

 [image: Ash Framework for Phoenix Developers]

 Ash Framework for Phoenix Developers

 How to write Less code, Ship faster, and extend forever web application using Ash and Phoenix Framework

 Kamaro Lambert

 This book is available at https://leanpub.com/ash-phoenix

 This version was published on 2025-12-13

 [image: publisher's logo]

 * * * * *

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

 © 2025 Kamaro Lambert

Table of Contents
	
		
	
	

		
	
	
	
	

		
	
	
	
	
	
	

		
	
	
	
	
	
	
	
	

		
	

		

	
		
	

	
		
	
	
	

		
	
	

		
	
	

		
	
	

		
	
	
	
	
	
	
	
	
	

		
	
	
	

		
	
	
	
	

	
		
	
	
	
	
	
	
	
	

		
	
	
	

		

		
	
	
	
	
	

		
	
	
	
	
	
	
	
	
	

	

 Guide

 	
 Cover

Preface
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 1: Thinking in Ash
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

1.1 The Location of Ash In Your Application
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

1.2 Describe(Model) Your Application
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

1.3 Data all the way
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 2: The Foundation: Resources and Domains

Let’s build the actual data layer for our multi-tenant help-center application. As we discussed in Chapter 1, everything in Ash starts with Domains and Resources.

Every database table (or external data source) becomes an Ash Resource. Related resources are grouped together under a Domain — in our case, we’ll create a domain called Helpcenter.KnowledgeBase.

The truly powerful part? We will declare the entire Entity Relationship Diagram (ERD) below in pure Elixir modules, and Ash will automatically generate migrations, database tables, constraints, indexes, relationships, validations, and more all from our declarative design.

To understand it better, let’s start by understanding the data representing our help center application.

As we saw it previously, we’ll need to describe our application using Resources and Domain. Each data table will correspond to a resource and all below tables will be grouped together under a domain we’ll call KnowledgeBase.

The magic is that we’ll model all below entity relationship diagrams and let Ash create migrations, relationships, columns, validations and the rest for us. So observe below ERD carefully and let’s meet in the next section to implement it.

[image: Full ERD of the knowledge base schema]
Figure 1. Full ERD of the knowledge base schema

2.1 Defining the Domain

Think of domain as the context for your Phoenix application. They host your resource.

Domains group related resource together for a specific problem space. They include abstraction of specific business reality that your appliction aims to model, automate, or solve problems within.

In the Ash Framework domains helps you to logically organise related resource for a better code organisation, a better solution architecture, and tooling. Domains has many resources and each resource should belongs to an existing domain in an Ash application.

For example, Ash authentication adds a MyApp.Accounts domain responsible for all things authentications and authentication related resource belongs to this domain. User, Token, `And other related resources are housed in this domain.

Domains have three main roles:

	
They group related resources adding order to your project.

	
They let you create centralized and unified code interface.

	
They enable you to set up shared features or issues for those resources all in one spot.

To get started we need to define a domain called KnowledgeBase. It’s knowledge base because it houses knowledge for our helpcenter application.

Create lib/helpcenter/knowledge_base.ex:

1 # lib/helpcenter/knowledge_base.ex
2 defmodule Helpcenter.KnowledgeBase do
3 use Ash.Domain
4
5 resources do
6 # Resources will be added here in the next section
7 end
8 end

The KnowledgeBase domain is ready.

Next we need to tell our application that a new domain has been added, to do so we go to config/config.exs and add Helpcenter.KnowledgeBase to ash_domains to indicate that we have a new domain in the applications.

Now register the domain in your configuration so Ash knows it exists.
Edit config/config.exs:

1 # config/config.exs
2 config :helpcenter,
3 ecto_repos: [Helpcenter.Repo],
4 generators: [timestamp_type: :utc_datetime],
5 ash_domains: [Helpcenter.KnowledgeBase] # ← Add this line

Now that we have the domain ready, we proceed to adding resources to the domain, but before that, we need to define resources corresponding to each table as per our ERD above.

2.2 Resources

Resources help you to model your entity declaratevely. Think of them as the configuration files for your database table. In resource, you declare what your table column are(attributes), constraints, relationships, and much more.

In frameworks like Laravel or Django, you define models. In Ash, you define Resources, and they are dramatically more powerful.

It is conventional (and highly recommended) to group resources that belong to the same domain in a directory with the domain name.

So create the directory lib/helpcenter/knowledge_base/ and add the following resources one by one.

Category Resource

I have added comments for you to understand what’s going on in the following file.

 1 # lib/helpcenter/knowledge_base/category.ex
 2 defmodule Helpcenter.KnowledgeBase.Category do
 3 use Ash.Resource,
 4 # Tell Ash that this resource belongs to KnowledgeBase domain
 5 domain: Helpcenter.KnowledgeBase,
 6 # Tell Ash that this resource data is stored in a postgresql
 7 data_layer: AshPostgres.DataLayer
 8
 9 postgres do
10 # Tell Ash that this resource data is stored in a table named "categories"
11 table "categories"
12 # Tell Ash that this resource access data storage via Helpcenter.Repo
13 repo Helpcenter.Repo
14 # Delete related articles when a category is destroyed to prevent
15 # leave records behind
16 references do
17 reference :articles, on_delete: :delete
18 end
19 end
20
21 # Tell Ash what columns the resource has and their types and validations
22 attributes do
23 uuid_primary_key :id
24 attribute :name, :string, allow_nil?: false
25 attribute :slug, :string
26 attribute :description, :string, allow_nil?: true
27 # Automatically adds, inserted_at and updated_at columns
28 timestamps()
29 end
30
31 # Relationship Block. In this case this resource has many articles
32 relationships do
33 has_many :articles, Helpcenter.KnowledgeBase.Article do
34 description "Relationship with the articles."
35 # Tell Ash that the articles table has a column named "category_id" that references this resource
36 destination_attribute :category_id
37 end
38 end
39 end

That’s it! You are becoming an Ash framework expert.

Now that we know how to create an Ash resource. Go ahead and create resources for the remainder of the resources.

Article Resource

 1 # lib/helpcenter/knowledge_base/article.ex
 2 defmodule Helpcenter.KnowledgeBase.Article do
 3 use Ash.Resource,
 4 domain: Helpcenter.KnowledgeBase,
 5 data_layer: AshPostgres.DataLayer
 6
 7 postgres do
 8 table "articles"
 9 repo Helpcenter.Repo
10 end
11
12 attributes do
13 uuid_primary_key :id
14 attribute :title, :string, allow_nil?: false
15 attribute :slug, :string
16 attribute :content, :string
17 attribute :views_count, :integer, default: 0
18 attribute :published, :boolean, default: false
19
20 timestamps()
21 end
22
23 relationships do
24 belongs_to :category, Helpcenter.KnowledgeBase.Category do
25 source_attribute :category_id
26 allow_nil? false
27 end
28
29 has_many :comments, Helpcenter.KnowledgeBase.Comment do
30 destination_attribute :article_id
31 end
32
33 many_to_many :tags, Helpcenter.KnowledgeBase.Tag do
34 through Helpcenter.KnowledgeBase.ArticleTag
35 source_attribute_on_join_resource :article_id
36 destination_attribute_on_join_resource :tag_id
37 end
38
39 has_many :article_feedbacks, Helpcenter.KnowledgeBase.ArticleFeedback do
40 destination_attribute :article_id
41 end
42 end
43 end

