Automation and
Monitoring with Hubot

For DevOps and Developers

-
& A SFL
A MMM ANER AR

kK
el

Tomas Varaneckas




Automation and Monitoring with Hubot
For DevOps and Developers

Tomas Varaneckas
This book is for sale at http://leanpub.com/automation-and-monitoring-with-hubot

This version was published on 2014-09-29

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

©2014 Tomas Varaneckas


http://leanpub.com/automation-and-monitoring-with-hubot
http://leanpub.com
http://leanpub.com/manifesto

Also By Tomas Varaneckas

Developing Games With Ruby


http://leanpub.com/u/spajus
http://leanpub.com/developing-games-with-ruby

Contents

Hubot Scripting . . . . . . . . . . 1
Hello, World! . . . . . . 1
Basic Operations . . . . . . . . . . . e 1
Reacting To Messages In Chatroom . . . . . ... ... .. ... ... ......... 2
Reacting To Message Parts . . . . . . . . . ... . 4
Capturing All Messages . . . . . . . . . . 0t e 7
Capturing Unhandled Messages . . . . . . . . . . . . . ... ... 9
Serving HTTPRequests . . . . . . . . . . . . . .. . 9
Cross Script Communication WithEvents . . . . . . ... ... ... .. . ... 11
Periodic Task Execution. . . . . . . . ... ... .. L 12
Debugging Your Scripts . . . . . . . ..o 14
Advanced Debugging With Node Inspector . . . . . . . ... ... ... .. ...... 14
Writing Unit Tests For Hubot Seripts . . . . . . . . . ... oo o o oL 16
Hubot Script Template . . . . . .. . ... .. 17
Using Hubot Shell Adapter For Script Development . . . . . ... ... ... ... .. 19
Developing Scripts With Hubot Control . . . . . . . ... ... ... .. ... ..... 19

Learning More . . . . . . . . . . e 19



Hubot Scripting

Hubot is written in Node.js", using CoffeeScript?, which is a JavaScript wrapper that resembles
Python and aims to remove the shortcomings of JavaScript and make use of it’s wonderful
object model. Following the tradition of Hubot, all scripts in this book will be written in
CofteeScript, but you may use JavaScript, simply name your scripts with . js rather than . coffee
file extension.

Hello, World!

To start with, create scripts/hello.coffee in your hubot directory with following contents:

# Description:
# Greet the world

#

# Commands :

# hubot greet - Say hello to the world

module.exports = (robot) ->
robot.respond /greet/i, (msg) ->
msg.send "Hello, World!"

Now restart Hubot and try it out in your chatroom.

Tomas V. hubot help greet

Hubot hubot greet - Say hello to the world
Tomas V. hubot greet
Hubot Hello, World!

Wonderful, isn’t it?

Basic Operations

Hubot is event driven, and when you write scripts for it, you define callbacks that should happen
when some event occurs. Event can be:

+ Message in the chatroom

"http://nodejs.org
®http://coffeescript.org/


http://nodejs.org
http://coffeescript.org/
http://nodejs.org
http://coffeescript.org/

Hubot Scripting 2

« Private message to Hubot
« A text pattern detected in any message
« HTTP request

Callback can result in:

+ Message in the chatroom

« Reply to a message

« Emotion in the chatroom

« HTTP response (if trigger was HTTP request)
« New HTTP request

+ Executing a shell command

+ Executing something on a remote server

Hubot can do anything that can be done with Node.js.

We'll learn how to exploit everything Hubot can offer by writing a fully functional script that
covers a different piece of functionality. We will be analyzing it line by line, so you will get a
perfectly clear understanding of what’s happening.

Reacting To Messages In Chatroom

Let’s try to create something more useful than hello world. We want Hubot to print out this
month’s calendar when we say “hubot calendar” or “hubot calendar me”. We will use cal - a
shell command that prints out a calendar like this:

hubot@botserv:~$ cal
January 2014

Su Mo Tu We Th Fr Sa

1 2 3 4

5 6 7 8 910 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25
26 27 28 29 30 31

To do that, we will create calendar.coffee in scripts/ directory and use robot.respond to
handle the event.



