
 

Do not use a trailing forward slash (/) in the URI 

Mapping concepts to resources 

An API may map its internal domain (concepts) as API resources with the following approaches: 

• Expose the Ubiquitous Language directly (to Conformist clients). This alternative should be 

preferred if the client is developed by the same team that develops the API. 

• Map the Ubiquitous Language to a new standard language (with OHS and a Published Language). 

This alternative should be preferred if the client is developed by another team and there is a 

Published Language that can be used. 

• Map the Ubiquitous Language to a new non-standard language. The API client is recommended to 

use an ACL. This alternative should be preferred if another team develops the API client. 

Organizing resources as CRUD resources 

Model all resources as CRUD resources (Document, Collection or Store). Convert Intent resources 

(Controller) to CRUD resources. Conversion is always possible. 

Naming Resource  

The recommended convention for naming resources, is kebab-case and abbreviated if possible. Resource 

names should be nouns in plural nouns. Example: /<resource-name>s. 

2.3. Methods 

Use only Use the following HTTPS methods only: GET, PUT, DELETE, POST, PATCH. 

2.4. Data Dictionary 

• Date & Time: Should be formatted as specified in ISO 8601  
o Datetime (i.e., timestamp) as yyyy-MM-dd'T'HH:mm:ssZ 

▪ If time should be localized on Client’s timezone: <see paragraph for Localization> 
o Date as yyyy-MM-dd 
o Time zone information: As specified in IETF RFC 3339. For example: 20:54:21+00:00 

• Numbers can be integers (whole counting numbers) or floating points (high precision numbers) 

• Currency: Should be formatted as specified in ISO 4217-Alpha (3-Letter Currency Codes)  

• Country names: Should be formatted as specified in ISO 3166-1-Alpha-2 Code Elements (2 letter 
country codes) 

• Language codes: Should be formatted as specified in ISO 639-1 (2-Letter Language Codes) 

• Units of Measure: Should use the units of measure as described in The Unified Code for Units of 
Measure (based on ISO 80000 definitions). For example, for weight measuring using kilograms (kg) 

• Empty fields: If a field is empty (null) then do not include it in the request or response 
 

2.5. Payload 

2.5.1. Content Negotiation 

For Content Negotiation, use HTTP Headers 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

13 | P a g e  
 

2.5.2. Request 

Body properties names 

Request/Response body property names is recommended to be lowerCamelCaseRequest/Response 

body property names is recommended to be lowerCamelCase 

Request payload template 

Request body cannot be standardized ({}). 

2.5.3. Request Content Type 

A CRUD API (PUT, POST, PATCH) should accept application/json. 

2.5.4. Response 

Body properties names 

Request/Response body property names is recommended to be lowerCamelCaseRequest/Response 

body property names is recommended to be lowerCamelCase 

Response Content Type 

A CRUD API (GET, POST, PATCH) should return application/json 

Response Payload Template (on success) 

The response payload of a successfully processed request should have the following structure: 

{  
  "data": { … },  
  "metadata": { … } 
} 

 

HTTP Code (on success) 

GET|PUT|PATCH|DELETE|POST should use 200 OK to simplify. 

Response Payload Template (on failure) 

An application-level error should have the following structure that extends RFC 7807: 

▪ type (string, optional): Cheat: use a code. 

▪ title (optional, string): Localizable based on the request HTTP header Accept-Language. 

▪ status (optional, number): Duplicate of the HTTP status code to be close to the associated payload. 

▪ detail (string) 

▪ instance (string) 

▪ {extension-members}: For example: invalid-params[]{name, reason} for validation errors (name can 

be ref to DOM element id) 

▪ timestamp (mandatory, ts): when the error was raised. 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

14 | P a g e  
 

▪ debugMessage (optional): technical message (not for PROD), for example a UUID, for logging purposes 

HTTP Code (on failure) 

Application-level failures from GET|PUT|PATCH|DELETE|POST should return 200 OK to simplify. Specific 

use cases may override this simple guideline. 

2.6. Parameters 

Parameter Types 

• Use Request Parameters to limit the query length. 

• Use Path Parameters for mandatory parameters (such as resource id) 

• Use Query Parameters for optional parameters (see also Filtering & Searching recommended 

reserved names) 

Query parameter names 

Query parameter names is recommended to be snake case. 

Query parameter names is recommended to be snake case. 

2.7. Filtering & Searching 

• Use Filtering for querying based on a few query criteria using GET or POST (consider the pragmatic 

query length restriction of URLs).  

• Use Searching for querying based on complex query expressions using GET or POST (consider the 

pragmatic query length restriction of URLs). 

• Use Searching for querying based on complex query expressions using GET or POST (consider the 

pragmatic query length restriction of URLs). 

• Use Predefined Search for remembering queries. 

2.8. API Composition 

Use API Composition in the API GW instead of making complex the upstream APIs. API Composition 
should not be used when pagination and sorting should be applied to multiple indexes 

2.9. Concurrency Control 

Implement Optimistic Concurrency using ETag and If-Match HTTP Headers and the HTTP Status Code 
412 Precondition Failed if the entity has been changed between fetching it and changing it. 

2.10. Consistency 

Implement Optimistic Concurrency using ETag and If-Match HTTP Headers and the HTTP Status Code 412 

Precondition Failed if the entity has been changed between fetching it and changing it. 