Comment Resource

 1 # lib/helpcenter/knowledge_base/comment.ex
 2 defmodule Helpcenter.KnowledgeBase.Comment do
 3 use Ash.Resource,
 4 domain: Helpcenter.KnowledgeBase,
 5 data_layer: AshPostgres.DataLayer
 6
 7 postgres do
 8 table "comments"
 9 repo Helpcenter.Repo
10 end
11
12 attributes do
13 uuid_primary_key :id
14 attribute :content, :string, allow_nil?: false
15
16 timestamps()
17 end
18
19 relationships do
20 belongs_to :article, Helpcenter.KnowledgeBase.Article do
21 source_attribute :article_id
22 allow_nil? false
23 end
24 end
25 end

Tag

 1 # lib/helpcenter/knowledge_base/tag.ex
 2 defmodule Helpcenter.KnowledgeBase.Tag do
 3 use Ash.Resource,
 4 domain: Helpcenter.KnowledgeBase,
 5 data_layer: AshPostgres.DataLayer
 6
 7 postgres do
 8 table "tags"
 9 repo Helpcenter.Repo
10 end
11
12 attributes do
13 uuid_primary_key :id
14 attribute :name, :string, allow_nil?: false
15 attribute :slug, :string
16
17 timestamps()
18 end
19
20 relationships do
21 many_to_many :articles, Helpcenter.KnowledgeBase.Article do
22 through Helpcenter.KnowledgeBase.ArticleTag
23 source_attribute_on_join_resource :tag_id
24 destination_attribute_on_join_resource :article_id
25 end
26 end
27 end

ArticleTag Join Resource

 1 # lib/helpcenter/knowledge_base/article_tag.ex
 2 defmodule Helpcenter.KnowledgeBase.ArticleTag do
 3 use Ash.Resource,
 4 domain: Helpcenter.KnowledgeBase,
 5 data_layer: AshPostgres.DataLayer
 6
 7 postgres do
 8 table "article_tags"
 9 repo Helpcenter.Repo
10 end
11
12 actions do
13 defaults [:create, :read, :update, :destroy]
14 default_accept [:article_id, :tag_id]
15 end
16
17 attributes do
18 uuid_primary_key :id
19 timestamps()
20 end
21
22 relationships do
23 belongs_to :article, Helpcenter.KnowledgeBase.Article do
24 source_attribute :article_id
25 end
26
27 belongs_to :tag, Helpcenter.KnowledgeBase.Tag do
28 source_attribute :tag_id
29 end
30 end
31
32 identities do
33 identity :unique_article_tag, [:article_id, :tag_id]
34 end
35 end

Article Feedback

 1 # lib/helpcenter/knowledge_base/article_feedback.ex
 2 defmodule Helpcenter.KnowledgeBase.ArticleFeedback do
 3 use Ash.Resource,
 4 domain: Helpcenter.KnowledgeBase,
 5 data_layer: AshPostgres.DataLayer
 6
 7 postgres do
 8 table "article_feedbacks"
 9 repo Helpcenter.Repo
10 end
11
12 attributes do
13 uuid_primary_key :id
14 attribute :helpful, :boolean, default: false
15 attribute :feedback, :string, allow_nil?: true
16
17 create_timestamp :created_at
18 end
19
20 relationships do
21 belongs_to :article, Helpcenter.KnowledgeBase.Article do
22 source_attribute :article_id
23 allow_nil? false
24 end
25 end
26 end

Finally, let’s go back to our domain and tell the domain what resources are under it so that we can start to use them.

Edit your domain to look like the following.

 1 # lib/helpcenter/knowledge_base.ex
 2 defmodule Helpcenter.KnowledgeBase do
 3 use Ash.Domain
 4
 5 resources do
 6 resource Helpcenter.KnowledgeBase.Category
 7 resource Helpcenter.KnowledgeBase.Article
 8 resource Helpcenter.KnowledgeBase.Tag
 9 resource Helpcenter.KnowledgeBase.ArticleTag
10 resource Helpcenter.KnowledgeBase.Comment
11 resource Helpcenter.KnowledgeBase.ArticleFeedback
12 end
13 end

2.3 Generate the Database with a Single Set of Commands

Your resources are now fully declared. Ash can now create the entire database schema for you.

At this point your resources and domains are ready to:

	
Generate migrations

	
Created tables in the database with constraints

	
Add relationships to the tables in the database.

But, your database connection has to be configured if you haven’t done it yet.

So head to your config/dev.exs since you are in the development environment and configure your database connection accordingly. It should look like the following.

 1 # config/dev.exs
 2 config :helpcenter, Helpcenter.Repo,
 3 username: System.get_env("PGUSER") || "postgres",
 4 password: System.get_env("PGPASSWORD") || "postgres",
 5 database: System.get_env("PGDATABASE") || "helpcenter_dev",
 6 hostname: System.get_env("PGHOST") || "localhost",
 7 port: System.get_env("PGPORT") || "5432",
 8 stacktrace: true,
 9 show_sensitive_data_on_connection_error: true,
10 pool_size: 10

Then run these commands from your project root:

1 mix ash.setup # Sets up Ash + creates DB if needed
2 mix ash_postgres.generate_migrations --name add_knowledge_base_tables
3 mix ash_postgres.migrate # Applies migrations → creates all tables

That’s it.

You now have a fully functional, production-ready PostgreSQL schema with proper foreign keys, constraints, indexes, and UUID primary keys all generated automatically from your declarative resource definitions.

2.4 Ash Resources Are Ecto Schemas

When you come to Ash framework from an Ecto background, you sometimes find yourselve in situations where you need to use Ecto for complex queries instead of Ash.

Ash is compatible with Ecto, and today I want to show you how to use your existing Ash resource as Ecto Schema.

Ash resources are just configuration files.They store configurations that are read and understood by the Ash framework to carry out instructions.

In addition to that, Ash resources are Ecto schemas behind the scenes.

In a typical Elixir application, Ecto Schema is what the data is. It is a representation of data. The schema mirrors tables in the database and could also be compared to models in other languages.

I want you to realise that Ash Resources are just Ecto Schemas.

Everything you can do with an Ecto Schema can be done with an Ash Resource.

Let me show you that in action.

Assume you have Helpcenter.Accounts.Team resource and you want to query the team like you would do with Ecto Schema. Try it like below

1 import Ecto.Query
2
3 Helpcenter.Repo.one!(from t in Helpcenter.Accounts.Team, limit: 1)

The above should give you results of the following format:

 1 %{
 2 id: "0199578f-203f-7107-a0ea-7064443872ea",
 3 name: "CEB",
 4 owner: %{type: :relationship, __struct__: Ash.NotLoaded, field: :owner},
 5 domain: "ceb",
 6 description: nil,
 7 __struct__: Helpcenter.Accounts.Team,
 8 users: %{type: :relationship, __struct__: Ash.NotLoaded, field: :users},
 9 calculations: %{},
10 aggregates: %{},
11 __metadata__: %{},
12 __order__: nil,
13 __lateral_join_source__: nil,
14 __meta__: %{
15 state: :loaded,
16 context: nil,
17 prefix: nil,
18 source: "teams",
19 __struct__: Ecto.Schema.Metadata,
20 schema: Helpcenter.Accounts.Team
21 },
22 inserted_at: ~U[2025-09-17 12:03:41.759251Z],
23 updated_at: ~U[2025-09-17 12:03:41.759251Z],
24 users_join_assoc: %{type: :relationship, __struct__: Ash.NotLoaded, field: :users_join_assoc},
25 owner_user_id: nil
26 }

You’ve seen that the Team resource behaved like an Ecto Schema. It did so because it is an Ecto schema behind the scene.

