
2025

Aprende lógica
de programación
de una vez
Enfoque práctico con ejercicios

en C++

José Juan Hernández García

Aprende lógica de programación

de una vez

Enfoque práctico con ejercicios en C++

Este libro está a la venta en

http://leanpub.com/aprendecplusplus

Esta versión se publicó el 22-10-2025

Este es un libro de Leanpub. Leanpub anima a los autores y

publicadoras con el proceso de publicación. Lean Publishing es el

acto de publicar un libro en progreso usando herramientas

sencillas y muchas iteraciones para obtener feedback del lector

hasta conseguir tener el libro adecuado.

© 2025, José Juan Hernández García

http://leanpub.com/aprendecplusplus
http://leanpub.com/
http://leanpub.com/manifesto

 3

 4

Tabla de contenido

INTRODUCCIÓN A LA PROGRAMACIÓN .. 14

ETAPAS DEL DESARROLLO DE PROGRAMAS ..14

ANÁLISIS DEL PROBLEMA ...14

DISEÑO DE ALGORITMOS ..15

PROGRAMAS TRADUCTORES ..18

INTRODUCCIÓN A C++ .. 20

ESTRUCTURA DE UN PROGRAMA EN C++..22

COMPILACIÓN Y EJECUCIÓN DE PROGRAMAS ..26

DIFERENCIAS ENTRE C, C++ Y C# .. 31

CARACTERÍSTICAS DE C ..31

CARACTERÍSTICAS DE C++ ..32

CARACTERÍSTICAS DE C# ...33

PARADIGMAS DE PROGRAMACIÓN SOPORTADOS ...34

TIPOS DE DATOS BÁSICOS... 37

DATOS Y TIPOS DE DATOS ...37

OPERADORES DE ASIGNACIÓN ...44

TIPOS DE DATOS NUMÉRICOS ..45

EL TIPO DE DATO CARÁCTER..45

MODIFICADORES DE TIPOS ...46

CONVERSIÓN DE TIPOS ..48

OPERADORES ARITMÉTICOS ..50

OPERADORES DE INCREMENTO Y DECREMENTO ...51

FUNCIONES MATEMÁTICAS ..52

EL TIPO DE DATO BOOLEANO ...52

OPERADORES RELACIONALES, BITWISE Y LÓGICOS ...53

OPERADORES DE ACCESO ...55

TIPOS DE DATOS COMPLEJOS ...57

INTRODUCCIÓN A LAS CADENAS DE CARACTERES ..59

ENTRADA Y SALIDA ESTÁNDAR ...61

PASANDO DE PSEUDOCÓDIGO A C++ ...64

EJERCICIOS DE ESTRUCTURA SECUENCIAL ..67

 5

ESTRUCTURAS ALTERNATIVAS .. 71

ESTRUCTURA ALTERNATIVA: IF ..71

ESTRUCTURA ALTERNATIVA: SWITCH ...76

EJERCICIOS DE ESTRUCTURAS ALTERNATIVAS ...78

ESTRUCTURAS REPETITIVAS ... 84

ESTRUCTURA REPETITIVA: WHILE ...84

MODIFICACIÓN DEL FLUJO DEL BUCLE ...85

ESTRUCTURA REPETITIVA: DO-WHILE ..87

ESTRUCTURA REPETITIVA: FOR ..88

USO ESPECÍFICO DE VARIABLES: CONTADORES, ACUMULADORES E INDICADORES90

ESTRUCTURA REPETITIVA: BUCLES BASADOS EN RANGOS ...93

EJERCICIOS DE ESTRUCTURAS REPETITIVAS ...95

TIPOS DE DATOS COMPLEJOS: CADENAS DE CARACTERES 100

PRINCIPALES MÉTODOS DE LA CLASE STRING .. 100

EJERCICIOS DE CADENAS DE CARACTERES ... 106

TIPOS DE DATOS COMPLEJOS: ARRAYS ... 108

ESTRUCTURAS DE DATOS... 108

ARRAYS .. 108

ARRAYS UNIDIMENSIONALES: VECTORES ... 110

CADENAS DE CARACTERES DE ESTILO C ... 112

ARRAYS MULTIDIMENSIONALES: TABLAS ... 113

EJERCICIOS DE ARRAYS .. 116

PROGRAMACIÓN ESTRUCTURADA ... 121

SUBRUTINAS EN C++ ... 121

FUNCIONES Y PROCEDIMIENTOS .. 124

FUNCIONES RECURSIVAS.. 128

EJERCICIOS CON FUNCIONES ... 129

MÁS EJERCICIOS .. 135

PUNTEROS Y REFERENCIAS ... 139

LOS OPERADORES & Y * ... 140

¿QUÉ SON LOS PUNTEROS? ... 141

¿QUÉ SON LAS REFERENCIAS? .. 143

TIPOS DE DATOS COMPLEJOS: ENUMERACIONES ... 146

TIPOS DE DATOS COMPLEJOS: ESTRUCTURAS ... 152

