Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

Fictional
Case Study

>@vaw .
APT
\ Secur‘ﬁy

/ API Style

I e

Au’roma’rlon e

Vool
\roumem‘ahon

APT =

esrllenc

Large Flle
\\Tinsfers

Simple RESTful API design guidelines that
make sense

[that Developers will (want to) use]
Michalis ARGYRIOU

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

Table of Contents

Chapter 1. INEFOAUCTION e 7
1.1, Purpose of this BOOKccooiiiiiii 7
O Y o Yo 1V A d o L= 3 TV d o To S PO PP PP OPPPPPPPPO 7
1.3, AcKNOWIEAZEMENTS..ccc i, 7
1.4. Whyis this book different from the other “REST API” books?...........cccciiii . 7
1.5, NOTAEION..ciiiiiiiii e 8
1,60 Errata...cciii 8
1.7. BoOKTarget AUdIENCE ...cccee e, 9
1.8, BOOK STIUCTUIE ...eeiiiiiiiee ettt e et e s s e e st e s s e e sareeee s 10

Chapter 2. REST API COOKDOOK.....ccceeieeeeeeeeeeeeeeeeeeeee 11
D N o4 1 Vol o] LT PP PPPPPPPPRS 11
D A U1 24 B T o o] F= 1 TSP PPPPPPPPRS 11
230 MEENOAS ...t s e e s e e s eee s 12
P R D - 1 - 1 D I ot d o] -1 o AR PPT PP PPPPRRRPPRt 12
D TR - 1V o Y- Yo PP PPPPPPPPPRS 12
P ST = T = o ¢ 1=t (=T PP PP PP PP PP PP P PP PP PP PPPPPPPPPPPPPPPPPPPPPRS 14
2.7, FIltering & SEAICRINGcvviiiiiiiiiiiiiiiieie ettt ee et e ereeeeeeeseeaseseaassssssssssassssssassssssassssssssensssnnnnes 14
P TR X o I 0014 4] o o 1Y 1 { e o PN PPTPPTR PPN 14
P IO @o T o [l 1 4 £=Y g Tor N @] o1 oo | EES PP PPPPPPPPPRS 14
2.10. (600T 0 1Y 1] 1= o [0V ST PP 14
2.11. Large File TranSTeIS c.ovviiiiiiiiiiiiiieiieeeeeee ettt e e e e eeeeeeeeeeeeeeessesssasssssssssssssssssssssssssssssersnnnns 14
2.12. VI oY 1Yo = IR o @ [T=Y oY P PPPPPPPPRS 15
2.13. APILOCANIZATION ...ttt ettt e st e e s are e e e 15
2.14. F Y o ol Y o PPN 15
2.15. APLRESIHENCY coeeeeeeeeeeee 16
2.16. APIDOCUMENTATION cooiiiiiiiiiii 16
2.17. e =T o [T 0= o I 1 I RSNt 16
2.18. API Style Guide AULOMAtION ...cccoiiiii 16
2.19. FA o Y=Y ol U) Y PPN 16
2.20. ObSErvabilityccooeeeeeeeeeeeeeeeeee 17
2.21. FAN o I 1=] Fo 3 41T o | R 17