Any kind of query you’ll do using Ecto Schema and a repo can be done with an Ash resource with a repo.

Resources are Structs

Example, check the struct of team resource by prefixing it with .__struct__ like below:

Helpcenter.Accounts.Team.__struct__

You will notice that it looks like an ecto Schema. Look at the __meta__ attribute on the resource, it is indeed an Ecto.Schema.

 1 %Helpcenter.Accounts.Team{
 2 id: nil,
 3 name: nil,
 4 domain: nil,
 5 description: nil,
 6 inserted_at: nil,
 7 updated_at: nil,
 8 owner_user_id: nil,
 9 users_join_assoc: #Ash.NotLoaded<:relationship, field: :users_join_assoc>,
10 owner: #Ash.NotLoaded<:relationship, field: :owner>,
11 users: #Ash.NotLoaded<:relationship, field: :users>,
12 __meta__: #Ecto.Schema.Metadata<:built, "teams">
13 }

When you are using Ash framework in your phoenix application and you want to query your database like you would do with Ecto Schema and repository, remember that all Ash resources are Ecto Schema and you can use them the way you’d use your normal Ecto schema.

2.5 Ash Resource and Elixir Protocol

After successfully implementing a leave approval workflow, the system was working perfectly and configurable for multi-level approvals where the human resources admin can configure who should approve a leave request among:

	
The person’s manager

	
The manager’s manager

	
A specific user in the application

	
A specific user group in the application

The feature was stable and ran for over 12 months without any problems, and users were happy about how it made their work easier.

Following that success, the HR manager requested to extend the approval workflow to other resources in the application, which meant that an addition or a change to critical data such as files, jobs, salary, and more would require an approval which is configurable like it is done on the leave management.

I could have reused the existing feature as it was, but the problem was that different requests require different process to complete them. An approved leave request automatically grants the leave, deducts the leave days from the employee’s balance, and sends notifications to the approver, the person who requested it, and any stand-in colleague.

In contrast, an approved payroll request generates payslips, starts the payment process through the payment institution’s API, and emails the payslips to the employees.As you can see, these are two different ways of completing approved requests.

What I wanted was to reuse shared behaviour like the approval workflow, while uniquely handling custom behaviour like completing the request. I wanted to keep the approval process and its configuration the same, but handle what happens upon successful approval differently.

To achieve that, I combined Ash Resource and Elixir protocol to custom-handle the unique part of the flow without having to reinvent the common behaviour. And that’s what I want to show you below.

2.5.1 What Elixir Protocol?

Elixir protocols are a mechanism that allows you to define a set of functions (like a blueprint or interface) that can be implemented differently for various data types or structures.

They unlock polymorphism in Elixir.

They make it possible to vary behaviour based on the data type. Since Ash framework resources are data struct, they are perfect fit for Elixir protocol.

Protocols are define like the following:

1 defprotocol ProtocolName do
2 # Inside here list functions that must be
3 # implemented for this protocol. E.g.
4 # complete
5 @spec complete(term()) :: Atom.t()
6 def complete(term)
7 end

And, they are implemented like the following

1 defimpl ProtocolName, for: YourDataType do
2 def complete(request) do
3 # Do here what your custom protoc
4 :ok # Return expected Atom
5 end
6 end

In Elixir, data struct are different data types. Since Ash resources are structs, they can be used perfectly for the protocol.

2.5.2 Combining Ash Resource and Elixir Protocol for Complex Workflow

Let’s define the Workflow protocol responsible for completing different change requests based on their data type, which will be a resource in our case.

1 # Define sample protocol
2 defprotocol Workflow do
3 @moduledoc """
4 Protocol to unlock different behaviour in completing
5 workflow for different resources
6 """
7 @spec complete(term()) :: {:ok, term}
8 def complete(entity)
9 end

After a change request has been approved, the application should run the complete/1 function and expect different behaviour based on the resource.

Let us see how the implementation for this protocol would look like for different resources.

Let’s start with the LeaveRequest

 1 defmodule MyApp.Leaves.LeaveRequest do
 2 @moduledoc """
 3 Sample resource for leave requests
 4 """
 5 use Ash.Resource
 6
 7 attributes do
 8 attribute :type, :string, default: "Annual Leave"
 9 attribute :start_date, :date
10 attribute :end_date, :date
11 end
12
13 @doc """
14 Implement a custom handle for the Workflow protocol
15 so that the leave request completion can be
16 handled uniquely for this resource
17 """
18 defimpl Workflow, for: __MODULE__ do
19 def complete(leave_request) do
20 IO.puts "1. Validate eligibility for #{leave_request.type} "
21 IO.puts "2. Deduct leave days"
22 IO.puts "3. Notify the initiator"
23 IO.puts "4. Notify the reliever"
24
25 {:ok, "Processed successfully"}
26 end
27 end
28 end

And for the Salary resource.

 1 defmodule MyApp.Payroll.Salary do
 2 @moduledoc """
 3 Sample resource for Salary Request
 4 """
 5 use Ash.Resource
 6
 7 attributes do
 8 attribute :person_id, :string, allow_nil?: false
 9 attribute :amount, :decimal, default: 0
10 attribute :period, :string, default: "January"
11 end
12
13 @doc """
14 Implement a custom handle for the Workflow protocol
15 so that the Salary change request completion can be
16 handled uniquely for this resource
17 """
18 defimpl Workflow, for: __MODULE__ do
19 def complete(salary) do
20 IO.puts "1. Generate payslip"
21 IO.puts "2. Calling pay API"
22 IO.puts "3. Emailing payslip"
23
24 {:ok, "Salary processed successfully"}
25 end
26 end
27 end

Now, Workflow.complete(term) behaves differently based on the type of resource of the passed record.

For example:

1 leave_request = %MyApp.Leaves.LeaveRequest{}
2 {:ok, response} = Workflow.complete(leave_request)

Gives:

1 1. Validate eligibility for Annual Leave
2 2. Deduct leave days
3 3. Notify the initiator
4 4. Notify the reliever
5
6 {:ok, "Leave Request Processed successfully"}

While:

1 payroll = %MyApp.Payroll.Salary{person_id: Ash.UUIDv7.generate()}
2 {:ok, response} = Workflow.complete(payroll)

Gives:

1 1. Generate payslip
2 2. Calling pay API
3 3. Emailing payslip
4
5 {:ok, "Salary processed successfully"}

We can take this even further by introducing the ChangeRequest resource to store and process change requests until they are approved, then call the Workflow.complete, and let the protocol handle the resolution based on the resource called.

Here is an exmaple.

Please note that we’ll see actions in the upcoming chapters

 1 defmodule MyApp.Workflow.ChangeRequest do
 2 @moduledoc """
 3 Sample Change Request resource that stores submitted
 4 change requested awaiting for approval and process
 5 them for the approval.
 6 """
 7 use Ash.Resource
 8 attributes do
 9 attribute :request, :map do
10 description "Change request such as LeaveRequest, Salary and more"
11 allow_nil? false
12 end
13
14 attribute :status, :atom do
15 description "The status of the change Request"
16 end
17 end
18
19 actions do
20 # Other actions...
21 update :approve do
22 description "Approve and Complete a change request"
23
24 accept []
25 change set_attribute(:status, :approved)
26
27 change after_action(fn _changeset, record ->
28 # After approving, the request is processed
29 # in accordance with the implementation
30 # of the protocol
31 Workflow.complete(record.request)
32 {:ok, record}
33 end)
34 end
35 end
36 end

To recap we saw that:

	
Combining Ash resource with Elixir protocol unlocks the reuse of shared logic while isolating resource-specific behavior.

