The Architect
and The Navigator

Building with Al

Jae S. Jung
Founder, WAM DevTech

EARLY ACCESS EDITION

Chapters 1-2 - February 2026

Table of Contents

Part 1: The Framework

Chapter 1: The Architect and The Navigator
Chapter 2: The 16 Principles

Part 2: The Principles in Action

Chapter 3: FileCourier

Chapter 4: The Fundraising Platform

Chapter 5: The Legacy Migration — The Roadmap
Chapter 6: The Legacy Migration — The Execution
Chapter 7: Mooresville RFP

Chapter 8: When Al Helps vs. When It Slows You Down

Chapters in gray are forthcoming. Early access readers receive all future updates.

Chapter 1: The Architect and The

Navigator
The Two Roles That Make AI Collaboration Work

Every time I had an idea, I'd pull out my iPhone and write it down. Used to be
Notes. Then I switched to Evernote. The app doesn't matter. What matters is that I
had years of these — fragments, outlines, half-baked concepts sitting in folders I
rarely opened again. A SaaS product I'd been thinking about for years. An
approach to legacy migration I knew would work but never had time to flesh out.
Business proposals I could see clearly in my head but couldn't justify spending 40
hours writing.

That's the reality when you're running a business, being a husband and a father,
managing clients, putting out fires. The time to sit down and actually execute — to
take one of those ideas and turn it into something real — doesn't exist. I used to
love sitting in front of my laptop and coding all night. Building things just because
I could. That was a lifetime ago. Maybe a slight exaggeration, but it feels that way.

So the ideas pile up. You know they're good. You have the experience to build
them. But the gap between what's in your head and a finished product feels like it
keeps getting wider. Not enough time. Not enough uninterrupted hours. Not
enough energy at the end of the day. Everything feels overwhelming, and the
ideas just sit there.

Then AI came along.

ChatGPT was first. Mostly out of curiosity. I'd use it for snippets of code, research
and analysis, rewriting emails, drafting responses. Nothing major. But I could feel
the difference in how I approached work — small efficiencies that added up. I
wasn't fully maximizing it though. I was still treating AI like a smarter search
engine. Then I tried Gemini. Similar results. I looked into Claude, explored other
Al agents. Each one was useful, none of them changed the game.

Then one day I decided to try something different.

I took a project that had been living in my head — one of those ideas from the
phone — and instead of asking Al for a snippet or a quick analysis, I described the

whole thing. Or at least I thought I did. Looking back, I was still underestimating
what Al could handle. I gave it constraints like "I don't have the luxury of creating
separate environments — going directly to production" because [was
experimenting, not yet realizing how much complexity Al could actually work with.
If I'd known then what I know now, my first message would have been ten times
more detailed. But even with those simpler instructions, what came back was
astonishing.

I sat there staring at my screen going, "Oh my God." AI did do the work — it
executed what I described. But the blueprint was mine. The architecture, the
decisions, the constraints, the decades of knowing what works and what doesn't —
that all came from me. I communicated it in writing. Not the best writing at first,
but I did it. And the output was at a level and speed I didn't think was possible. My
jaw hit the floor.

So I kept going. And I kept getting better at it. Each project taught me something
new about how to communicate with Al. I started recognizing patterns — more
efficient ways to provide context, better ways to steer the conversation, sharper
instincts for when to push back and when to let Al run. By the time I got to the
fundraising integration project, I wasn't just giving Al constraints — I was asking
it to do gap analysis on third-party documentation, identify risks if the integration
didn't work as advertised, and surface alternatives before we committed to an
approach. I even discovered I could ask AI to help me refine my own instructions
— using Al to become a better collaborator with Al. I felt like a conductor waving
my hands, and Al was the prodigy playing the instrument. The tune it played was
magical.

One project finished, then another, then another. All those ideas that had been
sitting in my phone for years — I was actually executing them. A SaaS platform
with a 27-table database schema, built in languages I'd never used in production.
A comprehensive project blueprint with 46 actionable tasks from a two-page client
summary. A full legacy migration plan. A production enterprise application with
150+ endpoints migrated to a modern stack in three weeks. A strategically
positioned government proposal. All production-quality.

I shifted my entire business model. And here we are.