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

2.22. LAY B T oY - PP P PP PP 17
2.23. DI T oo U - Yo Te I - [t 4 [P PPPPPPPPPPRS 17
Chapter 3. Fictional Case STUAYcoeeeeiiiiieee 19
S Y Y011V | e T4 o To] - { o] KOO PP PPPPPPRt 19
3.2, ACME’S 0rganization MOGEl.........uuuuuuuiii s 19
3.3, ACME'S dOM@in MOGELceeiiiiiiiiiiiiiiie ettt e et e e e e e st e e e e e s s arreees 19
Bi. REIEASES ...ttt et e e e et ee e e e e e e bbbttt e e e e e e s a b beteeeeee e e anrraees 20
Chapter 4. The History and evolution Of APISuuuueeeii s 26
A.1. RPC (1970) ceeeiuiiieeiieeeiiee ettt ettt ettt ettt sttt e b e sttt e st esa b e s bt e s bt e e e ab e e e aa b e e s be e e sabe e e naneeeneees 27
A2, SOAP (1998) ...ueeeeiuieieiiee ettt ettt e sttt ettt e sttt e b e sttt sa e e be e s bt e e sttt e bt e e s be e e s be e e nareeebeees 28
4.3, REST (2000)uueeeiureeeeieerieeeniiteesiieeeitee sttt e st e ettt e sttt e sabeeesubeesabeee sttt e sabeesanbeesabeeesabeeennneesaneees 30
4.4. Other non-REST TEChNOIOGIESccoeeeeieeeeeeeeeeee e, 31
Chapter 5. On the shoulders Of GIaNtS........uuiiiiiiiiiiiiiiiiiieieeeee e serererreaaraee 37
5.1, Web STaNdardS........eeiiiiiiieeee e 37
5.2, Architectural Styles and Patterns...........uuuuuuuieuiii s 50
Chapter 6. APl MaAtUFity MOEIS. .. .uueeeeiiiiiiii s 59
6.1, AEINATIVES....eeiiieiieeeeet ettt et e s e e s e e st e s s e e e e 59
6.2, RECOMMENAATION....ciiiiiiiiiiiiiiee ettt e s st e s s e e s ee s smreeeeennees 70
Chapter 7. AP| Design Patterns ANAIYSiS......uuuuuuuuuuuuuiuuiiiiiee s 72
2% T U 13 B =Y oo o] 1= 72
7.2, RESOUICE MOEIING ...uuvureiieiiiiiiiiiii e nnan 88
2 TR - [o V1o V< SR PP UPPPRRN 104
2% R |V 1= 1 o Lo T ST PO ST PP P PP UPUPPOPPPPPRIN 104
2T D -1 - B 1 (ol £ o] o I- | oV AR PP PP PPN 105
2T -] o T T 106
T.T7. PaAramETErS oo s 117
7.8, Filtering & SEArCHINGuuuuiiiiii s 121
728 TR - o B @] 0 oY o To 1Y 1 4 (o] 1S PPN 129
7.10. ConcurrenCy CONIOl cooceeeeeeeeeeeeeeeeeeeeeeeeeee 131
7.11. (00T 1 1] 1= T PSP 131
7.12. Large File TranSTEIS c.oeeeiiiiiiiiiiiiiiieieeeeee ettt ee ittt eeeeeeeeeeeeeeeeeseaassasssssssssssssssssssssssssssssssssssnsnnes 131
7.13. VT YT Y=o] = IR o @ [T=Y oY P PPPPPPPPPPPRt 133
7.14. AP LOCAlIZATION ..eeiiiee et e e e s ee e e e an 139

