

[image: A Primer on Design Patterns]

 A Primer on Design Patterns

 First Edition

 Rahul Batra

 This book is for sale at http://leanpub.com/aprimerondesignpatterns

 This version was published on 2016-03-23

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

[image: Creative Commons by-nc-nd]

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License

 To Vedant

 Table of Contents

 	
 Introducing Design Patterns

 	
 What are design patterns?

 	
 History of design patterns

 	
 The language choice

 	
 Pattern abuse

 	
 Decorator Pattern

 	
 Permutations and combinations

 	
 Decorating the same entity

 	
 Using our decorators

 	
 The decorator stripped to its core

 	
 Enter the Abstract Base Class of Python

 Guide

 	
 Begin Reading

Introducing Design Patterns

What are design patterns?

Experience is a great teacher. Suppose you follow this maxim and note down all the great ways you solve common problems that crop up in your day-to-day coding tasks. A decade into your programming life, you would have a neat set of solutions that fit elegantly as solutions to said problems. You have just created a set of design patterns for yourself.

It is not only easier, but also more efficient, to stand on the shoulders of giants, so to speak. Programmers have combined and collected design patterns over the decades, ready for you to consume. These solutions to everyday coding problems make your code not only elegant, extensible and readable.

History of design patterns

The first work to explicitly collect and present object oriented design patterns was a book called Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides in 1994. This book and the 23 patterns discussed therein became so popular that they are referred to as the Gang of Four (GoF) book and GoF patterns respectively.

 	Pattern Name
 	Category

 	Abstract Factory
 	Creational

 	Builder
 	Creational

 	Factory Method
 	Creational

 	Prototype
 	Creational

 	Singleton
 	Creational

 	Adapter
 	Structural

 	Bridge
 	Structural

 	Composite
 	Structural

 	Decorator
 	Structural

 	Facade
 	Structural

 	Flyweight
 	Structural

 	Proxy
 	Structural

 	Chain of Responsibility
 	Behavioral

 	Command
 	Behavioral

 	Interpreter
 	Behavioral

 	Iterator
 	Behavioral

 	Mediator
 	Behavioral

 	Memento
 	Behavioral

 	Observer
 	Behavioral

 	State
 	Behavioral

 	Strategy
 	Behavioral

 	Template Method
 	Behavioral

 	Visitor
 	Behavioral

Not all GoF patterns gained equal acceptance in the programming community. Some were used more than the others. New patterns have been created since the book was first published. However, quite a few of these patterns remain in widespread use today. We will study a subset of the most important design patterns in the chapters that follow.

The language choice

Since we are going to study object oriented design patterns, it is natural to choose a language that adheres to the OO paradigm. Due
to its popularity, I have chosen Java as one of the languages to demonstrate the principles of design patterns. However, in some
cases, the verbosity of Java leads us away from the core explaination of the pattern and into the innards of language constructs. In
such cases, I have decided to remove chunks of boilerplate code which do not illustrate the key points of the pattern being
discussed, while still keeping the code Java-like.

The implementation and usefullness of a design pattern varies wildly from language to language. So it would be good to compare the
patterns implementation in a contrasting language like Python whose dynamic nature and programming philosophy is quite
orthogonal to Java.

Pattern abuse

Knowing design patterns is not a substitute for programming taste. If you read this text, or any text on design patterns, as an
approach to how all code must be designed, you are likely to fall into the pattern abuse habit.

Since the GoF book came out 2 decades ago, there has been much discussion on patterns and they are now accepted as a good thing on
balance. But is has also frequently led to over-engineering of software by cramming as many design patterns as one can in the code.
You must strive to avoid this trap by using design patterns judiciously and recognising them for what they are - good solutions to
common design problems in certain but not all scenario’s.

 Hey, that looks familiar!

 If you are an experienced programmer, you would recognize a lot of design patterns as approaches you might have used in the past without formally attaching a name to it. This is a key point about design patterns - they are not arcane knowledge or a magic bullet, they are good solutions. They also are akin to a programming vocabulary, whereby you can describe your approach using a pattern name than by specifying it its entirety.

Decorator Pattern

Consider a Find dialog in a text editor. While the basic find operation is pretty simple, there are some options (usually) available to do more advanced
searching. We see checkboxes whether or not the search pattern is a regular expression, whether we want to search in the current file or a directory and
even an option to enter the replacement text. Let us see if the decorator pattern can help us here.

Permutations and combinations

In our text editor, the Find dialog box is a class. When we decide to support regular expression searching, we write a subclass called FindWithRegEx.

 Listing: the Find class hierarchy

 1 class FindDialog {
 2 public void find (String toFind) {
 3 ...
 4 }
 5 ...
 6 }
 7
 8 class FindWithRegEx extends FindDialog {
 9 public void find (String toFind) {
10 ...
11 }
12 ...
13 }

We can write another subclass of FindDialog which handles the replace functionality. And another to search in a directory. But what if we want to have a
replace functionality with regular expressions? Do we extend FindWithRegEx or the replace class? And what happens when we start dealing with the replace
functionality in a directory supporting regular expressions? The permutations and combinations start getting out of control.

