AUTOMATING WITH NODE.JS

By Shaun Michael Stone

© First Edition UK - 2018

Table of Contents

INtrOdUCHON ..c..ceeiiiieicteee s 8
PTreface ..c.ooueviiieiieceeee ettt 8
ENd GOal ..o 10
SEIUCEUTE ...ttt 10

Part 1. 10
Part 2o 10
Book Coding Style ..o, 11
Code snippets.......cccoeiiiiiiiiiiiiiiien 12
PrerequiSites ... 14
ASSUMPHIONS....ooviiiiitiiiciicte e 14
SUEZESHIONS....vieiiiiiicieetcc 15

Technical OVerVIEW.......cccoeviiiririeiiirerceeeee e 16

Technical Termscceevuerieerenieirerece s 16
LI ettt 16
Bash. ..o 16
INOdE. S i 17
01 030 1 B OO OO OO OUOOROTURRRORTRRR 18
npm dependency ... 19
Node Modules........c.coeeveireneniieniicncrceeee e 20
ESB ..t 22
Chrome V...t 22
ESLINE oottt 23

JavaScript Promise.........cccooiiviiviiiiniciiiiiccccc 24

Part 1 - EXamples ... 26
001 - ATgUMENLS.....ooviiiieriietiitececece e 27
COMPATISON ...vviiiiiiiiiiici e 27
Bash Example ..., 27
Node Example.........ccccviiviiiiiniiiniiiiiiiiciicciciceee 27
SUIMIMATY ..ot 30
002 - PrOCESS....vevimietitinienictiteietetce et 31
SUMMATY ..viniiiieiiiiiteieic s 34
003 — Query StIINGcvcoviviiiiiiiiiicic e 35
SUMIMIATY ..ot 37
004 — URL....ooiiiiiiiiiiiiicc s 38
SUMMATY ...voiiiiiiiiicic e 39
005 = OS...rtes 40
SUMIMIATY ..ot 42
006 = OPEN..utiiiiitiictiiictet s 43
SUIMIMATY ...t 46
007 - File SyStem.......cccociiieriieiiiiieieiciccec e 47
SUMMATY ...viiiiiieiiiiietec s 53
008 = ZIP ..ottt 54
SUIMIMATY ...t 58
009 - COlOUTS....oouiiiiiiiiiicc e 59
SUMMATY ...viiiiiieiiiiietec s 62

010 - QUESHION.....uveiierieeiiee ettt ettt e e aae e e aae e e rae e s ree e anes 63

SUMMATY ..viniiiieiiiiiteieic s 65
011 — CLONING ...cviviiiiiiiiiiiiiciiec e 66
SUIMIMATY ..ot 69
012 — Branching ... 70
SUMMATY ..ot 75
013 — Retain Statecccceiviiiiiniiiiiiiiiiicc 76
SUMIMIATY ..ot 81
014 — Choose Templateccccooevniiiiininiiiiiccce 82
SUMMATY ..ot 87
015 - Email oo 88
SUMMATY ...cviniiiiitiiiieteieic s 91
016 - SMS...ooiiiiic s 93
SUIMIMATY ..ot 97
017 = CSV s 98
SHEAIMS ... 99
SUIMIMATY ..ot 102
018 - Shorten URL........ccccoiiiiiiiiiiiiiicccccce, 103
Link ShOTteners ... 103
Long URL......ccoiiiiiiiiiiiiiicceas 103
Short URLoiiiiiiiiiiics 103
SUMMATY ...viviiiiieieiicec e 106
019 - MINIMISt....cviiiiiiiiiiic 107

SUMIMIATY ..ot 111

020 - BUIld e 112
SUMMATY ..o 121
Part 2 - Build ToOl ... 122
SCOIMIATIO ..ttt sttt et ettt sb e eaes 123
Development Meetingcccooeiviiniiiiniiniicniiciecne, 124
Required Tech ..o 124
Required Repositories..........ccocociviviiiiiiiiininiiiiiciccne, 125
Build Tool Planning..........ccccoeveeivininiiiinininiccecccnne, 136
TEPOSITOTIOS ...viniiiiiiciicicictc e 136
STC cutteereitete ettt ettt ettt st a e st b e s st ne s 137
COMIMANAS. ...ttt ettt sae e 137
CONSLANES ..ottt 139
CTEALOTS ..cviiiiiiiiiciicte e 139
ReIPerS ...t 140
SETUP et 140
NODOLJS oo 140
Games LiSt ...c.cooveieniiiiniiieieccccce e 143
COMMANETeiiiiiiiieriereeeee ettt 146
Configurationcoeciviiiiiiiiiici 154
CONSLANLS ...t 158
HeIPersoiiiiiiiiiiccicc s 161
SEUP ettt 170