	
What Elixir protocol are, how to define, and implement them.

	
How to use Ash resource and Elixir protocol.

Next, let’s see what actions and how to work with the resources.

Chapter 3: Actions
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

3.1 Defining Actions on a Resource
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

3.2 Creating Records
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

3.2 Reading Record(s) with Ash.read
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

3.3 Filter Condition With Ash.Query.filter
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

3.4 Update Records with Ash.update
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

3.5 Deleting Record(s) with Ash.destroy
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

3.6 Generic Actions
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

3.6.1 Inline Generic Actions
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

3.6.2 Extract Generic Action its Own Module
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 4: Relationships – How to Link Records

[image: Relationship Introduction]
Figure 2. Relationship Introduction

We use relationships to link connected records. For example, a comment may belong to an article, while an article may have multiple tags. In this case, articles, comments, and tags are related.

In this section, we’ll look at how to create, read, update, and destroy related data using the different relationship types that Ash provides.

By the end of this section, you will know how to work with relationships in Ash. We’ll start with simple examples and move to more complex ones.
First, take a look at the Entity Relationship Diagram below showing how the tables in our database relate to each other.

[image: Relationship Introduction]
Figure 3. Relationship Introduction

4.1 Has Many Relationship

In our entity relationships, we’ve seen that a category has many articles. So let’s see how to create, read, and destroy related data in a has_many relationship.

Remember that in the relationships block of the Category resource, we have defined the following relationship:

1 relationships do
2 has_many :articles, Helpcenter.KnowledgeBase.Article do
3 description "Relationship with the articles."
4 # Tell Ash that the articles table has a foreign key column named "category_id"
5 destination_attribute :category_id
6 end
7 end

From here, we can define an action called create_article of type update that creates an article under a provided category.
Go to the Category resource and in the actions section, add the following action:

 1 # lib/helpcenter/knowledge_base/category.ex
 2 actions do
 3 defaults [:create, :read, :update, :destroy]
 4
 5 update :create_article do
 6 description "Create an article under a specified category"
 7 # Set to false since this is a 2-step operation
 8 require_atomic? false
 9
10 # Specify the parameter that will hold article attributes
11 argument :article_attrs, :map, allow_nil?: false
12
13 change manage_relationship(:article_attrs, :articles, type: :create)
14 end
15 end

Note: The article_attrs map must contain the fields required to create an article.

The manage_relationship change takes three parameters:

	
The argument name

	
The name of the relationship to manage

	
Options.

In this case, we’re telling Ash to create the related article.

Before we can use this, ensure the Article resource accepts the necessary attributes for creation (it should via defaults, but confirm):

1 # lib/helpcenter/knowledge_base/article.ex
2 actions do
3 default_accept [:title, :slug, :content, :views_count, :published]
4 defaults [:create, :read, :update, :destroy]
5 end

Let’s now create an article under an existing category:

 1 # 1. Get a category (assume it exists)
 2 category = Ash.read_first!(Helpcenter.KnowledgeBase.Category)
 3
 4 # 2. Prepare new article data
 5 article_attrs = %{
 6 title: "Getting Started with Zippiker",
 7 slug: "getting-started-zippiker",
 8 content: "Learn how to set up your Zippiker account and configure basic settings.",
 9 views_count: 1452,
10 published: true
11 }
12
13 # 3. Create an article under this category
14 category
15 |> Ash.Changeset.for_update(:create_article, %{article_attrs: article_attrs})
16 |> Ash.update!()

Let’s now create an article under an existing category:

 1 # 1. Get a category (assume it exists)
 2 category = Ash.read_first!(Helpcenter.KnowledgeBase.Category)
 3
 4 # 2. Prepare new article data
 5 article_attrs = %{
 6 title: "Getting Started with Zippiker",
 7 slug: "getting-started-zippiker",
 8 content: "Learn how to set up your Zippiker account and configure basic settings.",
 9 views_count: 1452,
10 published: true
11 }
12
13 # 3. Create the article under this category
14 category
15 |> Ash.Changeset.for_update(:create_article, %{article_attrs: article_attrs})
16 |> Ash.update!()

This should successfully create the article and link it to the category.

You can confirm by reading the article or the updated category, which will show the article loaded under articles.

4.1.1 Create Parent and Child at the Same Time

We can also create a category and an article at the same time. Add this action to the Category resource:

1 create :create_with_article do
2 description "Create a Category and an article under it"
3 argument :article_attrs, :map, allow_nil?: false
4 change manage_relationship(:article_attrs, :articles, type: :create)
5 end

Then create them together:

 1 attributes = %{
 2 name: "Features",
 3 slug: "features",
 4 description: "Category for features",
 5 article_attrs: %{
 6 title: "Compliance Features in Zippiker",
 7 slug: "compliance-features-zippiker",
 8 content: "Overview of compliance management features built into Zippiker.",
 9 views_count: 0,
10 published: false
11 }
12 }
13
14 Helpcenter.KnowledgeBase.Category
15 |> Ash.Changeset.for_create(:create_with_article, attributes)
16 |> Ash.create!()

4.2 How to Read Related Data with Ash.Query.load/2

To retrieve related data, Ash uses Ash.Query.load/2.

Assume we have a category. We can load its articles like this:

1 category_with_articles =
2 Helpcenter.KnowledgeBase.Category
3 |> Ash.Query.filter(id == ^category.id)
4 |> Ash.Query.load(:articles)
5 |> Ash.read_first!()
6
7 # Access the articles
8 category_with_articles.articles

4.3 Belongs To Relationship

belongs_to is the inverse of has_many. The relationship is defined on the child resource (Article belongs to Category).

The simplest way is to accept :category_id during article creation:

1 # lib/helpcenter/knowledge_base/article.ex
2 actions do
3 default_accept [:title, :slug, :content, :views_count, :published, :category_id]
4 defaults [:create, :read, :update, :destroy]
5 end

Then:

 1 attributes = %{
 2 title: "Common Issues During Setup and How to Fix Them",
 3 slug: "setup-common-issues",
 4 content: "Troubleshooting guide for common challenges faced.",
 5 category_id: category.id
 6 }
 7
 8 Helpcenter.KnowledgeBase.Article
 9 |> Ash.Changeset.for_create(:create, attributes)
10 |> Ash.create!()

4.4 Create Child and Parent at the Same Time

On the child resource (Article):

1 create :create_with_category do
2 description "Create an article and its category at the same time"
3 argument :category_attrs, :map, allow_nil?: false
4 change manage_relationship(:category_attrs, :category, type: :create)
5 end

Usage:

 1 attributes = %{
 2 title: "Common Issues During Setup and How to Fix Them",
 3 slug: "setup-common-issues",
 4 content: "Troubleshooting guide for common challenges faced.",
 5 category_attrs: %{
 6 name: "Troubleshooting",
 7 slug: "troubleshooting",
 8 description: "Diagnose and fix identified issues"
 9 }
10 }
11
12 Helpcenter.KnowledgeBase.Article
13 |> Ash.Changeset.for_create(:create_with_category, attributes)
14 |> Ash.create!()