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

7.15. APL CaChing coo e, 141
7.16. F NV [ol A = PRSPPI 153
7.17. AP RESITENCY oo, 156
7.18. FAY S I D ToTol¥] g1=T o1 =) 4 o] o NP PP PR 162
7.19. = Lo o= o I I PP PPPPPPPPRt 166
7.20. AP Style Guide AULOMAtioN ..o, 168
7.21. FAN o Y=Y ol U) Y2 169
7.22. APL ObServability ..o 180
7.23. APLDEPIOYMENT e, 182
7.24. AP TESTING ottt ettt e e e e sttt e e e e s st b et e e e e e e s s bbbt e e eeeeeseanbraaaaeeeeean 182
7.25. BT oo U Yo Te I o - [ot 4 [l F PP PPPPPPPPRt 189
F Y Y o O =T s o1 T o] Lo - PP PPPPPPPPRt 191
Table of Figures
Figure 1 ACme DOmMain IMOAEN.......uuuueuuiiiiiiiiiiiii s 19
Figure 2 Acme Domain Model (folloWing DDD)uuuuuuuuuuuiiiiiiee e 20
FIBUIE 2 AP ettt ettt e ettt e e e et e e ettt s e e et s e eeaa s s eeabas s e aassa s eaasanseaensassenesnnseennnnnsen 26
FIGUIE 4 SDK AP ...ttt ettt ettt e e s e sttt et e e e e e s st bbb e e e e e e e s s aaasbbaaeeeeeessanssbtaaaaeesessnnnssseneees 27
FIGUIE 5 WD AP ...ttt nanan 27
T U T I ST = OO PPPRTTPPRE 28
FIBUIE 7 SOAP ..ttt ettt e e e et s e ettt s e e eat s e aaaaa s e eeabas s e aassa s aaasanseaeasansenesnnseensnnnsens 29
FIBUIE 8 REST .ouiiiiiiii ittt ettt e e ettt e e e e e e e ettt s e e eat s e eeaaa s e eeabasseaaesasenassnseaensansenesnnseennnnnsens 30
Figure 9 SSE (example for Browser s ClIENT)uuueueuiii s 31
Figure 10 WebSockets (example for browser as CHENT) 34
=TTt I G =T o 10 35
FIBUIE 12 URI.euuiiiiiiiiiiiiiie ettt et e e ettt e e ettt s e e e et s e e eab e e aeaa s e eeabas s e aassaseaasanseaeesansenessnseenennneens 37
Figure 13dd Dissecting the anatomy of @ URIuuuuuiiiiii s 38
Figure 14 URIVS URL VS URN ...ttt sttt s e et s e e e et s e s eaa e s e eaaa e e s easaeeaesanseennnanaans 39
T (UL I o 1 I I = PPNt 40
Figure 16 HTTP as a communication protocol for fetching reSoUrcesccoceeeeeeiiiiieeieeieicieeece e 41
Figure 17 Intermediary Caching PrOXIESuuuuuuuuuuuuuei s 45
Figure 18 Weak ETAE SENEIAtiON.uuuuiiueiiiiiiiiiiiittittt e nnnnnnnnnnnnnnnn 46
Figure 19 STrong ETag BENEIatiON ccivii i e e et e et e e e e et s e e e e e e e raaa e e eeena e e eeanaseeaennnaans 47
Figure 20 HTTP IMESSAZE SEIUCTUIE .. ccvuueiiieiiie ettt e e et e e e et s e e e et e e e eaa e e eeana e e eaanaseenananaans 48
Figure 21 Content NegOtiatioNiiiiiii i e e e et e e e e s e e eea e e eeaaae e e raaaeeeaananaaes 49
Figure 22 Setting and USING @ COOKI@.......uuuuuuuuuiiiiii e aan 50
T =B I A B) A PPN 51
Figure 24 DDD - DOM@AIN OBJECTS....uuuuuiuiieeiiiiiiiiiiii e a e nnan 53
Figure 25 Bounded Contexts INtegratioNcoviiiiiiiie i e e e e e e e e e e e e e e eeeenes 53

