AUTOMATED
APLTESTING

TESTING JOURNAL

AUTHOR

Anton Smirnov



Automated API testing.

Learn automation testing fundamentals fast

This version was published on 2021-02-23

The right of Anton Smirnov to be identified as the author of this
work has been asserted by him in accordance with the Copyright,
Design and Patents Act 1988.

The views expressed in this book are those of the author.

Contact details:

« antony.s.smirnov(@gmail.com

Related Websites:

o Automated API testing: https://test-engineer.site/

o Author’s Software Testing Blog: https://test-engineer.site/




Every effort has been made to ensure that the information
contained in this book is accurate at the time of going to press, and
the publishers and author cannot accept any responsibility for any
errors or omissions, however, caused. No responsibility for loss or
damage occasioned by any person acting, or refraining from
action, as a result of the material in this publication can be
accepted by the editor, the publisher, or the author.

© 2020 — 2021 Anton Smirnov, Test Engineer Ltd



Table of Contents

Lo o [V ot o o TN 5
Chapter 1. Application Programming INterface. ...............ccuuueeeeecieerieeeensiissseeensssesssssennssssssssssenns 10
Chapter 2. WAL iS REST. ......ceeuuiiieeiiirieeiiiiientiiniensiissensiosssnssssssnssosssnssssssnssosssnsssssssssssssnssssssnssssssns 12
Guiding Principles of REST. ..ottt s e s snaeas 12
CRAPLEr 3. WAL iS SOAP. ....eaeeeeeerierieeiiiiieeiiisiensiissensiestsnssesssnssosssnsssssssssosssnsssssssssssssnssssssnssssssns 18
REST VS SOAP. ......cuiiiiiitiiittuiiiiititititttiiiiittttttsssssiiisttetssssssssiiesstettmssssssssssstteessssssssssssssessssssssssssssseeens 20
Chapter 4. Microservices vs monolithic architecture. ..............ccceeveeuuiereeriirreeniisieessesseessossenssoseens 22
What is the difficulty of testing MICroServiCes?.......ouueeiciiiiiiiieerceeerrerreecneenseeesseeeeennessssssssessennnnnes 26
Chapter 5. Some structure data for WOrk With API. ............ceeeeeeeeeeerreeeeniiiirseennssiseesssenssssssssssenns 32
JSON VS XIMIL. ..ceiiienniiiiiiiiiiiitnnnniiiiiiiiiieesasesiiiiiiietiessssssiiisiiettesssssssseesstetesssssssssessseessssssssssssssseassssssssssssss 35
JSON EXAMIPIE .ttt ettt ettt s e b et e st et e st et e st e b e s e st e s e b ens e s e esensene e b e beneesenbentenesen 35
XML EX@MNPIE ..ttt ettt sttt st et s e st et eae et e s e e st e b e s b et e s e st et e st e ke st ene et e nb et enesteeenentens 35
Chapter. 6 WHAGL iS APl tESEING?.........ccceeuuiieeeriirienniiiiensiisiensiissensiossenssisssnssosssnsssssssssosssnssssssnssosssns 37
The types of tests fOr APl teStiNG. ....cccveeeeeeiiiiiiiiiiiirceeerrrreeenneeseeeseerernnnssssessseneesnnnsssssssssenesnnnnnssnnnns 39
Chapter 7. Using Postman to automate APl testing.............cccceueeveeuniireeniisiennsisseessissenssossenssossens 42
Chapter8. Create a simple REST client to teSt YOUr API. ..........cuuueeveeeriireeriirivensissenssessenssossenssossens 49
Chapter 9. Testing APl Using ReSt ASSUIEd. ............coueuuerieeuiiireesiisiennsisiensiossenssosssnssosssnssssssnssossens 53
Chapter 10. Testing APl USiNG RELIOfiL. .......ccceeuuueeereeeenniiiiiireeeiiisiesieeenssisssssssnsssssssssssnssssssssssenns 61
Chapter 11. Using design patterns in APl teSting............cccceeveererieeniiireesiirsenssissenssossenssossenssossens 70
The Mediator PAttern........cceeeeecciiiiiiieecccecererreeeeneseeessereesnnsssssssesseeesnnnssssssssseneesnnnsssssssssenesnnnnnssnnnns 72
The Data Provider Pattern. ..........cciiiiiieeeeecceciiirreeceesceeesseeeeennssssssesseeeesnnnssssssssseneesnnnsssssssssenesnnnnnssnnnns 77
Chapter 12. Using test report in APl teSting. ...........cceuceveeeuiireeniirieensiinensiossenssosssnssosssnssosssnssossens 81
(00T Tl [ [ T T 86



Introduction.