O = W N =

Hubot Scripting 3

scripts/calendar.coffee

child_process = require('child_process')
module.exports = (robot) ->
robot.respond /calendar( me)?/i, (msg) ->
child_process.exec 'cal -h', (error, stdout, stderr) -»>
msg.send(stdout)

Let’s analyze what happens line by line.
child_process = require('child_process')

Here we require child_process® - a node module for making system calls. We assign the module
to child_process variable.

module.exports = (robot) -»>

When Hubot requires calendar.coffee, module.exports is the object that gets returned. The
(robot) -> part is a function that takes robot argument. This is how this line would look like
in JavaScript:

module.exports = function(robot) ({

Every Hubot script must export a function that takes robot argument and uses it to set up event
listeners.

robot.respond /calendar( me)?/i, (msg) ->

robot.respond is a function that takes two arguments - a regular expression to match the
message, and a callback function that takes msg argument, which has a variety of functions for
doing various actions. The regex /calendar( me)?/i would match calendar and calendar me
in case insensitive fashion. Since we are using respond, it also expects the message to begin with
hubot, or whatever your bot name is.

child_process.exec 'cal -h', (error, stdout, stderr) ->

Here we call exec function on child_process variable, and provide two parameters - a system
call that should be executed, and a callback function that takes 3 arguments - error, stdout, and
stderr.cal -h displays ASCII calendar without highlighting current day:.

*http://nodejs.org/api/child_process.html#child_process_child_process


http://nodejs.org/api/child_process.html#child_process_child_process
http://nodejs.org/api/child_process.html#child_process_child_process

Hubot Scripting 4

msg.send(stdout)

Finally, we use msg, which was passed into robot .respond callback function, to send standard
output from cal -h command that we just executed.

To understand Hubot scripting better, you can try to understand concepts of Node.js. It’s all about
callbacks. In our calendar script there are two nested callbacks, one for robot . respond, another
for child_process.exec.

Now restart Hubot and test the new script.

Tomas V. hubot calendar

Hubot January 2014
Su Mo Tu We Th Fr Sa
1 2 3 4

5 6 7T 8 91011
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

It works as expected, but we also want this command to appear in hubot help, since it’s not
useful to have commands that nobody knows about. We have to add a documentation block on
top of our script to get the effect. The final version of our script looks like this:

script/calendar.coffee

# Description:

# Prints out this month's ASCII calendar.
#

# Commands :

#  hubot calendar [me] - Print out this month's calendar

child_process = require('child_process')
module.exports = (robot) ->
robot.respond /calendar( me)?/i, (msg) ->
child_process.exec 'cal -h', (error, stdout, stderr) ->
msg.send(stdout)

Now hubot help and hubot help calendar will tell everyone about your script.

Reacting To Message Parts

Hubot can eavesdrop on chatrooms and react to certain words or phrases that were said without
talking to the bot directly. Use robot . hear to do it.

Our new script will listen for “weather in <...>”, query Open Weather Map* API and post the
weather information.

“http://openweathermap.org/


http://openweathermap.org/
http://openweathermap.org/

0 N O O & W N =

N DN DN DNDDNDDNDDNDDNDDNDNRAS A~ -~ B~ B By
O© 00 9 O O+ WO N0 © 03O0 O bk N~ O

Hubot Scripting 5

script/weather.coffee

Description:
Tells the weather

Configuration:
HUBOT_WEATHER_API_URL - Optional openweathermap.org API endpoint to use
HUBOT_WEATHER_UNITS - Temperature units to use. 'metric' or 'imperial'

Commands :

weather in <location> - Tells about the weather in given location

#
#
#
#
H
#
#
#
#
H
# Author:
#  spajus
process.env.HUBOT_WEATHER_API_URL | |=
'http://api.openweathermap.org/data/2.5/weather’
process.env.HUBOT_WEATHER_UNITS ||= 'imperial'

module.exports = (robot) -»>
robot.hear /weather in (\w+)/i, (msg) ->
city = msg.match[1]
query = { units: process.env.HUBOT_WEATHER_UNITS, q: city }
url = process.env.HUBOT_WEATHER_API_URL
msg.robot.http(url).query(query).get() (err, res, body) ->
data = JSON.parse(body)
weather = [ "#{Math.round(data.main.temp)} degrees" ]
for w in data.weather
weather.push w.description
msg.reply "It's #{weather.join(', ')} in #{data.name}, #{data.sys.count\

ry}

Run it for a test drive.