You can similarly add actions to article for comments and feedbacks:

 1 update :add_comment do
 2 description "Add a comment to an article"
 3 require_atomic? false
 4 argument :comment, :map, allow_nil?: false
 5 change manage_relationship(:comment, :comments, type: :create)
 6 end
 7
 8 update :add_feedback do
 9 description "Add feedback to an article"
10 require_atomic? false
11 argument :feedback, :map, allow_nil?: false
12 change manage_relationship(:feedback, :article_feedbacks, type: :create)
13 end

4.5 Many To Many Relationship
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

4.6 Has One
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

4.7 Filtering With Relationships

Filter articles by tag:

1 Helpcenter.KnowledgeBase.Article
2 |> Ash.Query.filter(tags.name == "issues")
3 |> Ash.read!()

Nested filtering (categories that have articles tagged “issues”):

1 Helpcenter.KnowledgeBase.Category
2 |> Ash.Query.filter(articles.tags.name == "issues")
3 |> Ash.read!()

Equivalent SQL:

 1 SELECT
 2 c0."id",
 3 c0."name",
 4 c0."description",
 5 c0."slug",
 6 c0."inserted_at",
 7 c0."updated_at"
 8 FROM "categories" AS c0
 9 INNER JOIN "articles" AS a1 ON c0."id" = a1."category_id"
10 INNER JOIN "article_tags" AS a2 ON a1."id" = a2."article_id"
11 INNER JOIN "tags" AS t3 ON t3."id" = a2."tag_id"
12 WHERE t3."name" = 'issues';

4.8 Retrieving Nested Relationships

Load articles and their tags:

1 Helpcenter.KnowledgeBase.Category
2 |> Ash.Query.filter(articles.tags.name == "issues")
3 |> Ash.Query.load([articles: [:tags]])
4 |> Ash.read!()

4.9 Deleting Records With Related Records

There are at least two ways to handle deletion of related records:

	
Rely on the data layer (Postgres) with on_delete.

	
Manually with hooks (less recommended for complex cases).

4.9.1 Deleting at the Data Layer (Postgres)

To delete related articles when a category is deleted:

1 postgres do
2 table "articles"
3 repo Helpcenter.Repo
4
5 references do
6 reference :category, on_delete: :delete
7 end
8 end

Then generate and run migrations:

1 mix ash_postgres.generate_migrations --name add_category_on_delete_to_article
2 mix ash_postgres.migrate

4.9.2 Nullifying Related Records Instead of Deleting

1 references do
2 reference :category, on_delete: :nilify
3 end

And on the relationship:

1 belongs_to :category, Helpcenter.KnowledgeBase.Category do
2 allow_nil? true
3 end

4.9.3 Delete Related Records Without Relying on the Data Layer

Example for deleting comments when destroying an article:
Remove :destroy from defaults, then define:

 1 destroy :destroy do
 2 primary? true
 3 require_atomic? false
 4
 5 change before_action(fn changeset, _context ->
 6 Helpcenter.KnowledgeBase.Comment
 7 |> Ash.Query.filter(article_id == ^changeset.data.id)
 8 |> Ash.bulk_destroy!(:destroy, %{}, batch_size: 100)
 9
10 changeset
11 end)
12 end

Warning: This approach is not atomic and may not cascade deeply.

Summary

In this section, we have seen how to work with relationships in Ash. You should now be able to manage:

	
belongs_to

	
has_many

	
many_to_many

	
has_one

	
handle deletion of related records.

This gives you a solid foundation for working with relationships in Ash!

Chapter 5: Calculations and Aggregates
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

5.1 Calculations
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

5.1.1 Simple Calculation with expr/1
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

5.1.2 Using Calculations on Unsaved/In-Memory Records
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

5.1.3 Extracting Calculations to Their Own Module
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

5.1.4 Calculations That Depend on Relationships
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

5.2 Aggregates
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 6: Validations
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

6.1 Preventing Actions on Expired Invitations
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 7: Authorization With Policies
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 8: Code Interfaces
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

8.1 Declaring Code Interface on a Resource
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

8.2 Code Interface on the Domain
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Part 2 - Wire Ash into Phoenix Applications
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 9: Wiring Ash into Phoenix
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

9.1 Ash + Phoenix Controller - Building Public Home Page
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

9.1.1 Basic Home Page Layout
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

9.1.2 Loading Categories with Aggregates (Best Practice)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

9.2 Ash + Phoenix LiveView – Admin CRUD
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

9.2.1 Helpful LiveView Helpers (Optional but Nice)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

9.2.2 Routes
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

9.2.3 List Categories – CategoriesLive.Index
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

9.2.4 Create Category – Using AshPhoenix.Form (The Right Way)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

9.2.5 Edit Category – Almost Identical to Create
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 10: LiveView and Real-Time Updates with Ash PubSub
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

10.1 Enable Ash PubSub Notifications on the Category Resource
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

10.2 Subscribe to Notifications in LiveView
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

10.3 Bonus: Even More Efficient Updates (Optional)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 11: Don’t Repeat Yourself (DRY) in Ash
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

11.1 DRY Your Forms – One Component for Create & Edit
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

11.2 DRY Your Read Queries with Preparations
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

11.3 DRY Your Create/ Update Logic with Changes
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 12: Authentication
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.1.1 Router Scope for Authentication
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.1.2 Authentication Routes
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.1.3 Testing It Out
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.1.4 Showing Login Status on the Front Page
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.1.5 Protecting LiveView Pages
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.2 Testing Your Application
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.2.1 Configure Ash Framework for Testing
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.2.3 Installing mix_test_watch to Simplify Test Workflow
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.2.4 Testing Category Workflow
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.2.4.1 Test Guest Cannot Access Categories Admin Page
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.2.4.2 Testing Protected LiveView Pages
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.2.4.3 Extract Authentication Logic
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.2.4.4 Adding the Rest of Category Tests
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.3 Authorization
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.3.1 What We’re Building
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.3.2 Step 1: Creating the Resources
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.3.2.1 Adding Permissions
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.3.2.2 Adding Groups
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.3.2.3 Connecting Groups to Permissions
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.3.2.4 Connecting Users to Groups
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.3.3 Setting Rules (Policies)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

12.3.3.1 Testing
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 13: Convert Your Application into Multitenant
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

13.1 Setting Up Teams (Tenant) Resource
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

13.2 Make this resource multi-tenant
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

13.3 Creating a Team and Auto-Linking the Owner User to the Team
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

13.4 Ash Multitenancy: Automating User-Team Associations
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

13.5 Associate Users with Teams
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

13.6 Linking the User to the Team
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

13.7 Setting the Owner’s Current Team
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

13.7.1 Ash Notifications
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

13.8 Logged In User Tenant set
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

13.9 Speeding Up Our Tests
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

13.10 Making Liveview Tenant Aware
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 14: Authorization in Ash Multitenancy
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

14.1 Group Permissions
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

14.2 Create and Edit Access Group Form
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

14.3 List Access Group
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

14.4 Assign Access Group Permission
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 15: Background Jobs with Oban and Ash — Reliable Email Notifications
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

15.1 Install Dependencies (Igniter Makes This Easy)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

15.2 Create the UserNotification Resource (The Heart of the System)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

15.3 Global Notify Function — Call It From Anywhere
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

15.4 Send Real Emails with Swoosh + Mailtrap
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

15.6 View & Debug Jobs with Oban Web
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 16: CI, and Deployment(Soon)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 17: Understanding Spark and the Extension System

Elixir has powerful tools for metaprogramming, which means you can write code that generates or modifies other code. This is possible because Elixir treats code as regular data, specifically, as tuples with three elements.