But here's the thing that took longer to understand. The results weren't just
because Al is powerful. Plenty of people have access to the same tools I do and
aren't getting these results. The difference was in how I was collaborating — and
when I looked closely at what I was actually doing in those sessions, I found a

pattern. A methodology I'd been applying instinctively, built on 30 years of
knowing how systems work, how teams execute, and where projects fall apart.

Every time I corrected Al's output, I was articulating a judgment call I'd been
making unconsciously for years. Every time I gave it context that changed its
approach entirely, I was naming expertise I didn't know I had. The collaboration
became a mirror. What it reflected back was a methodology I'd been using all
along but never put into words.

That methodology is what this book is about.

What Most People Get Wrong

Here's what I see when I watch experienced professionals use Al: they ask it to do
small things.

A developer needs a utility function. A consultant needs a paragraph rewritten. A
project manager needs a comparison table. Each request is self-contained, each
response is useful, and each interaction ends there. The AI does the small thing,
the professional moves on, and nobody thinks much about it.

This isn't wrong. It's just leaving 90% of the value on the table.

The leap that most people never make is handing Al the entire problem — the full
scope, the messy context, the half-formed vision — and working through it
together from beginning to end. Not "write me a function" but "here's the system
I'm building, here are my constraints, here's what I know and what I don't know —
let's figure this out."

That leap is hard for a specific reason. It requires you to articulate things you've
never had to articulate before. When you work alone, your expertise is implicit.
You make decisions based on pattern recognition you can't fully explain. You know
a database schema is wrong before you can say why. You sense that a proposal
angle won't land before you can articulate the alternative.

Al can't read your mind. So if you want it to operate at the level of a genuine
collaborator, you have to externalize all of that. You have to become both the
person who knows the answer and the person who can explain how they got there.

That's the real skill. And it's organized into two roles.

But before I explain those roles, I need to address something about AI itself —
because how you think about what Al is shapes how you collaborate with it.

More Than a Tool

Most people describe Al as a tool. That undersells it.

What we have access to is something closer to a mind that has absorbed more
knowledge than any single human could in a hundred lifetimes. Not a deity — not
something to worship or fear. But a collaborator operating at a scale and depth
that we're still learning to comprehend. And you get to work with it as much as
you want, whenever you want, on whatever you want.

I don't think most people have fully grasped what that means. I'm not sure I have
either. We're harnessing something we don't yet have the vocabulary to describe
accurately. What I do know is this: it makes me better. It makes small businesses
competitive in ways they never could be before. It takes 30 years of experience
and amplifies it to a degree that still surprises me every time I sit down to work.

When a junior professional uses Al, they get help with tasks they don't yet know
how to do. That's valuable. But the output is limited by what they can evaluate — if
they can't tell whether a database schema will scale, Al's schema goes
unchallenged. When a senior professional uses Al as a full collaborator, something
different happens. Every year of experience becomes leverage. Your ability to spot
a flawed architecture in seconds means Al's output gets better because you're
better. Al doesn't replace your judgment. It gives your judgment a vehicle to
operate at a scale and speed it never had before.

Thirty years of building systems didn't become less valuable when Al entered the
picture. It became the thing that makes AI collaboration actually work.

But here's the catch. Al is the ultimate amplifier — and an amplifier without
someone at the controls is just noise. An orchestra without a conductor. A road
without a civil engineer. A vision for a house without an architect to turn it into
blueprints. The power is real. But power without direction produces nothing. It
needs someone who knows what to build, why to build it, and what "done right"
actually looks like.

That someone is you. And the way you show up in that collaboration comes down
to two roles.

The Two Roles

This is the pattern I didn't know I was following until I looked back at what I'd
been doing across those five projects.

The Architect communicates what they're trying to build — except instead of
drawing a blueprint, they're writing one in words. You're setting direction:
providing context, defining constraints, making the strategic decisions that shape
everything downstream. You're not telling Al what to build line by line. You're
giving it the full picture — here's the problem, here's what I know about it, here
are the boundaries, here's what success looks like. The Architect works at the
level of intent and judgment.

