

1

Use mocks with automation testing.

Learn to create mocks for automation testing fundamentals fast.

This version was published on 2021-03-08

The right of Anton Smirnov to be identified as the author of this work has been asserted by him in accordance with the Copyright, Design and Patents Act 1988.

The views expressed in this book are those of the author.

Contact details:

• antony.s.smirnov@gmail.com

Related Websites:

Use mocks with automation testing: https://test-engineer.site/

Author’s Software Testing Blog: https://test-engineer.site/

2

Every effort has been made to ensure that the information contained in this book is accurate at the time of going to press, and the publishers and author cannot accept any responsibility for any errors or omissions, however, caused. No responsibility for loss or damage occasioned by any person acting, or refraining from action, as a result of the material in this publication can be accepted by the editor, the publisher, or the author.

© 2021 Anton Smirnov, Test Engineer Ltd.

3

Table of Contents

 Introduction. ... 5

 Chapter 1. Mocking in testing. ... 11

 Chapter 2. Review of popular mock ... 18

 frameworks. .. 18

Mockito. ... 23

EasyMock. ... 29

JMockit. .. 34

Catbird. ... 41

 Chapter 3. How to use mocks and stubs for testing in the project. 44

Web Service. ... 50

HTTP Service. .. 51

Email. ... 52

DataBase. ... 54

 Chapter 4. Create a stub for testing a one-time password service. 58

 Chapter 5. Mock Backend and Frontend. ... 65

 Conclusion. .. 75

4

Introduction.

There is a category of classes that are very easy to test. If a class depends only on primitive data types and has no relations with other business entities, then it is enough to create an instance of this class, "kick" it in some way by changing a property or calling a method and check the expected state.

This is the simplest and most effective way of testing, and any sensible design starts from such classes, which are the" building blocks " of the lower level, on the basis of which more complex abstractions are then built. But the number of classes that live in such "isolation" is not much by nature. Even if we normally isolated all the logic for working with the database (or service) into a separate class (or set of classes), sooner or later someone will appear who will use these classes to get higher-level behavior and this "someone" will also need to be tested.

Probably everyone who started writing unit and integration tests, faced with the problem of abuse of mocs, which leads to fragile tests. The latter, in turn, creates the wrong belief in the tester that the tests only interfere with the work. Pretty often you can see test automation framework successfully running tests and reporting results but not doing what it’s supposed to do: providing a reliable way for team members to build automated tests, and get reliable results.

This often happens when a test automation framework is built without planning in advance and understanding how it will be used.

5

At first, the team realizes that they need automated tests. One of the engineers decides to take care of it (or gets assigned) —

using the tools they are familiar with; they automate the first bunch of tests.

Since initially, it’s a proof of concept, some things are being implemented via the fastest and most obvious solution, which is not always utilizing the industry’s best practices. Such solutions introduce technical debt. If not addressed early, the impact of technical debt grows once the framework is expanded.

As a result, few iterations later, the team gets a test automation framework that can pretty well-run tests that were in the mind of the author building it. But making a step aside, expanding coverage to additional features, or trying to get other engineers owning tests creation via such framework becomes a challenging task.

Have you ever wondered how to use a mocks with test automation framework? Well, in this book you will learn about everything you’ll need to successfully create such mocks.

We’re going to look at the pros and cons of preconfigured testing environments and those that are created dynamically.

This book is based on more than 5+ years of experience in the field of testing automation. During this time, a huge collection of solved questions has accumulated, and the problems and difficulties characteristic of many beginners have become clearly visible. In the course of working in different places, I have repeatedly had to create a framework for testing automation from scratch. It was obvious and reasonable for me to summarize this material in the form of a book that will help novice testers quickly build an automation testing framework on a project with mocks and avoid many annoying mistakes.

6

This book does not aim to fully disclose the entire subject area with all its nuances, so do not take it as a textbook or Handbook

— for decades of development testing has accumulated such a volume of data that its formal presentation is not enough, and a dozen books.

Also, reading just this one book is not enough to become a

"senior automated testing engineer". Then why do we need this book?

First, this book is worth reading if you are determined to engage in automated testing – it will be useful as a "very beginner" and have some experience in automation.

Secondly, this book can and should be used as reference material.

Thirdly, this book — a kind of "map", which has links to many external sources of information (which can be useful even experienced automation engineer), as well as many examples with explanations.

This book is not intended for people with high experience in test automation. From time to time, I use a learning approach and try to “chew” all the approaches and build the stages step by step.

Some people more experienced in software test automation also having may find it slow, boring, and monotonous.

This book is intended for people who first approach the creation of an automation testing framework, especially if their goal is to add automation to their test approach.