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

Figure 26 MeSSagE HIBIarCRYuueeuiiiiiiiiii s 54
FIUIPE 27 CQAS .. ettt e e e e et ettt e e e e e et ettt s e e e e e et eabaa e e e e et eeesbaa e seeeeeaaesaannneeeeeeessnnnn 55
FISUIE 28 CQRS ...ttt ettt ettt e e e e et ettt e e e e e ettt tab s e e e e e eeeaaaa s e eeeeeeessaa e seeeeeeassnannneeeeeeessnnnn 56
Figure 29 EVENT SOUICING (ES) ...uuuuiiieeeeiiiiiiiiiieie e e e e e e ettt e e e e e e e eatar e e e e e e e e ssaatbaeeeeeaesssnnssaaseeeaeessssnsreanees 57
FIGUIE 30 CORSHES ...ttt e e ettt e e e et eeeeat e e e seat e e e e aaan e s eanaaesannneeessnnaesennnseensnnnaans 58
Figure 31 Richardson Maturity Model (RIMM)oouiiiiiiiiie ettt e e e rae e e e e e e e aaraaees 61
FIGUIE 32 URL COllISION 1uuttitiiiiiiiiiiiiiitii s 85
Figure 33 1dentifying CONCEPLS . .uuuuueeiiiiiiitt s 90
Figure 34 Mapping concepts to resource with Conformist Context Mappingccccceeeeeeriririieceiiiieeiiininnnn 91
Figure 35 Mapping concepts to resource with Open/Host and Published Language Context Mappings ..92
Figure 36 Mapping concepts to resource with ACL Context MappingsScccceeeeeeeeeerireieiieieiiiicereeseeeeesaas 93
FIgure 37 RESOUINCE AICHEIYPES . uuuueiiiiiiiiiiiiitti s 94
Figure 37 DOCUMENT ATCRELYPE ..uuueuiiiiiiiiiiiiiii s 95
FIgure 39 SUD-COIECTION ..uuvuiiiiiiiiitiit s 98
Figure 40 ColleCtion ArCHELYPE ..uuuueeeiiiiiiiiii s 98
Figure 41 Controller ArCHETYPEuuueeeeiiiii s 101
FISUIE 42 Ul TYPES oeueiiiiieeieiiee ettt ettt e e ettie e ettt s e ettt s e eeataseatasanseeestasseaesaseeaasasseaesnnssenesnnseeesnnnsenennnns 102
Figure 43 Content NegOtiationc...vv ittt e e et s e e et s s e eaaa s e eaaanseaennans 109
FIgUre 44 PrimeNG Paginator.. ..ottt sttt e s e et s eettes s e sea s e e aaas s e aesaasseaasasseeesnansesennnns 128
Figure 45 PrimeReaCt Paginator......cciiiuiiiiiiiiiiiiiiiiie sttt sttt s e e etis s e e e aae s e eaaa s e eaananseaananes 128
Figure 46 Fetching 10Calized CONTENTuuueeieii s 139
Figure 47 Timezone e2e processing (example for Java and Oracle DB)........ccceeeeiiieiiiiiiiiiiiiicicicecceceeeann 140
Figure 48 Fetching (GET) a resource Caching flOWuuuueeuiuiiii s 150
Figure 49 Upserting (POST, PUT, PATCH) a resource caching floWccccoooiiiiiiiiiiiiiiiiicicccccccccccc e 151
Figure 50 Creating (POST) a resource caching flOWuuueueuii e 152
Figure 51 Modifying (PATCH) a resource caching flOWuuiiiiiiiccc e 152
Figure 52 Replacing (PUT) a resource caching flOW 153
Figure 53 Long Operations: SUDMIit OPErationuueeuuuuiuu s 154
Figure 54 Long Operations: Checking status (Still processing)cccceeeeeeeeeeiieiiiiiiiiiiiccc e 154
Figure 55 Long Operation: Checking status (operation failed)........ccccceeeiiiiiiiiiiiiiiiiiiic e 155
Figure 56 Long Operation: Checking status (operation finished successfully)........ccccoeeiiiiiiiiiiiiiiiiiinnnnnn. 155
Figure 57 Long Operation: Get result of the long operation.........cccccceeciiiiiiiiiiiiiiiicc e 155
Figure 58 Resilient AP| - Retry Design Pattern...........uuuuuuuuuueecc s 159
Figure 59 APl DEPIOYMENTuuuueiiiiiiiiiiiiiiit e nnnnnnnnn 182
T U I S O LT n = A - L (=T =AY PP 183
Figure 61 Test AUtOMAtiON PYFramiduuuuuuuuuuuiiii s 183
Figure 62 API Test AUtOMAtioN PYramiduuuuuuniunini s 184
(U N R el u=T=d - LnTo] T [=F] n] o= SO PPP 185
Figure 64 ComMPONENT TESEING ...ciiiiiiiiiiiie et e et e e e et e e e eeae e e e ear e e eaaaneaenanaeeennanes 186
Table of Tables

=] o F=T0 I V] 1 a o o TSRS PPPRR 8
Table 2 BOOK Target AUIENCEiieieeeeiiiie et e e e ettt e e e e e e e e ettt eseeeeeeeeaaaaaeseaeeseasssnaneaaeeesessnnnn 10

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

Table 3 Resource definition in RFC2068...........uuuuuuiuuii s 41
TADIE 4 HTTP VOIS ..ttt s 42
Table 5 HTTP Verbs - ACCEP/REIUIN .. .ueii ettt ettt e et e e e e st e e e e stta e e e e sabreee e sabaeeeearraeaas 42
Table 6 HTTP Verbs - Idempotency, Safety. s 43
TablE 7 HTTP Status COUBS ..uuuuuuuuiuiiiiiiiiiiitiiiitt s 48
Table 8 COHA - REST COMPII@NCY .uuuuuuuuiiiiiiiiiiiiiiiiiiiiit s 60
Table 9 CRUD API VS INTENT APL.... oottt e ettt e e e e e e e e ea it eeeeeeeeeeaattaeeeeessessstannnaeeeesssssnnns 103
Table 10 HTTP Verbs used by CRUD APcoo ittt e et e e e e e e eeea e e e e e e seeassaneeeeeeesessnnnn 104
Table 11 HTTP Verbs used by INtENT APuu s 104
Table 12 CRUD APl ReqQUESt CONTENE-TYPE...uuuuuuuuuuuuiniiiiiiiii s 110
Table 13 Intent APl ReEqUESt CONTENT-TYPE ...uuuuueeiiiiiiii s 110
Table 14 CRUD API ReSPONSE CONTENT-TY P, .uuuuuuuuuuuuininneiniiiii s 111
Table 15 Intent APl RESPONSE CONTENT-TYPE ..uuuuuuuuuuuniiniiiiiii s 111
Table 16 CRUD API HTTP COUES....cettiiiiiiiiiiiiiieteeeeeeiiit et ee e e s s sttt et e e e e s s sibbteeeeesssssasbbaeeeeeesssssnnsreees 114
Table 17 INtent APIHTTP COUES ..uevtiiiiiiiiiiiiieeee ettt e ettt e e e s st e e e e e s s s aabbaeeeeeesssnanereeeas 115
Table 18 HTTP STAtUS COUE ...uuuviiiiiiiiieiiiiiiiiteeee ettt e e s e sttt e e e e e e e s s bbb e e e e e e s s s ssaabbbaaeeeeesssnsansrraeens 115
Table 19 CRUD API HTTP Status Codes if request fails....... ..o 116
Table 20 Intent APl HTTP Status Codes if request fails ..o 116
Table 21 HTTP LONE POIING ..vvueiiiiiiiiiiiiiii s 133
Table 22 OWASP API SECUTItY TOP L0...uuuuuuuuuiuuiunniiiii s 180