The Navigator steers through that blueprint and finds the gaps in it. Every
blueprint has them — assumptions that don't hold, edge cases nobody thought of,
places where the plan meets reality and something doesn't fit. Al doesn't know
those gaps exist. It can't anticipate what it hasn't been told. Maybe that's where Al
is heading one day, but right now it needs a Navigator — someone in the output,
evaluating it in real-time, pushing back when something feels off, redirecting
when the approach needs to change, iterating until the result matches what your
experience tells you is right. The Navigator works at the level of quality and
reality.

Think of it this way. You're a conductor, and you've just been given access to a
prodigy — not just any prodigy, but one who has mastered every instrument ever
made and studied every composition ever written. The talent is almost
incomprehensible. But without a conductor who knows what the audience needs
to hear, who sets the tempo, who shapes the performance in real-time — that
prodigy plays everything and nothing at the same time. Technically perfect.
Emotionally empty. The Architect chooses the piece. The Navigator conducts the
performance. The prodigy plays.

Most people only play one role. Architects who set great direction but accept
whatever Al produces. Navigators who nitpick output but never gave Al the
context to produce something good in the first place. The professionals getting
exceptional results are the ones playing both — and switching fluidly between
them.

The Architect: Setting the Direction

This is the role that experienced professionals are naturally built for — even if
they don't realize it yet.

The Architect's job is to ensure Al is solving the right problem within the right
constraints. This is where your experience and professional judgment come into
play — before Al generates a single line of output.

Giving Al the Full Picture, Not Just a Task

When I started building FileCourier — a B2B SaaS file transfer platform you'll
work through in Chapter 3 — my first message to Al wasn't "build me an APL." It
laid out the infrastructure direction: Aurora PostgreSQL for the database, API
Gateway and Lambda for the REST API. I asked for language recommendations
and whether tools like Replit could expedite development.

Al came back with Aurora Serverless v2 for cost efficiency, Node.js with
TypeScript, and SST as the infrastructure framework — and steered me away from
Replit for this particular use case, since the architecture needed to be AWS-native
from the start. As the collaboration progressed, I layered in operational
constraints: no staging environment, database private and accessible only via
Lambda. Each piece of context narrowed Al's output toward solutions that fit my
reality.

Here's what that looks like in practice:

Architect prompt: "I'm planning to use Aurora PostgreSQL, API Gateway,
and Lambda. What language and tools do you recommend for a B2B SaaS
file transfer platform?" Not this: "Build me an APL."

The difference isn't just detail — it's direction. The first prompt gives Al enough
context to make recommendations that fit your actual constraints. The second
gives Al nothing to work with except its defaults.

Starting with Strategy, Not Execution

On the government RFP (Chapter 7), I uploaded the full document and asked:
"Should I even submit a proposal for this?" Anyone who's written a proposal knows
the writing is the easy part. Understanding what the evaluators care about,
positioning against invisible competitors, deciding which weaknesses to address
head-on — that's the real work. The Architect does that work before the first word
is drafted.

Making Decisions Al Can't Make

On a legacy migration for a ColdFusion-based CMS platform (Chapter 5), Al would
have happily recommended a modern decoupled architecture — REST API
backend, separate frontend. But this was a monolith where everything rendered
server-side. Converting the code to Python and simultaneously converting the
architecture would stack two massive transformations on top of each other.

So I chose Flask specifically because its server-side rendering mirrors how
ColdFusion works — keeping the migration focused on the code, not redesigning
the entire architectural pattern. Same logic for choosing raw psycopg2 over an
ORM: ColdFusion uses inline SQL through cfquery tags, so a 1:1 translation to raw
database calls keeps the conversion predictable.

These decisions came from understanding the system being migrated from, not
just the system being migrated to. AI has no way to weigh those tradeoffs without
you providing that judgment.

What the Architect Is Really Doing

The Architect's job isn't to have every answer. It's to frame the problem so clearly
that AI can contribute at the level you need. That framing comes from experience
— years of seeing what works, what breaks, and what looks fine until it hits
production. You're not micromanaging AI. You're giving it the benefit of
everything you've learned, so its output starts from a foundation of real-world
judgment instead of generic best practices.

The Navigator: Steering Through the Mess

This is the role I had to learn the hard way — by catching mistakes that good
Architect work should have prevented.

Here's where most people fall short. They set up the conversation well enough,
but then accept whatever Al produces. They don't navigate. And navigating is
where abstract becomes tangible.