Command - Setup.......ccccciiviiiiiiiiiiiiic 173

Command - Templatecccoooeiiiiiiiiiie, 174
Command - GaMEc.coevveeririeiiireecteeeeeseee e 178
Creator - Rock Paper SciSSorsccccveiviiniiiciniciniicicccnne 180
End toend.......cooiiiiiiiiiii 186
WIAD UP oot 195

All rights reserved.

Every precaution was taken in preparation for this book. However, the
author assumes no responsibility for errors or omissions, or for
damages that may result from the use of information.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise without the
consent of the author.

Introduction

“I will always choose a lazy person to do a difficult job because
a lazy person will find an easy way to do it.”

— Anonymous

Preface

Being in the technical field presents itself with some fun... and some
not so fun tasks, we can all agree upon that. For the not so fun bits I try
to filter out all of the repetitive administrative work with something
that I'm better known for as a developer; writing code. Yes, I can be a
bit lazy, but that’s because I value my time. You'd be surprised at how
much time goes into updating comments on Jira, zipping files and
emailing them to colleagues, updating configuration files, and copying
and pasting directories. Arghh, I need to stop listing these before I fall
asleep.

At a previous job I found myself doing things that could’ve easily been
automated by a script. Anything that feels repetitive should ring alarm
bells for you. If it doesn’t, then you should change your mindset now.
Look at what you do on a daily basis, think about it, read this book,
and see if it changes your perspective. Ideally it should.

On one weekend, after noticing repetitive tasks at work, I took note of
the steps involved in these tasks from start to finish, and set out to
build a suite of commands that would automate them. It proved to be
efficient for both me and some of my teammates, and it gave me more
time to concentrate on Reddit... mean, my work.

I remember reading a funny story about a programmer who
automated anything that took longer than ninety seconds. His coffee
machine was connected to the local network, and he sent commands to

8

it and timed how long it took for him to walk over to pick up his
freshly brewed cup. He even programmed it to send a text message via
Twilio to his wife if his machine was logged in fifteen minutes after the
end of the working day, saying he was working late that night.

Being fairly accustomed to using Bash scripting in the past on a Linux
virtual machine, I decided initially it was the right tool for what I
wanted to achieve. I'd need access to the file system. I could make use
of the powerful searching commands, store variables, read in standard
input from the user, and use conditional statements to decide on how
to proceed. Perfect! But then I thought, I wonder if I can achieve the
same with Node JS?

I created the bash version initially, but digging further, I learned I
could create the project with npm directly. So I rewrote the project and
presented it to the team. The great news was that me and my team
were allocated time to work on the project during work hours, and one
of the technical architects was keen to integrate this tool into our
workflow. Winning!

There are two ways we can implement the code you will be learning in
this book. You can treat it as a global list of commands that behave in
the same way as an alias on a terminal, or you can create a build tool
that deploys your project, taking care of all the tedious tasks you are
used to doing.

This book will help you build something along the lines of what I
have, but it’s obvious to point out that every company’s workflow
follows a different path and set of business rules. Don’t worry though,
section two of this book explains a good way of identifying and
detailing your workflow. Once you have identified this path and the
associated workflow, it should be pretty straightforward to apply the
knowledge acquired from this book.

End Goal

Let’s not beat around the bush. Once you've finished reading this
book, you should be able to create global commands and a working
bespoke Node build tool that allows you to automate the repetitive
tasks you hate doing. This build tool will be shaped around your
company’s goals, or your own. Either way, the intention is to make
your life easier. Because life is hard enough as it is, right?

Structure

The book is structured into two parts:

Part 1

The first part is a collection of recipes, or building blocks that behave
as individual global commands. These can be used as you go about
your day, and can be called at any time to speed up your workflow or
just for pure convenience.

It begins with simple examples so you can get to know more about
Node’s standard library, then moves into more practical
implementations. Each recipe corresponds with the ‘examples’
directory found in the repository. All of the examples can be found
here: https://github.com/smks/nobot-examples

Part 2

The second part is a walkthrough of creating a cross-platform build

tool from the ground up. Each script that achieves a certain task will
be its own command, with a main umbrella command — usually the

name of your project — encapsulating them all.