Decorating the same entity

The decorator pattern is all about keeping the same entity - the FindDialog in our case - and decorating it with additional features or
responsibilities at runtime. How do we go about keeping the same entity - by implementing the same interface for both the simple find dialog and all it’s
decorations.

 Listing: the top level interface and the simple Find dialog

 1 public interface FindDialog {
 2 public void find();
 3 public void displayHelp();
 4 }
 5
 6 class SimpleFind implements FindDialog {
 7 public void find (String toFind) {
 8 ...
 9 }
10
11 public void displayHelp() {
12 System.out.println("Search current file for text");
13 }
14 }

Now we start constructing our decorations. Our goal is to provide such an outline for decorations that it not only adheres to the FindDialog interface, it
should also provide a barebones structure for further decorator writers. An abstract class which implements the FindDialog interface would make a good
blueprint for concrete decorators. This class, being abstract, can bind decorator writers to implement certain methods which all decorators should share.

 Listing: creating concrete decorators

 1 public abstract class FindDecorator implements FindDialog {
 2 protected FindDialog enhancedFind;
 3
 4 // Constructor
 5 public FindDecorator(FindDialog findDialog) {
 6 this.enhancedFind = findDialog;
 7 }
 8
 9 public abstract void find();
10
11 public void displayHelp() {
12 enhancedFind.displayHelp();
13 }
14 }
15
16 public class FindWithRegEx extends FindDecorator {
17
18 public FindWithRegEx(FindDialog findDialog) {
19 super(findDialog);
20 }
21
22 public void (String toFind) {
23 ...
24 }
25
26 public void displayHelp() {
27 super.displayHelp();
28 System.out.println("[with Perl compatible regular expressions]");
29 }

Using our decorators

We will now create a simple test program to see whether our decoration functionality is working.

 Listing: testing our decorator

1 public class DecoratorExample {
2 public static void main(String[] args) {
3 FindDialog findDialog = new FindWithRegEx(new SimpleFind());
4 findDialog.displayHelp();
5 }
6 }

The interesting line to note here is the construction of the findDialog object. This object is a SimpleFind decorated with our FindWithRegEx decorator.
Both the former class and the decorator share the same parent type - the FindDialog interface. When the displayHelp method is called on this object, the
FindWithRegEx methos is called which calls its super class method first and then adds its own decoration. The output then is, expectedly, both the lines.

Note that there is no limit to the number of decorations you can apply. Nor are you limited by the order you apply them, because of the super parent interface
you created in the beginning.

The decorator stripped to its core

Before we look at the Python implementation of the decorator pattern, let us try to identify the true essence of the decorator
pattern. The entire pattern is about providing multiple optional behaviours of a kind of object, and in doing so, the decorated
object must adhere to the contract of the original object. Put another way, the caller must not know whether it is dealing with the
original object or the decorated one.

Let us now try to build this in Python with minimalism in mind.

 Listing: emulating the decorator pattern in Python

 1 class SimpleFind:
 2 def display_help(self):
 3 print('A simple find dialog')
 4
 5 class FindWithRegEx:
 6 def __init__(self, findobj):
 7 self.findobj = findobj
 8
 9 def display_help(self):
10 self.findobj.display_help()
11 print('with RegEx support')
12
13 f = FindWithRegEx(SimpleFind())
14 f.display_help()

The above code works as expected by we are really playing freely here. Our assumption is that both the classes contain the
display_help method. What if we wanted to bring some type checking into play here, ensuring at a minimum that both the classes
do indeed have such a method?

Enter the Abstract Base Class of Python

We can use the module abc to define abstract base classes in Python, which would serve our need to enforce certain contracts by
emulating interface-like behavior. Have a look at the code below and notice the FindDialog class being defined as an abstract base
class.

 Listing: using abstract base classes to implement the decorator pattern

 1 from abc import ABCMeta, abstractmethod
 2
 3 class FindDialog(metaclass=ABCMeta):
 4 @abstractmethod
 5 def display_help(self):
 6 pass
 7
 8 class SimpleFind(FindDialog):
 9 def display_help(self):
10 print('A simple find dialog')
11
12 class FindWithRegEx(FindDialog):
13 def __init__(self, findobj):
14 self.findobj = findobj
15
16 def display_help(self):
17 self.findobj.display_help()
18 print('with RegEx support')
19
20 f = FindWithRegEx(SimpleFind())
21
22 if not isinstance(f, FindDialog):
23 raise TypeError('Our creation is not a find dialog')
24 else:
25 f.display_help()

Since we have defined FindDialog as an abstract class containing an astract method display_help(), we cannot instantiate the
class itself. Writing something like below will throw up an error.

1 t = FindDialog()
2
3 >Traceback (most recent call last):
4 File "Code/python/decorator.py", line 21, in <module>
5 t = FindDialog()
6 TypeError: Can't instantiate abstract class FindDialog with abstract methods dis\
7 play_help

We can see how we have implemented our contract and applied our decorators to the final object f. If our decorator was not a
subclass of FindDialog we would have gotten a runtime TypeError which we raised. If our decorator was a subclass of FindDialog
but did not implement the abstract method display_help(), we would have gotten another error.

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
A PRIMER ON DESIGN PATTERNS
First Edition

By Rahul Batra

OEBPS/images/cc-by-nc-nd.png
(OO