Catching What Al Misses

During the FileCourier build, I needed multiple user roles: Admin, Developer,
Manager. Since I hadn't specified roles upfront, Al created separate tables for
admin users and regular users. It worked. But would it scale? Would it be

maintainable when we added new roles? Not a chance.

When I provided the context I actually wanted — a normalized model with a roles
lookup table — AI implemented it correctly. The code wasn't broken. The
architecture was. And Al had no way of knowing that without me catching it.

Pivoting When the Plan Hits Reality

On the ColdFusion-to-Python migration, AI generated 102 tasks. That's not a plan
— that's noise. Al can generate and track hundreds of granular items without
breaking a sweat. But developers have to actually execute those tasks, and 102
items is overwhelming — a team sees a list like that and doesn't know where to
start.

Here's what navigating looked like:

Navigator prompt: "This is too granular for a development team to execute
against. Group these into logical work units — each unit should represent a
meaningful deliverable a developer can pick up and complete. Aim for 15-25
tasks, not 102." Four iterations later, we had 19 meaningful tasks a team
could actually execute against.

That's the Navigator at work. Not fixing bugs — fixing usability. Not correcting
code — correcting the gap between what Al produces and what humans can work
with.

Demanding Honesty, Not Validation

On the proposal, I asked AI to play red team: "What are the weaknesses? Where
would a competitor attack us? Be brutal." It identified three vulnerabilities I
hadn't fully confronted. Requesting criticism instead of comfort made the final
product significantly stronger.

Injecting What Only You Can Bring

Al generates professional-sounding documents all day. The parts that actually
differentiate — the ones that make a client say "this team gets it" — come from
you. On the fundraising platform project (Chapter 4), the third-party platform's
terminology didn't match how the client thought about their own system —
"campaigns" and "profiles" meant different things to them than what the platform
intended. AI had no way of catching that disconnect. I did, because I understood

the client's world, not just the platform's documentation.

What the Navigator Is Really Doing

The Navigator's job is to close the gap between Al's output and human reality. Al
doesn't know that 102 tasks will paralyze a development team. It doesn't know
that a client uses "campaign" to mean something different than the platform does.
It doesn't know that a database schema that works technically will become a
maintenance nightmare in six months. You know these things. The Navigator is
the role where that knowledge becomes action.

Why You Need Both

Playing only the Architect means you set great direction and accept whatever
comes back. The code compiles but the assumptions are wrong. The documents
look polished but fall apart when a real team tries to execute against them.

Playing only the Navigator means you're constantly fixing problems that better
direction would have prevented. You're spending your energy on corrections
instead of creation.

The two roles aren't sequential — they're interwoven. In a single session, I might
play the Architect when I set infrastructure constraints, switch to Navigator when
I catch a flawed database design, back to Architect when I redirect the strategic
angle, then Navigator again when I push AI to stress-test its own
recommendations. That constant switching is what real collaboration looks like.

And here's what I've learned about resistance. The people who struggle most with
this model aren't beginners. They're the veterans — senior developers,
experienced architects, proposal writers with decades of wins. There's something
deeply personal about the way experienced professionals work. A senior developer
doesn't just write code — they think in code. The act of building line by line isn't
mechanical labor to them. It's where their problem-solving happens. Asking them
to hand that process to Al feels like asking a surgeon to describe an operation
instead of performing it.

But that framing misses the point. Al doesn't take the craft away from you. It
changes where in the process your craft matters most. The developer who lets Al
handle the mechanical implementation can focus on architecture — the
system-level thinking that actually determines whether a project succeeds. The
proposal writer who lets Al handle first drafts can focus on strategy and

positioning — the judgment that wins contracts.

The shift isn't from craftsperson to passenger. It's from practitioner to architect.

The 16 Principles

Through those five projects, I identified 16 principles that consistently separate
productive Al collaboration from wasted conversations. They aren't theoretical —
every one emerged from real projects, real mistakes, and real results.

They fall into two layers that map directly to the two roles:

Layer 1: Communication Principles — The Architect's Toolkit. These govern how
you interact with Al — the mechanics of setting direction effectively. Leading with
constraints instead of vague goals. Making decisions while letting AI provide
options. Sharing raw output instead of summaries. Keeping context flowing across
a conversation. Eight principles in total, each one determining whether Al
understands your situation clearly enough to produce useful output.