«Software testing has become a critical and an ever-growing part
of the development life-cycle. Initially, it relied on large teams
executing manual test cases. This has changed in recent years as
testing teams have found a way to facilitate a faster deployment
cycle: test automation. A cost-effective automation testing strategy
with a result-oriented approach is always a key to success in
automation testing. In this book let’s see how to build good API
automation scripts. »

This book 1s based on more than 3+ years of experience in the
field of API testing automation. During this time, a huge
collection of solved questions has accumulated, and the problems
and difficulties characteristic of many beginners have become
clearly visible. The automated testing scripts for testing API
services were repeatedly created. It was obvious and reasonable
for me to summarize this material in the form of a book that will
help novice testers quickly build automated testing scripts for API
on a project and avoid many annoying mistakes.

This book does not aim to fully disclose the entire subject area
with all its nuances, so do not take it as a textbook or Handbook
— for decades of development testing has accumulated such a
volume of data that its formal presentation is not enough and a
dozen books.



Also, reading just this one book is not enough to become a "senior
automated testing engineer". Then why do we need this book?

First, this book 1s worth reading if you are determined to engage in
automated testing — it will be useful as a "very beginner" and have
some experience in automation.

Secondly, this book can and should be used as reference material.

Thirdly, this book — a kind of "map", which has links to many
external sources of information (which can be useful even
experienced automation engineer), as well as many examples with
explanations.

This book 1s not intended for people with high experience in test
automation. From time to time, I use a learning approach and try
to “chew” all the approaches and build the stages step by step.

Some people more experienced in software test automation also
having may find it slow, boring, and monotonous.

This book is intended for people who first approach the study of
automation testing, especially if their goal is to add automation to
their test approach.

First of all, I wrote this book for a tester with experience in the
field of “manual” software testing, the purpose of which is to
move to a higher level in the tester career.

Summary:

We can safely say that this book is a kind of guide for
beginners in the field of automation software testing.



I have a huge knowledge of the field of test automation. I also
have quite a lot of experience building automation on a project
from scratch. I have repeatedly had to develop and implement the
process of testing automation on projects.

The learning approach focuses on a huge chunk of theory on
building the automation process. The book also discusses the
theory of test automation in detail.

However, the direction of automation to support testing is no
longer limited to testing, so this book is suitable for anyone who
wants to improve the use of automation: managers, business
analysts, users, and, of course, testers.

Testers use different approaches for testing on projects. I
remember when [ first started doing testing, I was drawing
information from traditional books and was unnecessarily
confused by some concepts that I rarely had to use. And most of
the books, to my great regret, did not address the aspects and
approaches to test automation. Most books on testing begin by
showing how you can test a software product with basic
approaches. But I do not consider the approaches and
implementations of test automation at the testing stage.

In this book, I will not consider how to create and structure
applications. This is useful knowledge, but it is beyond the scope

of this book.



My main goal is to help you start creating automation scripts for
testing API services using tools and libraries and have the basic
knowledge you need to do so.

This book focuses on theory rather than a lot of additional
libraries, because once you have the basics, building a library and
learning how to use it becomes a matter of reading the
documentation.

This book is not an "exhaustive" introduction. This is a guide to
getting started in building a test automation strategy. I focused on
the examples.

[ argue that in order to start implementing automation scripts, you
need a basic set of knowledge in testing and management to start
adding value to automation projects.

In fact, when I started creating the test automation scripts, I used
only the initial level of knowledge in the field of testing and
management.