This chapter explains the basics of Elixir’s metaprogramming, then dives into Spark, a library that powers the extensible DSLs (Domain-Specific Languages) in the Ash Framework. By the end, you’ll see how Ash’s clean, modular design works under the hood.

17.1 The Foundation: Code as Data in Elixir

In Elixir, every piece of code can be represented as simple data structures. This lets you inspect, modify, or generate code programmatically.

The two main tools for this are:

	
quote do ... end: This “freezes” your code instead of running it. It returns the code’s data representation, called the Abstract Syntax Tree (AST).

	
unquote(expr): Inside a quote block, this evaluates expr right away (at compile time) and inserts the result into the AST. It’s like string interpolation (#{…}) but for code.

These tools enable metaprogramming: generating or transforming code before it runs. This is the magic behind frameworks like Ash, which use a library called Spark to build flexible, extensible DSLs.

17.2 What is the Abstract Syntax Tree (AST)?

The AST is Elixir’s way of turning your source code into a structured, tree-like data format.

When Elixir compiles your program:

	
It parses the code.

	
It builds the AST (a nested set of tuples).

	
It uses the AST to generate bytecode.

You can view the AST using quote:

1 quote do
2 1 + 2 * 3
3 end
4 # Returns: {:+, [context: Elixir, import: Kernel], [1, {:*, [context: Elixir, import: Kernel], [2, 3]}]}

This is a tuple with three parts:

	
The operation (:+ for addition).

	
Metadata (like context and imports).

	
Arguments (the numbers and sub-operations).

Even bigger code blocks become AST:

1 quote do
2 defmodule MyModule do
3 def hello(name), do: IO.puts("Hello #{name}")
4 end
5 end
6 # Returns a nested tuple representing the module, function, and IO call.

Since the AST is just Elixir data, you can:

	
Store it in variables.

	
Pattern-match on it (e.g., to find specific parts).

	
Transform it (e.g., add new code).

	
Inject it into other code.

**This “code as data” approach is what powers Ash’s flexibility via Spark.
**

17.3 Using quote to Capture Code as Data

quote lets you capture code without running it, turning it into portable AST data:

1 my_code = quote do
2 def ok(socket), do: {:ok, socket}
3 end
4
5 # my_code now holds the AST for that function definition.

You can pass my_code around, store it, or use it in macros to insert it elsewhere.

17.4 Using unquote to Inject Values into Quoted Code

is the opposite: it “thaws” part of the quoted code, evaluates it at compile time, and injects the result:

1 socket = :my_socket
2
3 quote do
4 {:ok, unquote(socket)}
5 end
6 # Returns: {:ok, :my_socket} # The value of socket was inserted.

If you unquote a function call, it runs during compilation:

1 defp generate_greeting do
2 "Hello from compile time!"
3 end
4
5 quote do
6 IO.puts(unquote(generate_greeting()))
7 end
8 # This prints during compilation, not runtime!

With quote and unquote, you can build macros that create sophisticated DSLs. But for large, extensible DSLs (like in Ash), you need something more structured, and that’s where Spark comes in.

17.5 Introducing Spark: The Engine Behind Ash’s DSLs

Spark is a lightweight library (~1,500 lines of code) created by Zach Daniel (Ash’s author) for building extensible DSLs in Elixir. It’s standalone but powers Ash’s modular design and other recent framework such as Beam Bot.

Core ideas in Spark:

	
Define a DSL in one module using use Spark.Dsl.

	
Break the DSL into sections (blocks like attributes do ... end), options (key-value settings), and entities (repeatable items like multiple attributes).

	
Extensions (from third-party packages) add new sections, options, or entities without modifying the core code.

	
Extensions are easy to use: Just list them in use MyDsl, extensions: [...].

This is why Ash feels so natural:

1 defmodule MyApp.Accounts.User do
2 use Ash.Resource,
3 extensions: [AshAuthentication, AshJsonApi.Resource, AshGraphql.Resource]
4
5 # Now you can use blocks like authentication {}, json_api {}, graphql {} — added by extensions!
6 end

17.5.1 Why Spark? Problems It Solves

Building extensible DSLs with plain macros leads to issues:

	
Option name clashes between extensions.

	
Hard to document or validate extension options.

	
No standard place for post-DSL logic (e.g., validation).

	
Extensions can’t declare dependencies.

	
Users can’t easily discover available options.

Spark fixes these with a declarative, composable system.

17.6 How Spark Works: A Simple Example

Let’s build a tiny DSL to see Spark in action.

Define the core DSL:

 1 # lib/my_app/dsl.ex
 2 defmodule MyApp.Dsl do
 3 use Spark.Dsl, extensions: [] # Start with no extensions
 4
 5 dsl do
 6 # Top-level options
 7 option :name, type: :string, doc: "Name of the thing"
 8 option :env, type: :atom, default: :dev
 9
10 # A section (block) that extensions can extend
11 section :settings do
12 option :log_level, type: :atom, default: :info
13 end
14 end
15 end

Create an extension:

 1 # lib/my_app/extensions/logging.ex
 2 defmodule MyApp.Extensions.Logging do
 3 use Spark.Dsl.Extension,
 4 sections: [:settings], # Extend the existing :settings section
 5 transformers: [MyApp.Transformers.Logging]
 6
 7 dsl do
 8 section :settings do
 9 option :structured_logging, type: :boolean, default: false
10 option :log_requests, type: :boolean, default: true
11 end
12 end
13 end
14
15 # Optional transformer: Runs after DSL parsing for validation or defaults
16 defmodule MyApp.Transformers.Logging do
17 use Spark.Dsl.Transformer
18
19 def transform(dsl_state) do
20 if Spark.Dsl.get_opt(dsl_state, [:settings], :structured_logging) do
21 # Add custom logic here, e.g., validation
22 end
23 {:ok, dsl_state}
24 end
25 end

Use it in your code:

 1 defmodule MyApp.MyThing do
 2 use MyApp.Dsl, extensions: [MyApp.Extensions.Logging]
 3
 4 dsl do
 5 name "My Production Service"
 6 env :prod
 7
 8 settings do
 9 log_level :debug
10 structured_logging true # This option comes from the extension!
11 end
12 end
13 end

Spark merges everything beautifully.

17.7 A Real Ash Example

In Ash, resources use Spark under the hood. Here’s a simplified User resource:

 1 defmodule MyApp.Accounts.User do
 2 use Ash.Resource,
 3 domain: MyApp.Accounts,
 4 extensions: [AshAuthentication, AshJsonApi.Resource, AshGraphql.Resource]
 5
 6 attributes do
 7 uuid_primary_key :id
 8 attribute :email, :ci_string, allow_nil?: false
 9 end
10
11 actions do
12 defaults [:read, :destroy]
13 create :register do
14 accept [:email, :password]
15 end
16 end
17
18 # Extension-added sections:
19 authentication do
20 api MyApp.Accounts
21 tokens do
22 enabled? true
23 store_all_tokens? true
24 end
25 add_ons do
26 confirmation :confirm
27 end
28 end
29
30 json_api do
31 type "user"
32 routes do
33 base "/users"
34 get :read
35 index :read
36 post :register
37 end
38 end
39
40 graphql do
41 type :user
42 queries do
43 get :get_user, :read
44 list :list_users, :read
45 end
46 end
47 end

Core Ash handles basics like attributes and actions. Extensions add the rest (e.g., authentication from AshAuthentication). This lets you pick and choose features like AshGraphql or AshAdmin without bloat.