6|Page

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

Chapter 1. Introduction

1.1. Purpose of this book

This book provides a small cookbook of simple guidelines for designing RESTful APIs. They have been
validated:

e by different points-of-view, for example, backend developer, frontend developer, enterprise
architect, system architect, solution architect, etc.
e onvarious frameworks, such as Spring Boot, Angular, React, etc.

Each guideline is duly justified in its own section later in the book.

1.2. About the author

» Michalis ARGYRIOU! has been involved as developer or architect in numerous projects for the

" European Commission, EU Agencies, and International organizations for the last 15 years.

Currently, M. ARGYRIOU is serving as Head of Development and Architecture in Sword Services

Greece S.A. M. ARGYRIOU is the author of the WIPO Standard ST.902 and the original author of ST.97° for

the standardization of the exchange of IP data using APIs. Therefore, M. ARGYRIOU is familiar with various
standards and industry practices on designing APls.

1.3. Acknowledgements

The people that have reviewed this book —in no particular order:

1.4. Why is this book different from the other “REST API” books?

This book is purely technical. Its intention is to be practical and simple. It targets RESTful APIs for typical
System (not large-scale systems that have extreme peculiar needs).

Practical because it follows a top-down approach by providing first a cookbook of guidelines in a few
pages and if someone wants to better understand why each guideline is provide may delve into detail into
the respective section that justifies each guideline.

Simple because it prioritizes simplicity to simplify the guidelines. For example, CRUD APIs and Intent APIs
are described but it is recommended Intent APIs to be converted to CRUD APIs.

This book is published on leanpub.com following a lean-based approach. As a result, it will be evolving,
and its content will always be improving.

L https://www.linkedin.com/in/micharg/
2 https://www.wipo.int/export/sites/www/standards/en/pdf/03-90-01.pdf
3 https://www.ompi.int/export/sites/www/standards/en/pdf/03-97-01.pdf

7|Page

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

1.5. Notation

The following notation is used in the book:

This paragraph provides an important information. Make sure you do not miss
it!

This paragraph lists pros.

This paragraph lists cons.

This paragraph provides a guideline.

This paragraph describes information how to realize a guideline.

Case Study from the IT Industry

mi QOO ¢

Alternative

Paragraph is in progress.

Table 1 Notation

For all the examples provided in JSON, the naming convention is lowerCamelCase (for example, for Java
implementation of JSON serialization and deserialization).

1.6. Errata

For any typo or mistake identified or any improvement proposed, please send an email to
micharg@gmail.com.

8|Page

mailto:micharg@gmail.com

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

1.7. Book Target Audience

This book answers the following concerns:

Should | expose the physical model (DB tables)
or the logical model (classes) as APl resources?

e

What naming conventions should | use to

serialize classes to DTOs?
Backend Developer

e

Does the API support the Ul components needs,
such as pagination, sorting, etc?

Frontend Developer

What aspects of the REST API should | test?

e

How should | test it?
Tester

Should API support our DDD’s Ubiquitous
Language?

e

. . . 5
System Architect Is it possible to use REST API with CQRS:

How can | make sure that developers will create
System RESTful APIs that follow consistent rules?

e

Solution Architect

9|Page

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

m What to check to verify that APl does not expose

sensitive information?