7

First of all, I wrote this book for a tester with experience in the field of “manual” software testing, the purpose of which is to move to a higher level in the tester career.

Summary:

We can safely say that this book is a kind of guide for beginners in the field of automation software testing.

I have a huge knowledge of the field of test automation. I also have quite a lot of experience building automation on a project from scratch.

I have repeatedly had to develop and implement the framework of testing automation on projects.

The learning approach focuses on a huge chunk of theory on building the automation testing framework. The book also discusses the theory of test automation in detail.

However, the direction of automation to support testing is no longer limited to testing, so this book is suitable for anyone who wants to improve the use of automation: managers, business analysts, users, and, of course, testers.

Testers use different approaches for testing on projects. I remember when I first started doing testing, I was drawing information from traditional books and was unnecessarily confused by some concepts that I rarely had to use. And most of the books, to my great regret, did not address the aspects and approaches to test automation. Most books on testing begin by showing how you can test a software product with basic 8

approaches. But I do not consider the approaches and implementations of test automation at the testing stage.

My main goal is to help you start building a mobile automation testing framework and have the basic knowledge you need to do so.

This book focuses on theory rather than a lot of additional libraries because once you have the basics, building a library and learning how to use it becomes a matter of reading the documentation.

This book is not an "exhaustive" introduction. This is a guide to getting started in building a mobile automation testing framework. I focused on the examples.

I argue that in order to start implementing an automation testing framework, you need a basic set of knowledge in testing and management to start adding value to automation projects.

In fact, when I started creating the automation testing framework first, I used only the initial level of knowledge in the field of testing and development.

I also want the book to be small and accessible so that people actually read it and apply the approaches described in it in practice.

9

Acknowledgments.

This book was created as a “work in progress” on leanpub.com. My thanks go to everyone who bought the book in its early stages, this provided the continued motivation to create something that added value, and then spends the extra time needed to add polish and readability.

I am also grateful to every QA engineer that I have worked with who took the time to explain their approach. You helped me observe what a good QA engineer does and how they work. The fact that you were good, forced me to ‘up my game’ and improve both my coding and testing skills.

All mistakes in this book are my fault.

10

Chapter 1. Mocking in testing.

Sometimes, in order to test a piece of code (for example, a method), you need to try quite hard. As a rule, the bigger problems do not arise when you are testing UI methods. The biggest problems can start with testing the business logic.

The fact is that very often the method under test can call methods of other classes, which in this case do not need to be tested. The unit test is called modular because it tests individual modules, not their interaction. Moreover, the smaller the module under test – the better in terms of future test support.

Integration tests are used for interaction testing, where you are already testing full use cases rather than individual functionality. However, our classes very often use other classes in their work.

11

For example, the Business Logic layer often works with other business logic objects or accesses the Data Access layer. In the three-layer architecture of web applications, this is generally a constant process: The Presentation layer refers to the Business Logic layer, which, in turn, to the Data Access layer, and the Data Access layer – to the database. How can we test such code if calling one method entails a chain all the way to the database?

In such cases, so-called mock objects come to the rescue, designed to simulate the behavior of real objects during testing.

In general, the concept of a mock object is quite broad: it can, on the one hand, denote any test doubles (Test Doubles) or a specific type of these doubles – mock objects. I will try to use this term exclusively in the second case.

The concept of test doubles was introduced by a certain Gerard Meszaros in his book "xUnit Test Patterns" and now, with the help of the notorious Martin Fowler, this terminology is gaining popularity. Gerard and Martin divide all test doubles into 4 groups:

• Dummy - empty objects that are passed to the called internal methods, but are not used. They are intended only for filling in the parameters of methods. Example: If you’re testing a method of a class that requires many mandatory parameters in a constructor that have no effect on your test, then you may create dummy objects for the purpose of creating new instances of a class.

• Fake objects that have working implementations, but in a form that makes them unsuitable for production code.

Example: Create fake implementation for accessing a database, replace it with the in-memory collection.

12

• Stub objects that provide pre-prepared responses to calls during test execution and usually do not respond to any other calls that are not required in the test. They can also store some additional information about the number of calls, parameters, and then return them to the test for verification. Example: Your test class depends on a method Calculate() taking 5 minutes to complete. Rather than wait for 5 minutes you can replace its real implementation with a stub that returns hard-coded values; taking only a small fraction of the time.

• Mock objects that replace the real object in the test conditions and allow you to test calls to their members as part of a system or unit test. Contain pre-programmed call waits that they expect to receive. They are mainly used for so-called interaction (behavioral) testing. Example: You’re testing a user registration class. After calling Save, it should call SendConfirmationEmail.