Tomas V. I wonder what is the weather in Vilnius right now

Hubot Tomas Varaneckas: It's 28 degrees, shower snow, mist in Vilnius, LT
Tomas V. and weather in California?

Hubot Tomas Varaneckas: It's 37 degrees, Sky is Clear in California, US

I wish I were in California right now. Anyway, let’s take this script apart. We’ll skip documen-
tation, since it’s pretty straightforward.



14
15
16

19

20

21
22

23
24

25

Hubot Scripting 6

process.env.HUBOT_WEATHER_API_URL ||=
'http://api.openweathermap.org/data/2.5/weather’
process.env.HUBOT_WEATHER_UNITS ||= 'imperial'

process.env allows you to read and set environmental variables, and our script uses a couple of
them. One for defining the API endpoint, another one for measurment unit type. In CoffeeScript
x | |= yisashorthand forx = (x != null) ? x : y, meaning it will only set the variable if it has
not been set before. This way you can override the values and set HUBOT_WEATHER_UNITS=metric
to get Hubot tell degrees in Celsius rather than Farenheit.

robot.hear /weather in (\w+)/i, (msg) ->

robot.hear works almost like robot.respond, with one exception. robot.respond requires
message to begin with Hubot’s name, while robot . hear reacts on any part of message, which is
exactly what we want. It takes two arguments, a regex that matches “weather in

city = msg.match[1]

msg.match is an array of regex matches, with 0 being the full message, and in our case 1 being
the content of the parentheses, which is simply any word. Yes, this script will fail to work with
“San Francisco”. So, we set city to be the first word that comes after “weather in”.

query = { units: process.env.HUBOT_WEATHER_UNITS, qg: city }
url = process.env.HUBOT_WEATHER_API_URL

Here we construct a query string parameters that will be passed to the weather API, and
set the URL we are going to call. We will read units from HUBOT_WEATHER_UNITS envi-
ronmental variable, and set query to city. If we would construct the query string our-
selves, we would need to worry about URL-encoding special characters, but since we're
passing an object, it will be taken care of for us. Final request will be made to following url:
http://api.openweathermap.org/data/2.5/weather?units=imperial&g=chicago.

msg.robot.http(url).query(query).get() (err, res, body) ->
data = JSON.parse(body)

Now we call the url using HTTP GET, set the query string parametrs using . query(), and provide a
callback function to handle the response. Callback parameters are error (if any), HTTP response
object and plain text response body. Our API returns JSON, so we parse the response body into
data variable.

weather = [ "#{Math.round(data.main.temp)} degrees" ]

Here we create a weather array with single element - data.main.temp is { main: { temp:
} } from the response JSON, and since it is returned in high precision, we round it to an integer
with Math.round. And finally we make it a string with “degrees” at the end.



26
27

28
29

0 N O O B~ W N -

NN NN NDNDDNRS B 1 | s sl
O O b WO N O © 01O O b WO N~ O O

Hubot Scripting 7

for w in data.weather
weather .push w.description

We loop { weather: [ ... ] } from response JSON, getting the description out of every
element and pushing it to the end of weather array.

msg.reply "It's #{weather.join(', ')} in #{data.name}, #{data.sys.count\

"

ry}

When we have our weather array all packed up with data, we join it into comma separated string
and form a nice string containing the weather data, city name and country code.

