A PRIMER ON DESIGN PATTERNS
First Edition

By Rahul Batra

A Primer on Design Patterns
First Edition

Rahul Batra

This book is for sale at http://leanpub.com/aprimerondesignpatterns

This version was published on 2016-03-23

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

[@lolse]

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License

http://leanpub.com/aprimerondesignpatterns
http://leanpub.com
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

Also By Rahul Batra

A Primer on SQL

A Primer on Java

http://leanpub.com/u/rbatra
http://leanpub.com/aprimeronsql
http://leanpub.com/aprimeronjava

To Vedant

Contents

History of design patterns
The language choice
Patternabuse

Decorator Pattern
Permutations and combinations Lo L Lo Lo
Decorating the same entity L
Using our decorators. L e
The decorator stripped toitscore oL
Enter the Abstract Base Class of Python

NCI \CTN SN

N NN AR

Introducing Design Patterns

What are design patterns?

Experience is a great teacher. Suppose you follow this maxim and note down all the great ways
you solve common problems that crop up in your day-to-day coding tasks. A decade into your
programming life, you would have a neat set of solutions that fit elegantly as solutions to said
problems. You have just created a set of design patterns for yourself.

It is not only easier, but also more efficient, to stand on the shoulders of giants, so to speak.
Programmers have combined and collected design patterns over the decades, ready for you to
consume. These solutions to everyday coding problems make your code not only elegant, extensible
and readable.

History of design patterns

The first work to explicitly collect and present object oriented design patterns was a book called
Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides in 1994. This book and the 23 patterns discussed therein became
so popular that they are referred to as the Gang of Four (GoF) book and GoF patterns respectively.

Pattern Name Category
Abstract Factory Creational
Builder Creational
Factory Method Creational
Prototype Creational
Singleton Creational
Adapter Structural
Bridge Structural
Composite Structural
Decorator Structural
Facade Structural
Flyweight Structural
Proxy Structural
Chain of Responsibility Behavioral
Command Behavioral
Interpreter Behavioral
Iterator Behavioral
Mediator Behavioral

Introducing Design Patterns 2

Pattern Name Category

Memento Behavioral
Observer Behavioral
State Behavioral
Strategy Behavioral
Template Method Behavioral
Visitor Behavioral

Not all GoF patterns gained equal acceptance in the programming community. Some were used
more than the others. New patterns have been created since the book was first published. However,
quite a few of these patterns remain in widespread use today. We will study a subset of the most
important design patterns in the chapters that follow.

The language choice

Since we are going to study object oriented design patterns, it is natural to choose a language that
adheres to the OO paradigm. Due to its popularity, I have chosen Java as one of the languages to
demonstrate the principles of design patterns. However, in some cases, the verbosity of Java leads us
away from the core explaination of the pattern and into the innards of language constructs. In such
cases, | have decided to remove chunks of boilerplate code which do not illustrate the key points of
the pattern being discussed, while still keeping the code Java-like.

The implementation and usefullness of a design pattern varies wildly from language to language.
So it would be good to compare the patterns implementation in a contrasting language like Python
whose dynamic nature and programming philosophy is quite orthogonal to Java.

Pattern abuse

Knowing design patterns is not a substitute for programming taste. If you read this text, or any text
on design patterns, as an approach to how all code must be designed, you are likely to fall into the
pattern abuse habit.

Since the GoF book came out 2 decades ago, there has been much discussion on patterns and they
are now accepted as a good thing on balance. But is has also frequently led to over-engineering of
software by cramming as many design patterns as one can in the code. You must strive to avoid this
trap by using design patterns judiciously and recognising them for what they are - good solutions
to common design problems in certain but not all scenario’s.

Introducing Design Patterns

Hey, that looks familiar!

If you are an experienced programmer, you would recognize a lot of design patterns as approaches
you might have used in the past without formally attaching a name to it. This is a key point about
design patterns - they are not arcane knowledge or a magic bullet, they are good solutions. They
also are akin to a programming vocabulary, whereby you can describe your approach using a
pattern name than by specifying it its entirety.

© 00 N O U b W N =~

[e
W N -~

Decorator Pattern

Consider a Find dialog in a text editor. While the basic find operation is pretty simple, there are some
options (usually) available to do more advanced searching. We see checkboxes whether or not the
search pattern is a regular expression, whether we want to search in the current file or a directory
and even an option to enter the replacement text. Let us see if the decorator pattern can help us here.

Permutations and combinations

In our text editor, the Find dialog box is a class. When we decide to support regular expression
searching, we write a subclass called FindwithRegEx.

Listing: the Find class hierarchy

class FindDialog
public void find (String toFind) {

class FindWithRegEx extends FindDialog {
public void find (String toFind) {

We can write another subclass of FindDialog which handles the replace functionality. And another
to search in a directory. But what if we want to have a replace functionality with regular expressions?
Do we extend FindWithRegEx or the replace class? And what happens when we start dealing
with the replace functionality in a directory supporting regular expressions? The permutations and
combinations start getting out of control.

Decorating the same entity

The decorator pattern is all about keeping the same entity - the FindDialog in our case - and
decorating it with additional features or responsibilities at runtime. How do we go about keeping
the same entity - by implementing the same interface for both the simple find dialog and all it’s
decorations.