Instead of using Gulp or Grunt, we will be using npm directly. The
plan is to keep this tool as lightweight as possible. I will be calling the

10

https://github.com/smks/nobot-examples

project Nobot, because I love naming projects, it’s an obsession. The
implementation can be found here: https://github.com/smks/nobot

REPOSITORIES

PART 1

PART 2
Above shows a high level overview of the repositories we will make
use of in part 1 and part 2 of this book.

Book Coding Style

This book uses examples when working on a Mac and sometimes
Windows. You may occasionally see different output.

Some of the code examples may wrap onto the next line due to spacing
limitations.

The coding style follows AirBnb coding standards with ESLint. A few
rules have been overridden.

11

https://github.com/smks/nobot

Code snippets

The book will have a lot of code snippets, as you'd expect.

Below is how I would demonstrate a code example. It begins with the
name of the script, followed by code snippets, and sections of content
in between to explain what is happening.

E my-script.js

This is where I introduce you to what on earth is going on.

// start of script
console.log('this is part 1 of my-script.js');

Above is the first bit of code. This is where I bore you of the details of
what’s going on, or what will happen next.

console.log('this is part 2 of my-script.js');
// end of script

Below is the output of the script ‘my-script.js’

$ node my-script.js
this is part 1 of my-script.js
this is part 2 of my-script.js

Did you know

When I'm feeling a bit generous, I provide some explanations to
relevant areas associated with the code that we write.

12

Immutability in the context of programming - an immutable
object is an object whose state cannot be changed once
created. This can be useful because when you pass references
of that object around, you can be rest assured other procedures
will not be cheeky and modify it.

Coding time

When you see this pencil icon, get ready, because it’s time to roll up
your sleeves and get coding!

s

Running a terminal command

When I need to use the CLI, it may show as a single line.
node index.js
For multi-line, I will prefix the first line with a dollar sign.

$ npm install fs-extra
fetching fs-extra...

13

Prerequisites

A Laptop or Desktop.
Internet access.

A GitHub account with SSH set up correctly.

L N

Ensure you are using the latest version of git to avoid legacy

issues.

5. Make sure you have Node installed. This can be downloaded
here for your Mac or Windows machine: https://nodejs.org/en.
This book uses a minimum version of: 6.9.1. At the time of
writing, it should be fine to use any version above this.

6. Motivation. Please stick with it. The time you invest now will pay

off in the long run.

Assumptions

It’s assumed you have a simple understanding of JavaScript and
GitHub. A basic idea of the CLI, and minimal - or no - experience of
Node JS. All third party implementations are correct at the time of
writing. Node throughout the book may be referenced as: Node, Node
JS or Node.js but all references refer to the same technology.

14

https://nodejs.org/en

Suggestions

Please feel free to suggest or contribute on GitHub (Raise a pull
request) to the code examples as you see fit, or any possible typos in
this book. You can also contact me via any of the social networks.

e GitHub - https://github.com/smks

e Twitter - https://twitter.com/shaunmstone

e Facebook - https://www.facebook.com/automatingwithnodejs
¢ YouTube - http://www.youtube.com/c/OpenCanvas

Or connect with me on LinkedIn for business-related requests.

LinkedIn - https://www linkedin.com/in/shaunmstone

15

https://github.com/smks
https://twitter.com/shaunmstone
https://www.facebook.com/automatingwithnodejs
http://www.youtube.com/c/OpenCanvas
https://www.linkedin.com/in/shaunmstone

Technical Overview

Just to make sure we're all on the same page, here are some of the
terms in this book that you should understand before proceeding. Feel
free to skip past them if they’re already familiar to you.

Technical Terms

CLI

Command Line Interface - is a textual interface for interacting with
your computer. It is essentially a text-based application which takes in
text input, processes it, and returns an output. When interacting with
the examples in this book, you will need to open up a CLI and type in
commands to make things happen, rather than clicking buttons and
tabs with a mouse. If you are on Windows, this will be the Command
Prompt (CMD) or PowerShell. If on Mac or Unix like systems, it will
be the Terminal.