Capturing All Messages

Sometimes you may want Hubot to process all messages in all chatrooms. For example, if you
are writing a logging system. Here is a simple one:

scripts/logger.coffee

Description

Logs all conversations

module.exports = (robot) -»
fs = require 'fs'
fs.exists './logs/', (exists) ->
if exists
startLogging()
else
fs.mkdir './logs/', (error) -»>
unless error
startlLogging()
else
console.log "Could not create logs directory: #{error}"
startLogging = ->
console.log "Started logging"
robot.hear //, (msg) ->
fs.appendFile logFileName(msg), formatMessage(msg), (error) ->
console.log "Could not log message: #{error}" if error
logFileName = (msg) ->



27
28
29
30

11

12

13
14
15
16
17
18
19
20

21
22
23

Hubot Scripting 8

safe_room_name = "#{msg.message.room}".replace /["a-z0-9]/ig, "'
"./logs/#{safe_room_name}.log"

formatMessage = (msg) ->
"[#{new Date()}] #{msg.message.user.name}: #{msg.message.text}\n"

The breakdown:
fs = require 'fs'

We require Node’s built in file system module® and assign it to fs variable.
fs.exists './logs/', (exists) ->

We check if . /1ogs/ directory exists®, and since Node]JS is asynchronous, we have to provide a
callback function (exists) ->, that will get called with true or false after file system check
actually happens.

if exists
startLogging()
else
fs.mkdir './logs/', (error) ->
unless error
startlLogging()
else
console.log "Could not create logs directory: #{error}"

All this is happening in the (exists) -> callback function. If directory . /logs/ exists, we start
logging by calling startLogging( ) function immediately, otherwise we call mkdir’ to create this
directory. It has another callback function, (error) ->. It gets called after directory creation is
over. If there was no error, we call startLogging() function, otherwise we use console.log to
inform that we failed to start logging because directory could not be created.

startLogging = ->
console.log "Started logging"
robot.hear //, (msg) ->

This is the definition of startlLogging() function we’'ve called above. It uses console.log to
announce that logging was initiated, then uses robot.hear //, (msg) -> to register a listener
that reacts to all chat messages. That is because robot .hear does not require a message to be
prefixed with hubot, and // is a regular expression that would match just anything.

*http://nodejs.org/api/fs.html
®http://nodejs.org/api/fs.html#fs_fs_exists_path_callback
7http:/ /nodejs.org/api/fs.html#fs_fs mkdir_path_mode_callback


http://nodejs.org/api/fs.html
http://nodejs.org/api/fs.html#fs_fs_exists_path_callback
http://nodejs.org/api/fs.html#fs_fs_mkdir_path_mode_callback
http://nodejs.org/api/fs.html
http://nodejs.org/api/fs.html#fs_fs_exists_path_callback
http://nodejs.org/api/fs.html#fs_fs_mkdir_path_mode_callback

24
25

Hubot Scripting 9

fs.appendFile logFileName(msg), formatMessage(msg), (error) ->
console.log "Could not log message: #{error}" if error

When robot . hear gets triggered, (msg) -> is called, and this is what happens inside. We use
appendFile® to create or append a file that logFileName(msg) function will return, and write
the output of formatMessage(msg) function there. appendFile has a callback function to handle
errors. We define it as (error) -> and use console.log to inform about the failure if error is
present.

Time to try this out. After restarting Hubot, say something:

Tomas V. Hello, anybody here?
hubot ping
Hubot PONG
Tomas V. oh good, I hope you're not logging anything

It should appear in your Hubot’s 1ogs/ directory:

hubot@botserv: ~/campfire$ cat logs/585164.1log

[2014-03-22 21:54:26] Tomas Varaneckas: Hello, anybody here?

[2014-03-22 21:54:32] Tomas Varaneckas: hubot ping

[2014-03-22 21:54:47] Tomas Varaneckas: oh good, I hope you're not logging an\
ything

Unfortunately Hubot will not be able to see it’s own messages. It can be done after tweaking the
internals, but that’s a whole different story. Other than that, all messages will get logged.

Capturing Unhandled Messages

If you want to capture only those messages that were not handled by any Hubot script, it’s very
simple to do:

module.exports = (robot) ->
robot.catchAll (msg) -»>
msg.send "I don't know how to react to: #{msg.message.text}"

Serving HTTP Requests

Hubot has a built-in express® web framework that can serve HTTP requests. By default it runs
on port 8080, but you can change the value using PORT environmental variable. This time we will
create a script that responds to HTTP requests and posts request body in one or more rooms.
We’ll name this script notifier.coffee.