I also want the book to be small and accessible, so that people
actually read it and apply the approaches described 1n it in
practice.



Acknowledgments.

This book was created as a “work in progress” on leanpub.com.
My thanks go to everyone who bought the book 1n its early stages,
this provided the continued motivation to create something that
added value, and then spends the extra time needed to add polish
and readability.

[ am also grateful to every QA engineer that I have worked with
who took the time to explain their approach. You helped me
observe what a good QA engineer does and how they work. The
fact that you were good, forced me to ‘up my game’ and improve
both my coding and testing skills. All mistakes in this book are my
fault.



Chapter 1. Application Programming
Interface.

In the world of information technology, for the Application
Programming Interface, introduce the term API. API is an
acronym, and it stands for “Application Programming Interface.”

Think of an API like a menu in a restaurant. The menu provides a
list of dishes you can order, along with a description of each dish.
When you specify what menu items you want, the restaurant’s
kitchen does the work and provides you with some finished dishes.
You don’t know exactly how the restaurant prepares that food, and
you don’t really need to.

Similarly, an API lists a bunch of operations that developers can
use, along with a description of what they do. The developer
doesn’t necessarily need to know how, for example, an operating
system builds and presents a “Save As” dialog box. They just need
to know that i1t’s available for use in their app.

This 1sn’t a perfect metaphor, as developers may have to provide
their own data to the API to get the results, so perhaps it’s more
like a fancy restaurant where you can provide some of your own
ingredients the kitchen will work with.

But 1t’s broadly accurate. APIs allow developers to save time by
taking advantage of a platform’s implementation to do the nitty-
gritty work. This helps reduce the number of code developers
needs to create, and also helps create more consistency across
apps for the same platform. APIs can control access to hardware
and software resources.

10



API (Application Programming Interface) - a set of ready-made
classes, procedures, functions, structures, and constants provided
by an application (library, service) for use in external software
products.

The API gives us the opportunity to use someone else's previously
created interface for our own purposes. For the first time, I came
across an API on the example of Windows API. This is a set of
functions that any application running on this OS can use. For
example, it can use standard functions to “render” the interface.

Modern APIs often take the form of web services that provide
users (both people and other web services) with some information.
Usually, the information exchange procedure and data transfer
format are structured so that both parties know how to interact
with each other.

11



Chapter 2. What is REST.

REST is an acronym for Representational State Transfer. It is an
architectural style for distributed hypermedia systems and was
first presented by Roy Fielding in 2000 in his famous dissertation.

Like any other architectural style, REST also does have its own 6
guiding constraints which must be satisfied if an interface needs to
be referred to as RESTful. These principles are listed below.

Guiding Principles of REST.

1. Client-server — By separating the user interface concerns
from the data storage concerns, we improve the portability of
the user interface across multiple platforms and improve
scalability by simplifying the server components.

2. Stateless — Each request from the client to the server must
contain all of the information necessary to understand the
request, and cannot take advantage of any stored context on
the server. Session state 1s therefore kept entirely on the client.

3. Cacheable — Cache constraints require that the data within a
response to a request be implicitly or explicitly labeled as
cacheable or non-cacheable. If a response 1s cacheable, then a
client cache 1s given the right to reuse that response data for
later, equivalent requests.

4. Uniform interface — By applying the software engineering
principle of generality to the component interface, the overall
system architecture 1s simplified and the visibility of
interactions 1s improved.

12



In order to obtain a uniform interface, multiple architectural
constraints are needed to guide the behavior of components.
REST i1s defined by four interface constraints: identification
of resources; manipulation of resources through
representations; self-descriptive messages; and, hypermedia
as the engine of application state.

5. Layered system — The layered system style allows an
architecture to be composed of hierarchical layers by
constraining component behavior such that each component
cannot “see” beyond the immediate layer with which they are
interacting.

6. Code on demand (optional) — REST allows client
functionality to be extended by downloading and executing
code in the form of applets or scripts. This simplifies clients
by reducing the number of features required to be pre-
implemented.

A RESTful API is an application program interface (API) that
uses HTTP requests to GET, PUT, POST, and DELETE data.