0 N O O &~ W N -

N S
B WO N - O O

0 N O O & W N =~

RGN
= o O

12
13
14
15
16
17
18

Decorator Pattern 5

Listing: the top level interface and the simple Find dialog

public interface FindDialog {
public void find();
public void displayHelp();

class SimpleFind implements FindDialog {
public void find (String toFind) {

public void displayHelp() {
System.out.println("Search current file for text");

Now we start constructing our decorations. Our goal is to provide such an outline for decorations
that it not only adheres to the FindDialog interface, it should also provide a barebones structure
for further decorator writers. An abstract class which implements the FindDialog interface would
make a good blueprint for concrete decorators. This class, being abstract, can bind decorator writers
to implement certain methods which all decorators should share.

Listing: creating concrete decorators

public abstract class FindDecorator implements FindDialog {
protected FindDialog enhancedFind;

// Constructor
public FindDecorator(FindDialog findDialog) {
this.enhancedFind = findDialog;

public abstract void find();

public void displayHelp() {
enhancedFind.displayHelp();

public class FindWithRegEx extends FindDecorator {

public FindWithRegEx(FindDialog findDialog) {

19
20
21
22
23
24
25
26
27
28
29

O O b W N~

Decorator Pattern 6

super(findDialog);

public void (String toFind) {

public void displayHelp() {
super.displayHelp();
System.out.println("[with Perl compatible regular expressions]");

}

Using our decorators

We will now create a simple test program to see whether our decoration functionality is working.

Listing: testing our decorator

public class DecoratorExample
public static void main(String[] args) {
FindDialog findDialog = new FindWithRegEx(new SimpleFind());
findDialog.displayHelp();

The interesting line to note here is the construction of the findDialog object. This object is a
SimpleFind decorated with our FindWithRegEx decorator. Both the former class and the decorator
share the same parent type - the FindDialog interface. When the displayHelp method is called on
this object, the FindwithRegEx methos is called which calls its super class method first and then
adds its own decoration. The output then is, expectedly, both the lines.

Note that there is no limit to the number of decorations you can apply. Nor are you limited by the
order you apply them, because of the super parent interface you created in the beginning.

The decorator stripped to its core

Before we look at the Python implementation of the decorator pattern, let us try to identify the true
essence of the decorator pattern. The entire pattern is about providing multiple optional behaviours
of a kind of object, and in doing so, the decorated object must adhere to the contract of the original
object. Put another way, the caller must not know whether it is dealing with the original object or
the decorated one.

Let us now try to build this in Python with minimalism in mind.

00 = O O b W N =~

N S G
I I S)

0 N O O & W N =~

[¢
W N~ O

Decorator Pattern 7

Listing: emulating the decorator pattern in Python

class SimpleFind:
def display_help(self):
print('A simple find dialog')

class FindWithRegEx:
def __init_ (self, findobj):
self.findobj = findobj

def display_help(self):
self.findobj.display_help()
print('with RegEx support')

f = FindWithRegEx(SimpleFind())
f.display_help()

The above code works as expected by we are really playing freely here. Our assumption is that both
the classes contain the display_help method. What if we wanted to bring some type checking into
play here, ensuring at a minimum that both the classes do indeed have such a method?

Enter the Abstract Base Class of Python

We can use the module abc to define abstract base classes in Python, which would serve our need
to enforce certain contracts by emulating interface-like behavior. Have a look at the code below and
notice the FindDialog class being defined as an abstract base class.

Listing: using abstract base classes to implement the decorator pattern

from abc import ABCMeta, abstractmethod

class FindDialog(metaclass=ABCMeta):
@abstractmethod
def display_help(self):
pass

class SimpleFind(FindDialog):
def display_help(self):
print('A simple find dialog')

class FindWithRegEx(FindDialog):
def __init_ (self, findobj):

14
15
16
17
18
19
20
21
22
23
24
25

~N O O B~ W N -

Decorator Pattern 8

self.findobj = findobj

def display_help(self):
self.findobj.display_help()
print('with RegEx support')

f = FindWithRegEx(SimpleFind())

if not isinstance(f, FindDialog):

raise TypeError('Our creation is not a find dialog')
else:

f.display_help()

Since we have defined FindDialog as an abstract class containing an astract method display_-
help(), we cannot instantiate the class itself. Writing something like below will throw up an error.

t = FindDialog()

>Traceback (most recent call last):
File "Code/python/decorator.py", line 21, in <module>
t = FindDialog()
TypeError: Can't instantiate abstract class FindDialog with abstract methods dis\
play_help

We can see how we have implemented our contract and applied our decorators to the final object
f. If our decorator was not a subclass of FindDialog we would have gotten a runtime TypeError
which we raised. If our decorator was a subclass of FindDialog but did not implement the abstract
method display_help(), we would have gotten another error.

	Table of Contents
	Introducing Design Patterns
	What are design patterns?
	History of design patterns
	The language choice
	Pattern abuse

	Decorator Pattern
	Permutations and combinations
	Decorating the same entity
	Using our decorators
	The decorator stripped to its core
	Enter the Abstract Base Class of Python