It will accept HTTP POST requests, so there will be no limits for what the body can be.

®http://nodejs.org/api/fs.html#fs_fs_appendfile_filename_data_options_callback
*http://expressjs.com


http://nodejs.org/api/fs.html#fs_fs_appendfile_filename_data_options_callback
http://expressjs.com
http://nodejs.org/api/fs.html#fs_fs_appendfile_filename_data_options_callback
http://expressjs.com

0 9 O O b W N =

[EEGEN
N O ©

10

Hubot Scripting 10

scripts/notifier.coffee

# Description:

#  Send message to chatroom using HTTP POST

#

# URLS:

#  POST /hubot/notify/<room> (message=<message>)

module.exports = (robot) ->
robot.router.post '/hubot/notify/:room', (req, res) ->
room = req.params.room
message = req.body.message
robot.messageRoom room, message
res.end()

To try it out, we will make a POST request using curl.

hubot@botserv:~$ curl -X POST \
-d message="Hello from $(hostname) shell" \
http://localhost:8080/hubot/notify/585164

And we get this in our chatroom.
Hubot Hello from botserv shell
Let’s dig in to the source.
robot.router.post '/hubot/notify/:room', (req, res) ->

robot.router.post creates a listener for HTTP POST requests to /hubot/notify/:room URL,
where :room is a variable defining your room. It also takes a callback function that has
two parameters, request and response. You can find out everything about robot.router by
examiming express api documentation' - robot . router is the express app.

room = req.params.room

req.params contains params from the URL, so in our case, if URL is /hubot /not i fy /123, variable
room is set to 123.

message = req.body.message

We read the value of message POST parameter and assign it to message variable.

http://expressjs.com/api.html


http://expressjs.com/api.html
http://expressjs.com/api.html

11
12

W N O O & W N =

TN
N »~ O O

N O O B W N -

Hubot Scripting 11

robot.messageRoom room, message
res.end()

Now, we send the message to given room and end the HTTP response. It would work without
res.end(), but it’s always nice to respond to the request, otherwise the HTTP client may hang
while expecting a response.

While this script looks nothing important, this concept is incredibly useful in building your own
chat based monitoring. You can trigger any sort of events from anywhere and make Hubot tell
everything about it by doing an HTTP request.

Cross Script Communication With Events

To reduce script complexity, or to introduce communication between two or more scripts, one
can use Hubot event system, which consists of two simple functions: robot.emit event, args
and robot.on event, (args) ->. We will now write two scrips - event-master.coffee and
event-slave.coffee. Master will listen to us and trigger events that Slave will listen to and
process.

scripts/event-master.coffee

# Description:

# Controls slave at event-slave.coffee
#

# Commands :

# hubot tell slave to <action> - Emits event to slave to do the action

module.exports = (robot) -»
robot.respond /tell slave to (.*)/i, (msg) ->
action = msg.match[1]
room = msg.message.room
msg.send "Master: telling slave to #{action}"
robot.emit 'slave:command', action, room

scripts/event-slave.coffee

# Description:

# Executes commands from “event-master.coffee”

module.exports = (robot) ->
robot.on 'slave:command', (action, room) ->
robot.messageRoom room, "Slave: doing as told: #{action}"

1

console.log 'Screw you, master...

It runs like this:



11
12

Hubot Scripting 12

Tomas V. hubot tell slave to bring beer
Hubot Slave: doing as told: bring beer
Hubot Master: telling slave to bring beer

Meanwhile in hubot . 1og:

hubot.log

Screw you, master. ..

Notice that “Slave” responded before “Master”, even though msg.send was called in “Master”
script first. It’s a perfect example to help you understand how Node.js works. Nearly everything
is being done asynchronously using callback functions, the only way to ensure the order of
execution is to use callbacks. To make “Master” send his message first, we have to putrobot .emit
in msg.send callback in event-master.cof fee, like this:

msg.send "Master: telling slave to #{action}", ->
robot.emit 'slave:command', action, room

This way msg.send is execute first, and only when it’s done, the callback function is called and
robot.emit gets executed.