2.11. Large File Transfers 

• For downloads, prefer Content-Length.  

• For uploads, prefer Transfer-Encoding: chunked 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

15 | P a g e  
 

• Consider using the Valet Key Pattern to offload data transfer from the application. 

• If using ETag should use Strong Validator instead of Weak Validator so that byte ranges (Accept-

Range) can be cached 

2.12. Pushing data to Client 

• For unidirectionally pushing data to Client, use SSE. 

• For bidirectionally pushing data from/to Client, use WebSockets. 

2.13. API Localization 

2.13.1. Language 

Use the HTTP Header Accept-Language to fetch localized content from the API 
 

2.13.2. Timezone 

If business-wise is acceptable the API’s Client to see the API’s Timezone the then API should accept and 
return datetimes in its Timezone. If business-wise the API’s Client must use its own Timezone, then 
datetime should be (a) transferred to server with the format ISO8601[TZ], (b) processed by the Server as 
a data type that contains the Timezone and (c) persisted in server’s db as a data type that contains the 
Timezone. 

2.13.3. Caching 

Cache Control 

For overriding the default caching behaviour, use the HTTP Header Cache-Control with 
a random jitter (to avoid the thundering herd effect). 

ETag 

Combine Cache-Control and the HTTP Validator Header ETag for Content-based 
determination if an entity has been modified. 

ETag Generation 

•  For transferring dynamic generated content use Strong ETags. To generate Strong hash (using 

MD5) the message’s payload is used (body) and its Content-Encoding. 

• For transferring strictly version-controlled resources use Strong ETag populated with the entity’s 

version number (should be stored in DB). For transferring static resources (such as JS, CSS, PNG, 

etc.) use Weak ETags. 

2.14. Async API 

For long (async) running operations, such as PDF generation, the following steps must be followed: 

a) Client submits long running operation (POST) 

b) API returns 202 Accepted which means request accepted for processing but processing has not 

been completed. It returns the location where the Client should check for status update using the 

HTTP Header Location: <op-status-location> 

c) Client checks status of operation with GET <op-status-location> 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

16 | P a g e  
 

a. API returns 200 OK which means operation still in progress. Response may contain other 

information for the status of the operation, for example, progress indicator or link to 

cancel or delete the task. 

b. API returns 200 OK and the response contain a description of the error in case the 

operation failed. 

c. API returns 303 See Other which means operation has finished successfully. The HTTP 

Header Location indicates the URL where the result should be retrieved. Client uses the 

Location to get the generated result of the long operation. 

2.15. API Resiliency 

  

2.16. API Documentation 

Workflows 

 

API Specifications 

For API Specifications, use OAS 3.x 

2.17. Extending HTTP 

Custom HTTP Headers 

Use custom HTTP Headers but without using the X- prefix. 

2.18. API Style Guide Automation 

Use an API Linter to enforce the API Style Guide 

2.19. API Security 

Secure Access 

 

CSRF 

 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

17 | P a g e  
 

Data Tampering 

Use SHA-3 or SHA-256 Cryptographic Hashes to protect against Data Tampering. 

2.19.1. OWASP API Security Top 10 

Mitigate against OWASP API Security Top 10 threats. Use an API Linter to enforce 
OWASP security guidelines. 

2.20.  Observability 

The following response should be returned (following common-v1.yaml): 

Service is up: 

{ 

  "status": "UP" 

} 

Service is down (with additional details): 

{ 

  "status": "DOWN", 

  "details": { 

    "datastore": { 

      "status": "DOWN", 

      "errorMessage": "connection timeout" 

    } 

  } 

} 

2.21. API Deployment 

Follow the Port binding principle of the Twelve Factor application methodology to deploy multiple APIs. 

2.22. API Testing 

 

2.23. Discouraged Practices  

Query expansion 

Do not use query expansion 
Semantic RESTful APIs 

Do not design RESTful APIs as semantic RESTful APIs. 
Hypermedia 

Do not do HATEOAS since it will make the implementation of the API (and the client) 
more difficult (very complex) and most of the time it is not even used (client should be 
adapted to support it). 

Matrix Parameters 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

18 | P a g e  
 

Do not use Matrix Parameters 

 



Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis 
 

19 | P a g e  
 

Chapter 3. Fictional Case Study 

In this example, we will apply the guidelines of Chapter 2 REST API Cookbook in a fictional company. 

3.1. ACME Corporation 

Acme Corporation5 manufactures outlandish products that fail or backfire catastrophically at the worst 

possible times. Acme wants to create an e-shop to provides access to its products to more clients and 

increase its revenue. 

3.2. ACME’s organization model 

A single team will work to develop the Acme System for the MVP. If the System becomes bigger more 

teams may be formed. 

3.3. ACME’s domain model 

Acme’s domain model is the following: 

 

Figure 1 Acme Domain Model 

Acme sells Products to Customers. Suppliers provide products. The Customer creates a ShoppingCart with 

the Items that will be bought. The Customer proceeds to an Order where the ShoppingCart Items 

promoted to Order Items. For each Order, an Invoice is created for the chosen Payment method (for 

example, credit card).  

 
5 https://en.wikipedia.org/wiki/Acme_Corporation 