Security Architect

O Which API Design Guidelines should the, such as
naming conventions) should the APIs in the
Application Architecture follow? Can | enforce

them?
Enterprise Architect
Table 2 Book Target Audience

1.8. Book Structure

e Chapter 1. Introduction: This Chapter provides the goal of this book and instructions how to read
it to get value as fat as possible.

e Chapter 2. REST API Cookbook: This Chapter provides a summary of the RESTful API guidelines.

e Chapter 3. Fictional Case StudyError! Reference source not found.: This Chapter applies the
Cookbook of the previous Chapter to design the API for a fictitious Case Study.

e Chapter 4. The History and evolution of APIs: This Chapter provides a brief history from RPC to
RESTful APIs to connect the dots why RESTful APIs are so popular. It also presents a few other
solutions to better describe how RESTful APIls compare with them.

e Chapter 5. On the shoulders of giants.: This Chapter provides in a central location the
fundamental concepts from the Internet Standards that RESTful APIs use to avoid repeatedly
cluttering the book with definitions or/and references.

e Chapter 6. APl Maturity Models: This Chapter describes industry frameworks that compare APIs
based on quality criteria. Then it concludes how “mature” an APl should be to balance maturity
with simplicity.

e Chapter 7. APl Design Patterns Analysis: This Chapter lists for each problem alternative solutions.
Then it concludes to a guideline considering the previous Chapter’s selected APl maturity level.

e Annex. Terminology: Provides an index for terms defined in the book.

To make this book useful as soon as possible jump to Section Chapter 2 - REST API
« Cookbook. To understand the reasoning that supports each design decision, just to the
relative referenced paragraph in Chapter 7.

10| Page

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

Chapter 2. REST API Cookbook

2.1. Principles
A Beautiful & Simple RESTful API should respect the following principles®:

e Use URI-identifiable APlIs.

e Use multiple uniquely URI-identified resources that have a single resource representation.
e Support multiple resources representations.

e Design server as stateless.

e Use HTTP semantics.

o Use self-described messages.

e label server responses as cacheable or not.

e Design server as layered, for example, security, business logic, application.

2.2. URL Template
2.21. API Versioning
Versioning Strategy
For API Versioning, use Path Segment Versioning
Versioning Scheme
For API Versioning Scheme, use Semantic Versioning (only MAJOR)
Deployment Strategy

e Backward compatible change =» new API uses only the major version and replaces previous
version (transparent to clients)

e Non-backward compatible change =» deploy new API version using only the major version +
preserve previous APl version (for a transient period to give time to clients to migrate

2.2.2. Multi-environment APls

For multi-environment APIs, use Subdomains to indicate each environment (for example, ga, dev). For
the production environment the subdomain <env.> should not be used.
Wildcard certificates are required to support all the environments (subdomains).

2.2.3. URL Collision

To avoid URL Collision, use the Path Segment “api” for the URI, for example,
acme.com/api/.

2.2.4. Resource Modelling

Resource Location

4 See Section Chapter 6 - APl Maturity Models

11|Page

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

Do not use a trailing forward slash (/) in the URI

Mapping concepts to resources

An APl may map its internal domain (concepts) as API resources with the following approaches:

Expose the Ubiquitous Language directly (to Conformist clients). This alternative should be
preferred if the client is developed by the same team that develops the API.

Map the Ubiquitous Language to a new standard language (with OHS and a Published Language).
This alternative should be preferred if the client is developed by another team and there is a
Published Language that can be used.

Map the Ubiquitous Language to a new non-standard language. The API client is recommended to
use an ACL. This alternative should be preferred if another team develops the API client.

Organizing resources as CRUD resources

Model all resources as CRUD resources (Document, Collection or Store). Convert Intent resources
(Controller) to CRUD resources. Conversion is always possible.

Naming Resource

The recommended convention for naming resources, is kebab-case and abbreviated if possible. Resource
names should be nouns in plural nouns. Example: /<resource-name>s.

2.3. Methods

Use only Use the following HTTPS methods only: GET, PUT, DELETE, POST, PATCH.