17.8 Key Spark Concepts

Here’s a table summarizing the essentials:

	Concept
	Description
	Ash Example
	Spark.Dsl

	Dsl
	The base module defining the core DSL.
	Ash.Resource, Ash.Domain
	Spark.Dsl

	Extension
	A module adding new sections/options using use Spark.Dsl.Extension.
	AshAuthentication, AshJsonApi.Resource
	Spark.Dsl.Extension

	Section
	A named block in the DSL (e.g., authentication do ... end).
	authentication, json_api, postgres
	Spark.Dsl.Section

	Transformer
	Code that runs after DSL parsing for validation, defaults, or side effects.
	Used in Ash for complex checks and setups
	Spark.Dsl.Transformer

	Entities
	Repeatable sub-items with their own DSL (e.g., multiple attributes).
	attribute :name, :string; action :create
	Spark.Dsl.Entity

17.9 Why Spark’s Extension Model is Revolutionary

	
No Global Changes: Extensions only apply where you list them.

	
No Conflicts: Extensions can merge sections safely, avoiding conflicts issues.

	
Discoverability: IDEs and docs can inspect the full DSL.

	
Powerful Transformers: Move logic to compile time for efficiency.

This makes Ash feel built-in and polished, unlike many frameworks.

To recap:

	
Elixir’s metaprogramming (via AST, quote, unquote) treats code as data.

	
Spark builds on this to create extensible DSLs.

	
It powers Ash’s modularity: Core is simple; extensions add features.

	
Understanding Spark unlocks how Ash works and inspires building your own Ash Extensions.

Next, let’s build our own Ash Extension.

Chapter 18: Building Your First Ash Extension

We are going to build an extension called AshParental that adds 1. self-referential parent-child (nested/tree) behaviour to any Ash resource using single-table inheritance style (same table, parent_id referencing its own primary key).

When applied to a resource, the extension will automatically:

	
Add a parent_id attribute (same type as the resource’s primary key, nullable)

	
Add a belongs_to :parent relationship to the same resource

	
Add a has_many :children relationship to the same resource

	
Add a count_of_children aggregate over the :children relationship

This turns a flat resource like Comment into a fully threaded/nested resource that supports comments and replies.

18.1 Basic Composition of an Ash Extension

Ash extensions are just collections of Spark.Dsl.Transformer modules that run at compile time and modify the DSL state of a resource (or domain).

An extension has exactly two kinds of modules:

	
The Entry Module. The public face of the extension

	
This is the module you list in extensions: [...].

	
Its only job is to declare the list of transformers and their order.

	
It must use Spark.Dsl.Extension and pass the @transformers list.

	
Ash discovers this module, reads the list, and applies each transformer in the declared order (also respecting any after?/1 callbacks).

	
Transformer Modules. The actual workers

	
Each transformer is a separate module that use Spark.Dsl.Transformer and implements transform/1.

	
The transform/1 function receives the current DSL state of the resource and returns {:ok, new_dsl_state} or {:error, term()}.

	
You use the helpers in Ash.Resource.Builder (add_new_attribute, add_new_relationship, add_new_aggregate, etc.) to mutate the state.

That’s literally all there is to an extension — one entry module + one or more transformers.

18.2 Start with Just the parent_id Attribute

We begin with the simplest possible version: just adding the parent_id attribute to a resource,and we make it dynamically match the resource’s primary key type right from the start — no need for a separate step later.

18.2.1 Entry module

1 # lib/helpcenter/extensions/ash_parental/ash_parental.ex
2 defmodule Helpcenter.Extensions.AshParental do
3 @transformers [
4 Helpcenter.Extensions.AshParental.Transformers.AddParentIdAttribute
5]
6
7 use Spark.Dsl.Extension, transformers: @transformers
8 end

18.2.2 Your First transformer

 1 # lib/helpcenter/extensions/ash_parental/transformers/add_parent_id_attribute.ex
 2 defmodule Helpcenter.Extensions.AshParental.Transformers.AddParentIdAttribute do
 3 use Spark.Dsl.Transformer
 4
 5 def transform(dsl_state) do
 6 primary_key_type = get_primary_key_type(dsl_state)
 7
 8 Ash.Resource.Builder.add_new_attribute(
 9 dsl_state,
10 :parent_id,
11 primary_key_type,
12 allow_nil?: true # roots have nil parent_id
13)
14 end
15
16 defp get_primary_key_type(dsl_state) do
17 dsl_state
18 |> Ash.Resource.Info.primary_key()
19 |> Enum.map(&Ash.Resource.Info.attribute(dsl_state, &1))
20 |> List.first()
21 |> Map.get(:type)
22 end
23 end

This is equivalent to manually writing in a resource:

1 attributes do
2 attribute :parent_id, :uuid, allow_nil?: true
3 end

18.2.3 Test it in IEx

1 Ash.Resource.Info.attribute_names(Helpcenter.KnowledgeBase.Comment)
2 # => MapSet.new([:id, :content, :article_id, :inserted_at, :updated_at, :parent_id])

18.2.4 Unit Testing the Extension

 1 # lib/helpcenter/extensions/ash_parental/ash_parental_test.exs
 2 defmodule Helpcenter.Extensions.AshParentalTest do
 3 use ExUnit.Case
 4
 5 defmodule Comment do
 6 use Ash.Resource,
 7 domain: Helpcenter.Extensions.AshParentalTest.Domain,
 8 data_layer: Ash.DataLayer.Ets,
 9 extensions: [Helpcenter.Extensions.AshParental]
10
11 ets do
12 table :comments
13 end
14
15 actions do
16 defaults([:create, :read, :update, :destroy])
17 end
18
19 attributes do
20 uuid_primary_key :id
21 attribute :content, :string, allow_nil?: false
22 timestamps()
23 end
24 end
25
26 defmodule Domain do
27 use Ash.Domain
28
29 resources do
30 resource Helpcenter.Extensions.AshParentalTest.Comment
31 end
32 end
33
34 test "AshParental adds parent_id to the resource" do
35 assert :parent_id in Ash.Resource.Info.attribute_names(Comment)
36 end
37 end

Run tests:

1 mix test lib/helpcenter/extensions/ash_parental/ash_parental_test.exs

18.3 Add Relationships and Aggregate

We will now add:

	
belongs_to :parent

	
has_many :children

	
count_of_children aggregate

Create the three new transformers (all using the same pattern):

 1 # add_belongs_to_parent_relationship.ex
 2 defmodule Helpcenter.Extensions.AshParental.Transformers.AddBelongsToParentRelationship do
 3 use Spark.Dsl.Transformer
 4
 5 def after?(Helpcenter.Extensions.AshParental.Transformers.AddParentIdAttribute), do: true
 6 def after?(_), do: false
 7
 8 def transform(dsl_state) do
 9 resource = Spark.Dsl.Transformer.get_persisted(dsl_state, :module)
10
11 Ash.Resource.Builder.add_new_relationship(
12 dsl_state,
13 :belongs_to,
14 :parent,
15 resource,
16 source_attribute: :parent_id,
17 destination_attribute: primary_key_name(dsl_state),
18 allow_nil?: true
19)
20 end
21
22 defp primary_key_name(dsl_state) do
23 dsl_state
24 |> Ash.Resource.Info.primary_key()
25 |> hd()
26 end
27 end