Bash

Bash is a shell command processor that runs in a CLI. You can write
Bash scripts, and run them to execute a sequence of commands. You
might first clone a repository, create a branch, add a text file with
content, stage the file, commit it, and then push back to the remote
repository all in one go. This would mean you wouldn’t have to type
out each command separately and is handy for automation. The
reason this book does not use Bash is because — at the time of this
writing — Windows does not fully support it, and we want our project
to be cross platform. So we will be writing JavaScript with Node so our
scripts will run on Windows as well.

Here is an example of a Bash script.

16

E new-branch.sh

#!/bin/bash
0.0.1

git checkout master
git pull origin master
git checkout -b $1

Node.js

When you open up the CLI and type node, you are interacting with the
node executable installed on your machine. When you pass a
JavaScript file to it, the node executable executes the file. Node is an
Event-driven I/O server-side JavaScript environment based on
Google’s V8 engine. It was designed to build scalable network
applications. It processes incoming requests in a loop, known as the
Event Loop, and operates on a single thread, using non-blocking I/O
calls. This allows it to support a high volume of concurrent
connections.

Node has two versions available on their website to download:
LTS

It stands for Long Term Support, and is the version of Node offering
support and maintenance for at least 18 months. If you have a complex
Node app and want stability, this would be the choice for you.
Support and maintenance is correct at the time of writing.

Stable

Will have support for approximately 8 months, with more up-to-date
features that are released more often. Use this version if you don’t

17

mind having to keep updating your application so you can keep in line
with “on the edge’ technology.

I have opted to use the LTS version so that companies who are tied
down with their version of Node will more likely be able to run the
code examples and implement the build tool demonstrated in this
book.

npm

When you download Node, it optionally gets bundled with a package
manager called npm. It stands for Node Package Manager, and is the
de facto for managing your external dependencies. If you wanted to
use a library such as React or Angular, all you need to do is run npm
install [package name], npm would then download/install the
package into your project’s node_modules directory, so it’s ready to be
used in your app.

But this is not the only thing npm does after running this command. It
also adds a record of this package to your project’s dependencies list in
your package. json. This is very handy, as it means that your project
keeps track of all its dependencies. But it gets much better.

Please note: As of npm 5.0.0, installed modules are added as a
dependency to your package. json file by default. Before this version,
you would have to add the option --save to do this.

Any developer wanting to use your app (including yourself from
another machine) can install all dependencies with just one command:
npm install. When running this command, npm goes through your
dependency list in your project’s package.json file, and downloads
them one by one into the node_modules directory.

To be able to use this dependency management goodness in a freshly
created project, all you need to do is run npm init. This command will
take you through a series of questions, and create an initial

18

package.json file for you. This file, aside from keeping track of your
project’s dependencies, also has other information about your project,
such as: project name, project version, repository details, author name,
license, etc.

npm dependency

{organisation}/{package}
examples
facebook/react
apache/cordova-cli
expressjs/express

Each dependency in the npm ecosystem has to have a unique identifier
on the public registry, otherwise this would cause conflicts. Think of it
like checking into a hotel, if you wanted room number seven because
it’s lucky, but someone else is already in there eating bread and olives,
it means you'll have to settle for a different room. Same applies to
package names. Anyone can create their own package and publish it to
the registry, just make sure the package name you decide to use is
available.

When I try to install the “express” package, it will use the one created
by the Express organisation. I can’t publish a package called ‘express’
anymore as this is already taken.

19

Node Modules

When we want to break bits of code into separate files, we treat them
as ‘modules’. These modules can be imported into other modules. In
this example, I want to use code from the file b. js in my current file
called a.js. Both files sit in the same directory for the following
example.

E a.js

const b = require('./b.js");
console.log('From a.js: running code in the file b.js');

b();

So above, we are importing the code from the file below:
E b.js

const arsenalFanChant = () => {
console.log('We love you Arsenal, we do!');

}

module.exports = arsenalFanChant;

Above shows module.exports. Whatever is assigned to this object from
your JavaScript file, can be retrieved by doing a require from another
JavaScript file.

Now, when we run script a. js.

20

	Introduction
	Preface
	End Goal
	Structure
	Part 1
	Part 2
	Book Coding Style
	Code snippets
	my-script.js
	Did you know
	Coding time
	Running a terminal command

	Prerequisites
	Assumptions
	Suggestions

	Technical Overview
	Technical Terms
	CLI
	Bash
	new-branch.sh

	Node.js
	LTS
	Stable

	npm
	npm dependency
	Node Modules
	a.js
	b.js