2.4. Data Dictionary

Date & Time: Should be formatted as specified in ISO 8601

o Datetime (i.e., timestamp) as yyyy-MM-dd'T'HH:mm:ssZ

= If time should be localized on Client’s timezone: <see paragraph for Localization>

o Date as yyyy-MM-dd

o Time zone information: As specified in IETF RFC 3339. For example: 20:54:21+00:00
Numbers can be integers (whole counting numbers) or floating points (high precision numbers)
Currency: Should be formatted as specified in ISO 4217-Alpha (3-Letter Currency Codes)
Country names: Should be formatted as specified in ISO 3166-1-Alpha-2 Code Elements (2 letter
country codes)
Language codes: Should be formatted as specified in ISO 639-1 (2-Letter Language Codes)
Units of Measure: Should use the units of measure as described in The Unified Code for Units of
Measure (based on ISO 80000 definitions). For example, for weight measuring using kilograms (kg)
Empty fields: If a field is empty (null) then do not include it in the request or response

2.5. Payload

2.5.1. Content Negotiation

For Content Negotiation, use HTTP Headers

12| Page

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

2.5.2. Request
Body properties names

Request/Response body property names is recommended to be lowerCamelCaseRequest/Response
body property names is recommended to be lowerCamelCase

Request payload template

Request body cannot be standardized ({}).
2.53. Request Content Type

A CRUD API (PUT, POST, PATCH) should accept application/json.
2.5.4. Response

Body properties names

Request/Response body property names is recommended to be lowerCamelCaseRequest/Response
body property names is recommended to be lowerCamelCase

Response Content Type
A CRUD API (GET, POST, PATCH) should return application/json
Response Payload Template (on success)

The response payload of a successfully processed request should have the following structure:

{

"data":{... },
"metadata": { ... }

}
HTTP Code (on success)

GET|PUT|PATCH | DELETE | POST should use 200 OK to simplify.
Response Payload Template (on failure)
An application-level error should have the following structure that extends RFC 7807:
= type (string, optional): Cheat: use a code.
= title (optional, string): Localizable based on the request HTTP header Accept-Language.
= status (optional, number): Duplicate of the HTTP status code to be close to the associated payload.
= detail (string)
= jinstance (string)

= {extension-members}: For example: invalid-params[]{name, reason} for validation errors (name can
be ref to DOM element id)

= timestamp (mandatory, ts): when the error was raised.

13|Page

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

= debugMessage (optional): technical message (not for PROD), for example a UUID, for logging purposes
HTTP Code (on failure)

Application-level failures from GET|PUT|PATCH | DELETE|POST should return 200 OK to simplify. Specific
use cases may override this simple guideline.

2.6. Parameters
Parameter Types

e Use Request Parameters to limit the query length.

e Use Path Parameters for mandatory parameters (such as resource id)

e Use Query Parameters for optional parameters (see also Filtering & Searching recommended
reserved names)

Query parameter names
Query parameter names is recommended to be snake case.

Query parameter names is recommended to be snake case.

2.7. Filtering & Searching

e Use Filtering for querying based on a few query criteria using GET or POST (consider the pragmatic
query length restriction of URLs).

e Use Searching for querying based on complex query expressions using GET or POST (consider the
pragmatic query length restriction of URLs).

e Use Searching for querying based on complex query expressions using GET or POST (consider the
pragmatic query length restriction of URLs).

e Use Predefined Search for remembering queries.

2.8. APl Composition

Use APl Composition in the API GW instead of making complex the upstream APIs. APl Composition
should not be used when pagination and sorting should be applied to multiple indexes

2.9. Concurrency Control

Implement Optimistic Concurrency using ETag and If-Match HTTP Headers and the HTTP Status Code
412 Precondition Failed if the entity has been changed between fetching it and changing it.

2.10. Consistency

Implement Optimistic Concurrency using ETag and If-Match HTTP Headers and the HTTP Status Code 412
Precondition Failed if the entity has been changed between fetching it and changing it.

2.11. Large File Transfers

* For downloads, prefer Content-Length.
* For uploads, prefer Transfer-Encoding: chunked

14 |Page

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

* Consider using the Valet Key Pattern to offload data transfer from the application.
* If using ETag should use Strong Validator instead of Weak Validator so that byte ranges (Accept-
Range) can be cached

2.12. Pushing data to Client

* For unidirectionally pushing data to Client, use SSE.
* For bidirectionally pushing data from/to Client, use WebSockets.