ARESTful API — also referred to as a RESTful web service or
REST API — is based on representational state transfer (REST)
technology, an architectural style, and approach to
communications often used in web services development.

HTTP — Protocol of the application layer of data transfer initially
— 1n the form of hypertext documents in the “HTML” format, 1s
currently used for the transfer of arbitrary data.

The basis of HTTP is the “client-server” technology, that is, the
existence of:

13



e Consumers (clients) who initiate the connection and send the
request;

e Providers (servers) that are waiting for a connection to
receive a request, perform the necessary actions and return a
message with the result.

HTTP Protocol 1s designed for application and webserver to
“communicate” with each other. And passed some information on
the web page.

HTTP Protocol is initially Keep-Alive, what does it mean? When
a user visits the site, any request is not authorized, and subsequent
requests such as authorization and authentication of the user based
on cookies or headers. This data 1s sent in a GET or POST request.
Typically, authorization occurs through cookies.

A cookie 1s a small piece of data sent by a web server and stored
on a user’s computer. A web client (usually a web browser) sends
this piece of data to the web server as part of an HTTP request
every time it tries to open a page on the site. It is used to store data
on the user side, in practice it 1s usually used for:

authenticate users;

storage of personal preferences and user settings;
monitor user access session status;

maintain statistics about users.

A cookie 1s transmitted in any request and any server can know
about who you are and what access you have based on some data,
that 1s, based on cookies and some parameters in the GET or
POST request. The most common methods for HTTP Protocol are
GET and POST. The rest exist but real applications do not use
them very often.

14



The most basic thing you need to know about any request:
When any request is sent, a packet is generated and will be sent at
the application layer.

Every package consists of a request line, request header, and body.

GET /doc/test.html HTTP/1.1 —— > Request Line A

Host: www.test101.com )
Accept: image/gif, image/jpeg, */* Request
Accept—Langu:f\ge: en:us . Request Headers > Message
Accept-Encoding: gzip, deflate Header
User-Agent: Mozilla/4.0
Content-Length: 35 J J/

> Ablank line separates header & body
bookId=12345&author=Tan+Ah+Teck } Request Message Body

GET request sends just a header of some data. The data that is sent
1s located in the request message header; the data that comes in
response are located in the response header.

HTTP/1.1 200 OK

——Response headers

Content-Encoding: gzip

Content-Type: text/html; charset=utf-8 Rt T Entity headers

General headers
Last-Modified: Wed, 10 A 2016 05:38:31 GMT

(body)

15



POST request sends not only request headers but also message
body. In the body, you can pass any data format, JSON, XML,
Media file, data, authentication and etc.

Path to the source Protocol Version
The HTTP on Web Server Browser supports
Method — e -~ — ~
Post /RegisterDao.jsp HTTP/1.1
[ Host: www.javatpoint.com
The User-Agent: Mozilla/5.0
Request Accept: text/xml,text/html,text/plain,image/jpeg
Headers | Accept-Language: en-us,en
| Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8
Keep-Alive:300
. Connection:keep-alive
User=ravi&pass=java } Message body

What is the difference between the GET request and POST?
The GET contains the only header, POST contains header and
body. And the body contains a simple data structure.

What happens if you pass the header and body to GET? Nothing
will happen. GET will work without errors.

Request Method

The request method indicates the method to be performed on the
resource identified by the given Request-URI. The method 1s case-
sensitive and should always be mentioned in uppercase. The
following table lists all the supported methods in HTTP/1.1.

16



Method and Description

GET
The GET method is used to retrieve information from the given server using a given URI.
Requests using GET should only retrieve data and should have no other effect on the data.

HEAD
Same as GET, but it transfers the status line and the header section only.

POST
A POST request is used to send data to the server, for example, customer information, file
upload, etc. using HTML forms.

PUT
Replaces all the current representations of the target resource with the uploaded content.

DELETE
Removes all the current representations of the target resource given by URI.

CONNECT
Establishes a tunnel to the server identified by a given URI.

OPTIONS
Describe the communication options for the target resource.

TRACE
Performs a message loop back test along with the path to the target resource.

17