 1 # add_has_many_children_relationship.ex
 2 defmodule Helpcenter.Extensions.AshParental.Transformers.AddHasManyChildrenRelationship do
 3 use Spark.Dsl.Transformer
 4
 5 def after?(Helpcenter.Extensions.AshParental.Transformers.AddParentIdAttribute), do: true
 6 def after?(_), do: false
 7
 8 def transform(dsl_state) do
 9 resource = Spark.Dsl.Transformer.get_persisted(dsl_state, :module)
10
11 Ash.Resource.Builder.add_new_relationship(
12 dsl_state,
13 :has_many,
14 :children,
15 resource,
16 source_attribute: primary_key_name(dsl_state),
17 destination_attribute: :parent_id
18)
19 end
20
21 defp primary_key_name(dsl_state) do
22 dsl_state
23 |> Ash.Resource.Info.primary_key()
24 |> hd()
25 end
26 end

 1 # add_children_count_aggregate.ex
 2 defmodule Helpcenter.Extensions.AshParental.Transformers.AddChildrenCountAggregate do
 3 use Spark.Dsl.Transformer
 4
 5 def after?(Helpcenter.Extensions.AshParental.Transformers.AddHasManyChildrenRelationship), do: true
 6 def after?(_), do: false
 7
 8 def transform(dsl_state) do
 9 Ash.Resource.Builder.add_new_aggregate(
10 dsl_state,
11 :count_of_children,
12 :count,
13 :children
14)
15 end
16 end

Update the entry module with correct order and documentation:

 1 # lib/helpcenter/extensions/ash_parental/ash_parental.ex
 2 defmodule Helpcenter.Extensions.AshParental do
 3 @moduledoc """
 4 An Ash extension that adds parent-child hierarchy to a resource.
 5
 6 Adds:
 7 • `parent_id` attribute (same type as primary key, nullable)
 8 • `belongs_to :parent` (optional)
 9 • `has_many :children`
10 • `count_of_children` aggregate
11 """
12
13 @transformers [
14 Helpcenter.Extensions.AshParental.Transformers.AddParentIdAttribute,
15 Helpcenter.Extensions.AshParental.Transformers.AddBelongsToParentRelationship,
16 Helpcenter.Extensions.AshParental.Transformers.AddHasManyChildrenRelationship,
17 Helpcenter.Extensions.AshParental.Transformers.AddChildrenCountAggregate
18]
19
20 use Spark.Dsl.Extension, transformers: @transformers
21 end

18.3.1 Comprehensive Test Suite

Now we expand the test file to cover everything — attributes, relationships, aggregate, and actual runtime behavior with seeded records.

 1 defmodule Helpcenter.Extensions.AshParentalTest do
 2 use ExUnit.Case
 3
 4 # ... same Comment and Domain definition as before...
 5
 6 defp relationships(resource), do: Ash.Resource.Info.relationships(resource) |> Enum.map(& &1.name)
 7
 8 alias Helpcenter.Extensions.AshParentalTest.Comment
 9
10 describe "AshParental extension" do
11 test "adds parent_id attribute" do
12 assert :parent_id in Ash.Resource.Info.attribute_names(Comment)
13 end
14
15 test "adds belongs_to :parent" do
16 assert :parent in relationships(Comment)
17 end
18
19 test "adds has_many :children" do
20 assert :children in relationships(Comment)
21 end
22
23 test "adds count_of_children aggregate" do
24 agg = Ash.Resource.Info.aggregates(Comment) |> Enum.find(&(&1.name == :count_of_children))
25 assert agg.kind == :count
26 end
27
28 test "parent-child relationships work both ways and count works" do
29 parent = Ash.Seed.seed!(Comment, %{content: "parent"})
30 child1 = Ash.Seed.seed!(Comment, %{content: "child 1", parent_id: parent.id})
31 child2 = Ash.Seed.seed!(Comment, %{content: "child 2", parent_id: parent.id})
32
33 loaded_parent = Ash.get!(Comment, parent.id, load: [:children, :count_of_children])
34
35 assert loaded_parent.count_of_children == 2
36 assert length(loaded_parent.children) == 2
37
38 loaded_child = Ash.get!(Comment, child1.id, load: :parent)
39 assert loaded_child.parent.id == parent.id
40 end
41 end
42 end

Run:

1 mix test lib/helpcenter/extensions/ash_parental/ash_parental_test.exs

All tests green. Our extension is complete and reusable.

18.4 Usage Example

1 defmodule Helpcenter.KnowledgeBase.Category do
2 use Ash.Resource,
3 extensions: [Helpcenter.Extensions.AshParental],
4 # ... rest of resource
5 end

You now have a fully reusable AshParental extension that can turn any resource into a nested/tree structure with zero manual boilerplate.

In this chapter, You learned:

	
How Ash extensions are just collections of Spark transformers

	
How to add attributes, relationships, and aggregates via transformers

	
How to enforce transformer order with after?/1

	
How to write comprehensive tests using ETS data layer

	
How to make an extension that works with any primary key type and is fully tested

Chapter 19: Make Your Extension Configurable
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

19.1 Delete Parent With Its Children
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Chapter 20: Publish Your Extension To the World via Hex.pm
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

20.1 Create Mix Package
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

20.2 Move Extension Files to the New Package
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

20.3 Update the Modules Namespace
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

20.4 Test the Package Locally with Your Ash Application
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

20.5 Publishing the Package to Hex.pm
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

20.6 Adding Package Information
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Appendix A: Ash Framework Cheat Sheet
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Setup & Migrations
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Domain & Resources (minimum)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Common Resource Sections
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

CRUD in IEx
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Query & Filter
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Relationships (manage_relationship)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Common Policy Checks
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Authorization in Practice
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Seed Data
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Useful Ash Modules
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

Acknowledgments
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/ash-phoenix.

EPUB/resources/full-erd.png
has many

CATEGORIES

wup |id PK

datetime | created_at

datetime | updated_at

ARTICLE_FEEDBACK
uuiD PK
uuID article_id | FK

datetime | created_at

has many (via pivot)

TAGS

o |id
sting | name

sting | slug

datetime | created_at

datetime | updated_at

has many (via pivot)

EPUB/resources/relationship-intro.png
Ash Framework - Relationships

Has Many

EPUB/styles/resources/leanpub_pencil.png

EPUB/styles/resources/leanpub_question-circle.png

EPUB/styles/resources/leanpub_warning.png

EPUB/styles/resources/leanpub_comments.png

EPUB/resources/relationships.png
ARTICLES
int article_id PK
varchar | title
text content
datetime | published_date
belongs o
S
COMMENTS
int comment id | PK CATEGORIES
int article_id FK int category_id | PK
links
text content varchar | name
varchar | author text description
datetime | created_date

ARTICLE_CATEGORIES

int | article_id FK

int | categoryid | FK

EPUB/styles/resources/leanpub_bug.png

EPUB/styles/resources/leanpub_info-circle.png

EPUB/media/resources/title_page.png
A'siih
FRCIRMEWIORK

For Phecn developers

How to WiritelLless), Ship Faster, Extend
Forevelr Ashi=Phoenix Applications.

/ Kamarol Lambert

EPUB/media/resources/publisher-logo.png
[

Leanpub

EPUB/styles/resources/leanpub_key.png