In robot.emit call, slave:command is just a string that describes the event, action and room are
the parameters that are passed along with the event trigger. There can be as many listeners as
needed for every event type. We have placed ours in event-slave.coffee:

robot.on 'slave:command', (action, room) ->
robot.messageRoom room, "Slave: doing as told: #{action}"
console.log 'Screw you, master...'

Our callback function is pretty simple, it just posts a message to given room, and logs “Screw
you, master..” behind everyone’s back using console. log. It’s a good technique for debugging
your scripts.

Periodic Task Execution

You can make Hubot execute something using node-cron'’, which works perfectly with com-
bination of firing events - let one of your scripts listen to an event, and another one fire them
periodically.

First install the dependencies in your Hubot directory:

https://github.com/ncb000gt/node-cron


https://github.com/ncb000gt/node-cron
https://github.com/ncb000gt/node-cron

0 = O O b W N =~

[ e
g & W N =~ O O

16

o N O o

10
11
12
13
14
15
16

Hubot Scripting 13

hubot@botserv:~campfire$ npm install --save cron time
Then create a script called scripts/cron.coffee and define all periodic executions there:

scripts/cron.coffee

# Description:

# Defines periodic executions

module.exports = (robot) ->
cronJob = require('cron').CronJob
tz = '"America/Los_Angeles'
new crondob('® @ 9 * * 1-5', workdaysNineAm, null, true, tz)
new crondob('Q */5 * * % *' everyFiveMinutes, null, true, tz)

room = 12345678

workdaysNineAm = ->

robot.emit 'slave:command', 'wake everyone up', room

everyFiveMinutes = ->
robot.messageRoom room, 'I will nag you every 5 minutes'

Now let’s break it down:

cronJob = require('cron').CronJob

tz = 'America/Los_Angeles'

new cronJob('® @ 9 * * 1-5', workdaysNineAm, null, true, tz)
new cronJob('Q */5 * * x *' everyFiveMinutes, null, true, tz)

Here we require the cron dependency and assign it’s CronJob prototype to cronJob variable and
assign our desired time zone to tz. Then we create two jobs, first will run every workday at 9
AM in Los Angeles time and will execute workdaysNineAm function. The other one will execute
every five minutes and call everyFiveMinutes function.

room = 12345678

workdaysNineAm = ->
robot.emit 'slave:command', 'wake everyone up', room
everyFiveMinutes = ->

robot.messageRoom room, 'I will nag you every 5 minutes'

We assign room id to room variable, which we will use in following functions. workdaysNineAm
emits an event for the slave script we created earlier, and everyFiveMinutes just posts a message
to a room.

You can also do the same automation using your OS cron that would run curl on Hubot’s HTTP
endpoints, but this is more elegant.



Hubot Scripting 14

Debugging Your Scripts

It’s frustrating when things don’t work the way they should, but there are several techniques to
help you narrow down the problem.

Log strings to hubot . log:
console.log "Something happened: #{this} and #{that}"
Inspect an object and print it in the chatroom:

util = require('util")
msg.send util.inspect(strange_object)

Recover from an error and log it:

try
dangerous.actions()
catch e
console.log "My script failed", e

Advanced Debugging With Node Inspector

Sometimes it’s not enough just to print out the errors. For those occasions you may need heavy
artillery - a full fledged debugger. Luckily, there is node-inspector'®. You will be especially happy
with it if you are familiar with Chrome’s web inspector. To use node- inspector, first install the
npm package. You should do it once, using -g switch to install it globally. Install as root.

root@botserv:~# npm install -g node-inspector

To start the debugger, run node-inspector either in the background (followed by &) or in a new
shell. In following example it’s started without preloading all scripts (otherwise it’s a long wait),
and inspector console running on port 8123, because both hubot and node-inspector use port
8080 by default. We could set PORT=8123 for hubot instead, but setting it for node-inspector is
more convenient.

hubot@focus:~/campfire$ node-inspector --no-preload --web-port 8123
Node Inspector v@.7.0-1

info - socket.io started

Visit http://127.0.0.1:8123/debug?port=5858 to start debugging.