Layer 2: Thinking Principles — The Navigator's Toolkit. These govern how you
reason as a collaborator — the judgment that produces expert-level results.
Iterating instead of accepting first drafts. Challenging assumptions when
something doesn't match your domain knowledge. Consolidating for flexibility.
Keeping scope tight. Eight more principles, each one sharpening the gap between
what Al generates and what actually works in production.

Communication gets you good input. Thinking gets you good output. You need
both layers working together — just like you need both roles.

The next chapter breaks down all 16 principles with concrete examples from each
case study, so you'll have the full vocabulary before diving into the projects
themselves. But the principles only matter if you see them in action. That's what
the rest of this book is for.

What Comes Next

This book is organized in two parts.

Part 1: The Framework is what you're reading now. The next chapter lays out all
16 principles in detail — the full vocabulary of effective Al collaboration, with
concrete examples from each case study. By the end of Part 1, you'll have the

mental model and the language to start applying the methodology immediately.

Part 2: The Principles in Action is where you see it all work for real. Each chapter
walks through a complete production project — not a tutorial exercise, not a toy
example, but actual work that shipped or was delivered to real clients. For each
one, you'll see:

- The project context — what we were building and why - Architect decisions —
what direction I set and the reasoning behind it - Navigator moments — where I
pushed back, redirected, or caught errors - Actual prompts and Al responses —
the real conversation, not a sanitized version - What the collaboration produced —
the tangible deliverables - Principles in focus — the 3-4 principles most critical to
that project, shown in action

Here's what's ahead:

Chapter 3: FileCourier — Building a B2B SaaS file transfer platform using Aurora
PostgreSQL, API Gateway, Lambda, and Node.js/TypeScript. I built this in
languages I'd never used in production. The Architect set the infrastructure
direction; the Navigator caught a flawed database design, corrected
authentication patterns, and steered AI through dozens of implementation
decisions.

Chapter 4: The Fundraising Platform — A car wash company needed a fundraising
platform. We transformed a vague two-page client summary into a comprehensive
project blueprint, recommending integration with a third-party fundraising
platform. Business proposal, technical integration guide, executive presentation,
risk assessment, and 46 actionable tasks across 6 epics — from nothing to a
complete blueprint in 24 hours. The Navigator caught platform terminology
mismatches that Al couldn't see.

Chapter 5: The Legacy Migration — The Roadmap — Planning a ColdFusion/SQL
Server to Python Flask/PostgreSQL migration for a CMS platform built exclusively
for law firms. Both the Architect and Navigator were essential — the Architect
made framework choices Al would have gotten wrong, and the Navigator
consolidated 102 Al-generated tasks into 19 meaningful work units through four
iterations, pushing back on guidelines and structure until the plan was airtight.
This was a team effort — me, a Director of Technology, and senior developers —
where my job was to provide the roadmap, the structure, and the guardrails so the
team could track progress and execute with confidence.

Chapter 6: The Legacy Migration — The Execution — Migrating a production
ColdFusion REST API with 150+ endpoints to Go on AWS Fargate. This is the
other side of the coin from Chapter 5. Here I was a one-man team — hands on
keyboard, working through the code end to end with Al as my collaborator. Three
weeks, 88% cost reduction. The lessons I learned executing this migration are
what allowed me to tighten up the roadmap in Chapter 5. A developer on the
Chapter 5 team will go through exactly what I went through here — and the
roadmap I built for them was designed to make that experience structured and
trackable.

Chapter 7: Mooresville RFP — A government website redesign proposal that
started with "Should I even submit?" Strategic analysis, red team assessment,
competitive positioning, incumbent analysis — the Architect work that happens
before a single word of the proposal is written.

Chapter 8: When AI Helps vs. When It Slows You Down — A decision framework
for knowing when to collaborate with Al and when to do the work yourself. Not
everything benefits from AI collaboration, and knowing the difference is part of
the methodology.

Let's start with the principles.

This is a free sample.

The full early access edition includes Chapter 2: The 16 Principles — the complete
methodology organized into two layers with concrete examples from five
production projects.

Get the full book at:

leanpub.com/architect-and-navigator