At first, this classification looks very unclear. But if you think about it, you can figure out what is the difference between these and other types of objects. Suppose you need to test the Foo() method of the TestFoo class, which makes a call to another Bar() method of the TestBar class. Let's assume that the Bar() method takes some object of the Doe class as a parameter and then does nothing special with it. In this case, it makes sense to create an empty Doe object, pass it to the TestFoo class (this can be done using the widely used Dependency Injection pattern or some other acceptable method), and then Foo() itself will call the TestBar.Bar() method with the passed empty object. This is an illustration of using a dummy object in unit testing.

13

In software engineering, dependency injection is a technique in which an object receives other objects that it depends on.

These other objects are called dependencies. In the typical

"using" relationship the receiving object is called a client and the passed (that is, "injected") object is called a service. The code that passes the service to the client can be many kinds of things and is called the injector. Instead of the client specifying which service it will use, the injector tells the client what service to use. The "injection" refers to the passing of a dependency (a service) into the object (a client) that would use it.

Unfortunately, it is rarely possible to do with simple dummy objects. Sometimes the Bar() method performs some actions with it (for example, Bar () saves data to a database or calls a web service, and we do not want this). In such cases, our TestBar class object should not be so stupid anymore. We should teach it to simply execute some simple code in response to a request to save data (for example, saving to an internal collection). In such cases, we can allocate the ITestBar interface, which will implement the TestBar class and our additional FakeBar class. In unit testing, we will simply create an object of the FakeBar class and pass it to the class with the Foo() method via the interface. Naturally, the Bar class will still be created in the real application, and the FakeBar will only be used in testing. This is an illustration of a fake object.

With stub-and mock-objects, everything is a little more complicated, although there is something to start from here.

Stub objects – stubs) are typical stubs. They do nothing useful and can only return certain data in response to calls to their methods.

14

In our example, the stub would replace the TestBar class and in response to the Bar() call, it would simply return data that would not be important to us. In this case, the internal implementation of the real Bar() method would simply not be called. This approach is implemented through the interface and the creation of an additional StubBar class, or simply through the creation of a StubBar that is inherited from TestBar. In principle, the implementation is very similar to a fake object, with the only exception that it does not require anything useful, except for the constant return of some constant data. A typical stub. Stabs are only allowed to store some data inside themselves that certifies that calls were made or contains copies of the passed parameters, which can then be checked by the test.

The mock object, in turn, is, roughly speaking, a more intelligent implementation of the stub, which no longer just returns preset data, but also records all the calls that pass through it, so that you can further check in the unit test that these methods of these classes were called by the method under test and in this order (although taking into account the sequence and the strictness of the check, in principle, is a configurable thing). That is, we can make a mock MockFoo that will somehow call the real Foo() method of the TestFoo class and then see what calls it made. Or make a mock MockBar and then check that when calling the Foo() method, the Bar() method was actually called with the parameters we need. To understand the difference, you need to go deeper into Unit testing.

15

Unit testing is conditionally divided into two approaches:

• state-based testing, in which we test the state of an object after passing the unit test.

• interaction (behavioral) testing, in which we test the interaction between objects, the behavior of the method under test, the sequence of method calls and their parameters, etc.

That is, in state-based testing, we are mainly interested in what state the object went to after calling the test method, or, more often, what our method actually returned and whether this result is correct. Such checks are performed by calling the methods of the Assert class of various unit-test frameworks: Assert.AreEqual(), Assert.That (), Assert.IsNull() , etc.

In interaction testing, we are primarily interested not in the static state of an object, but in the dynamic method calls that occur inside it. That is, for our example with the TestFoo and TestBar classes, we will check that the test method Foo () actually called the Bar() method of the TestBar class, and not what it returned and what state it went to. As a rule, in the case of such testing, programmers use special mock frameworks that contain certain constructs for recording expectations and then checking them through the methods Verify (), VerifyAll (), VerifyAllExpectations() or others (depending on the specific framework).

16

That is, in many ways, this difference can be called similar to the difference between state machine diagram and activity diagram in UML: they describe, in principle, the same thing, but in different ways. Sometimes one is more convenient, sometimes the second.

Fowler here calls these two approaches classical and mock unit testing and divides programmers into those who prefer the first and those who prefer the second approaches. It seems to me that sometimes it is just more convenient to check the state of an object, and sometimes-its interaction with other objects.

Therefore, these two approaches work well together when you understand what you are talking about, and what exactly you want to test now. Just like moki and stabs get along in the same test.

17

index-11_1.png
System in Production System in Unit Test

B Component Under Test W Component Under Test
W Depended on Components W Mocks for Components

O Additional Components

index-1_1.png