Now, we will put debugger to add a breakpoint to our weather.coffee script and debugger will
stop on that line when it gets executed.

2https://github.com/node-inspector/node-inspector


https://github.com/node-inspector/node-inspector
https://github.com/node-inspector/node-inspector

27
28
29
30
31

Hubot Scripting 15

script/weather.coffee

for w in data.weather
weather.push w.description
debugger
msg.reply "It's #{weather.join(', ')} in #{data.name}, #{data.sys.count\

"

ry}

Now we have to start Hubot in a little different way:

hubot@focus:~/campfire$ coffee --nodejs --debug node_modules/.bin/hubot
debugger listening on port 5858

Then open http://127.0.0.1:8123/debug?port=5858 - the link that node-inspector gave you
in it’s output in Chrome, or any other Blink based browser. Expect a little delay, because it will
load all the scripts that Hubot normally requires just in time when needed. When you are able
to see Sources tree in the top-left corner of your browser (you may need to click on the icon to
expand it), get back to Hubot console and ask for the weather:

Hubot> what is the weather in Hawaii?
Hubot>

Don’t expect a response, because Chrome should now switch to weather.coffee and stop
the execution at debugger line. Now you can step over the script line by line, add additional
breakpoints by clicking on line nubers in any souce file from the Source tree in the left, or use
the interactive console - there is Console tab at the top of the debugger, and a small > icon in
bottom-left corner, which I prefer because it doesn’t close the source view.

You can type any JavaScript in the console, and it will execute. Let’s examine our weather array:

> weather
- Array[2]
@: "T74 degrees"
1: "broken clouds"
length: 2

And the response from the weather APL:



Hubot Scripting 16

> data
- Object
base: "cmc stations”
+ clouds: Object
cod: 200
+ coord: Object
dt: 1389847230
id: 5856195
+ main: Object
name: ""
- sys: Object
country: "United States of America"
message: ©.308
sunrise: 1389892287
sunset: 1389931892
- weather: Array[1]
- ©0: Object
description: "broken clouds"
icon: "©@4n"

id: 803
main: "Clouds"
length: 1

+ wind: Object
You can expand any part of the object tree to see what’s in it. You can also call functions:
> msg.send("Hello from node-inspector")
And in Hubot shell you should see:
Hubot> Hello from node-inspector

You can debug your web applications or any other JavaScript or CoffeeScript code using this
technique. It’s even easier for web applications - just open Chrome Inspector and you’re set.

Writing Unit Tests For Hubot Scripts

Unit tests for Hubot scripts are a tricky subject that is either misunderstood or avoided. There is
a strange trend among packages in github.com/hubot-scripts™ to write tests like this one:

https://github.com/hubot-scripts


https://github.com/hubot-scripts
https://github.com/hubot-scripts

Hubot Scripting 17

chai = require 'chai'
sinon = require 'sinon'

chai.use require 'sinon-chai'
expect = chai.expect

describe 'hangouts', ->
beforekEach ->
@robot =
respond: sinon.spy()
hear: sinon.spy()

require('../src/hangouts')(@robot)

it 'registers a respond listener', ->
expect(@robot.respond).to.have.been.calledWith(/hangout/)

You can find this test at hubot-scripts/hubot-google-hangouts'*. This test checks that Hubot script
compiles and that it has the following lines:

module.exports = (robot) -»>
robot.respond /hangout( me)?\s*(.+)?/, (msg) ->

That’s better than nothing, but still a bit pointless, don’t you think? Luckily, there are better ways
to do this. Take a look at hubot-mock-adapter®®. Tests will certainly be more difficult to write,
but they would actually test the script itself, not just the fact that it gets loaded.

To see an example of hubot-mock-adapter in action, take a look at tests of hubot-pubsub™®.

Since unit testing is a vast subject and it can take another book to fully cover, we’re not going to
dig any deeper.