2.13. API Localization
2.13.1. Language

Use the HTTP Header Accept-Language to fetch localized content from the API

2.13.2. Timezone

If business-wise is acceptable the API’s Client to see the API’'s Timezone the then API should accept and
return datetimes in its Timezone. If business-wise the API’s Client must use its own Timezone, then
datetime should be (a) transferred to server with the format 1ISO8601[TZ], (b) processed by the Server as
a data type that contains the Timezone and (c) persisted in server’s db as a data type that contains the
Timezone.

2.13.3. Caching
Cache Control

For overriding the default caching behaviour, use the HTTP Header Cache-Control with
a random jitter (to avoid the thundering herd effect).
ETag

Combine Cache-Control and the HTTP Validator Header ETag for Content-based
determination if an entity has been modified.
ETag Generation

e For transferring dynamic generated content use Strong ETags. To generate Strong hash (using
MDS5) the message’s payload is used (body) and its Content-Encoding.

e For transferring strictly version-controlled resources use Strong ETag populated with the entity’s
version number (should be stored in DB). For transferring static resources (such as JS, CSS, PNG,
etc.) use Weak ETags.

2.14. Async API

For long (async) running operations, such as PDF generation, the following steps must be followed:

a) Client submits long running operation (POST)

b) API returns 202 Accepted which means request accepted for processing but processing has not
been completed. It returns the location where the Client should check for status update using the
HTTP Header Location: <op-status-location>

c) Client checks status of operation with GET <op-status-location>

15|Page

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

API returns 200 OK which means operation still in progress. Response may contain other
information for the status of the operation, for example, progress indicator or link to
cancel or delete the task.

API returns 200 OK and the response contain a description of the error in case the
operation failed.

API returns 303 See Other which means operation has finished successfully. The HTTP
Header Location indicates the URL where the result should be retrieved. Client uses the
Location to get the generated result of the long operation.

2.15. API Resiliency

2.16. APl Documentation

Workflows

API Specifications

For API Specifications, use OAS 3.x
2.17. Extending HTTP

Custom HTTP Headers

Use custom HTTP Headers but without using the X- prefix.
2.18. API Style Guide Automation

Use an API Linter to enforce the API Style Guide
2.19. API Security

Secure Access

CSRF

16 |Page

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

Data Tampering

Use SHA-3 or SHA-256 Cryptographic Hashes to protect against Data Tampering.
2.19.1. OWASP API Security Top 10

Mitigate against OWASP API Security Top 10 threats. Use an API Linter to enforce
OWASP security guidelines.

2.20. Observability

The following response should be returned (following common-v1.yaml):

Service is up:
{
"status": "UP"
}
Service is down (with additional details):
{
"status": "DOWN",
"details": {
"datastore": {
"status": "DOWN",
"errorMessage": "connection timeout"
}
}
}

2.21. API Deployment

Follow the Port binding principle of the Twelve Factor application methodology to deploy multiple APIs.

2.22. API Testing

2.23. Discouraged Practices
Query expansion

Do not use query expansion
Semantic RESTful APIs

Do not design RESTful APIs as semantic RESTful APls.
Hypermedia

Do not do HATEOAS since it will make the implementation of the API (and the client)
more difficult (very complex) and most of the time it is not even used (client should be
adapted to support it).

Matrix Parameters

17| Page

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

Do not use Matrix Parameters

18| Page

Simple RESTful API design guidelines that make sense | ARGYRIOU Michalis

Chapter 3. Fictional Case Study

In this example, we will apply the guidelines of Chapter 2 REST APl Cookbook in a fictional company.

3.1. ACME Corporation

Acme Corporation® manufactures outlandish products that fail or backfire catastrophically at the worst
possible times. Acme wants to create an e-shop to provides access to its products to more clients and
increase its revenue.

3.2. ACME’s organization model

A single team will work to develop the Acme System for the MVP. If the System becomes bigger more
teams may be formed.

3.3. ACME’s domain model

Acme’s domain model is the following:

ACME Domain

Customer b ShoppingCart

Order

Items > Product

\—l |

supplied by

ltems Invoice

Supplier

shpped by

Shipper Payment

Figure 1 Acme Domain Model

Acme sells Products to Customers. Suppliers provide products. The Customer creates a ShoppingCart with
the Items that will be bought. The Customer proceeds to an Order where the ShoppingCart Items
promoted to Order Items. For each Order, an Invoice is created for the chosen Payment method (for
example, credit card).

5 https://en.wikipedia.org/wiki/Acme_Corporation

19| Page