Hubot Script Template

You can use this template as a starting point for your new Hubot scripts. It is taken from Hubot
Control", which also gives you a web based IDE for quick scripting.

"*https://github.com/hubot-scripts/hubot-google-hangouts/

P https://github.com/blalor/hubot-mock-adapter
®https://github.com/hubot-scripts/hubot-pubsub/blob/master/spec/pubsub_spec.coffee
https://github.com/spajus/hubot-control


https://github.com/hubot-scripts/hubot-google-hangouts/
https://github.com/blalor/hubot-mock-adapter
https://github.com/hubot-scripts/hubot-pubsub/blob/master/spec/pubsub_spec.coffee
https://github.com/spajus/hubot-control
https://github.com/spajus/hubot-control
https://github.com/hubot-scripts/hubot-google-hangouts/
https://github.com/blalor/hubot-mock-adapter
https://github.com/hubot-scripts/hubot-pubsub/blob/master/spec/pubsub_spec.coffee
https://github.com/spajus/hubot-control

Hubot Scripting

scripts/template.coffee

18

# Description

# <description of the scripts functionality>
#

# Dependencies:

# "<module name>": "<module version>"

#

# Configuration:

# | IST OF_ENV_VARS_TO_SET

#

# Commands :

#  hubot <trigger> - <what the respond trigger does>
# <trigger> - <what the hear trigger does>

#

# URLS:

#  GET /path?param=<val> - <what the request does>
#

# Notes:

# <optional notes required for the script>

#

# Author:

#

<github username of the original script author>

module.exports = (robot) -»

robot.respond /jump/i, (msg) ->
msg.emote "jumping!"

robot.hear /your'e/i, (msg) ->
msg.send "you're"

robot.hear /what year is it\?/i, (msg) ->
msg.reply new Date().getFullYear()

robot.router.get "/foo", (req, res) ->
res.end "bar"

This is how these examples look in action:



Hubot Scripting 19

Tomas V. hubot jump

Hubot *jumping!*

Tomas V. wow, your'e amazing

Hubot you're

Tomas V. anybody knows what year is it?
Hubot Tomas Varaneckas: 2014

To check HTTP response, we’ll use curl:

hubot@botserv:~$ curl http://localhost:8080/foo
bar

Using Hubot Shell Adapter For Script Development

You may find it inconvenient to restart Hubot every time you change your script. In many cases
you can test your work using built-in shell adapter, like this:

hubot@botserv:~/campfire$ PORT=8888 bin/hubot

[Fri Jan 10 2014 ©1:35:37 GMT-0500 (EST)] INFO Data for brain retrieved from \
Redis

Hubot> hubot help greet

Hubot> Hubot greet - Say hello to the world

Hubot> hubot greet

Hubot> Hello, World!

Hubot> exit

In this example we set PORT=8888 to avoid “Address already in use” error if Hubot is alread
running as a service.

Developing Scripts With Hubot Control

If you use Hubot Control, you can develop scripts with it’s web based editor, which offers syntax
checking and highlighting, integration with git, and a way to restart Hubot without logging in
to the server.

Learning More

We’ve scratched the surface of what you can do with Hubot. One of the best ways to learn more
about writing Hubot scripts by studying the source code of existing ones. Best places to start:

+ The old script catalog: https://github.com/github/hubot-scripts
 The new script packages: https://github.com/hubot-scripts

Throughout the rest of the book we will cover a number of use cases of integrating Hubot with
a variety of applications and web services. You will learn how to make Hubot an invaluable
addition to your DevOps stack.



	Table of Contents
	Hubot Scripting
	Hello, World!
	Basic Operations
	Reacting To Messages In Chatroom
	Reacting To Message Parts
	Capturing All Messages
	Capturing Unhandled Messages
	Serving HTTP Requests
	Cross Script Communication With Events
	Periodic Task Execution
	Debugging Your Scripts
	Advanced Debugging With Node Inspector
	Writing Unit Tests For Hubot Scripts
	Hubot Script Template
	Using Hubot Shell Adapter For Script Development
	Developing Scripts With Hubot Control
	Learning More