TIPOS DE DATOS COMPLEJOS: TUPLAS ... 160

 6

TIPOS DE DATOS COMPLEJOS: UNIONES... 166

LA PALABRA CLAVE TYPEDEF... 171

PROGRAMACIÓN ORIENTADA A OBJETOS ... 174

ELEMENTOS Y CARACTERÍSTICAS .. 174

CONSTRUCTORES Y DESTRUCTORES .. 180

ENCAPSULAMIENTO ... 186

HERENCIA Y DELEGACIÓN ... 189

POLIMORFISMO ... 199

ABSTRACCIÓN .. 203

EJERCICIOS DE PROGRAMACIÓN ORIENTADA A OBJETOS ... 204

PROGRAMACIÓN FUNCIONAL ... 206

FUNCIONES PURAS .. 207

EXPRESIONES LAMBDA Y FUNCIONES ANÓNIMAS ... 207

COMPOSICIÓN DE FUNCIONES ... 208

FUNCIONES DE ORDEN SUPERIOR .. 209

FUNCIONES LAMBDA .. 209

EJERCICIOS DE PROGRAMACIÓN FUNCIONAL ... 213

PROGRAMACIÓN GENÉRICA .. 216

TEMPLATES .. 216

EJERCICIOS DE PROGRAMACIÓN GENÉRICA .. 223

GESTIÓN DE ERRORES ... 224

EL BLOQUE TRY-CATCH .. 224

EXCEPCIONES ... 227

 7

Índice de programas

Código 1: Programa “Hola mundo!” ... 22

Código 2: Constantes ... 40

Código 3: Variables locales .. 41

Código 4: Variables globales ... 42

Código 5: Puntero nulo en C++11 .. 44

Código 6: Tipo de dato char .. 45

Código 7: Conversión explícita de tipos aritméticos... 48

Código 8: Operadores de incremento y decremento ... 51

Código 9: Funciones matemáticas .. 52

Código 10: Concatenación de cadenas ... 60

Código 11: Entrada/Salida estándar ... 61

Código 12: Instrucción getline ... 64

Código 13: Estructura if ... 72

Código 14: Estructura if-else ... 73

Código 15: Operador ternario ... 75

Código 16: Anidación del operador ternario .. 75

Código 17: Estructura switch ... 78

Código 18: Estructura while .. 85

Código 19: Instrucción break ... 86

Código 20: Instrucción continue .. 86

Código 21: Estructura do-while ... 88

Código 22: Estructura for (1/3) ... 89

Código 23: Estructura for (2/3) ... 90

Código 24: Estructura for (3/3) ... 90

Código 25: Variable contador.. 91

Código 26: Variable acumulador ... 92

Código 27: Variable indicador ... 93

Código 28: Bucle basado en rangos .. 94

Código 29: Bucle basado en rangos .. 95

Código 30: Ejemplo clase string .. 103

 8

Código 31: Ejemplo clase string .. 105

Código 32: Vectores ... 112

Código 33: Cadenas de caracteres de estilo C .. 113

Código 34: Tablas ... 115

Código 35: Función CalcularMaximo .. 122

Código 36: Ejemplo de función .. 123

Código 37: Ejemplo de procedimiento .. 123

Código 38: Ejemplo de paso por valor .. 126

Código 39: Ejemplo de paso por puntero.. 127

Código 40: Ejemplo de paso por referencia .. 127

Código 41: Función recursiva .. 128

Código 42: Operadores & y *... 140

Código 43: Punteros ... 142

Código 44: Referencias .. 144

Código 45: Referencias y punteros .. 145

Código 46: Ejemplo de enumeraciones (1/3) .. 149

Código 47: Ejemplo de enumeraciones (2/3) .. 150

Código 48: Ejemplo de enumeraciones (3/3) .. 151

Código 49: Ejemplo de estructura ... 154

Código 50: Ejemplo de estructuras (1/4) .. 155

Código 51: Ejemplo de estructuras (2/4) .. 156

Código 52: Ejemplo de estructuras (3/4) .. 157

Código 53: Ejemplo de estructuras (4/4) .. 157

Código 54: Estructuras ... 158

Código 55: Array de estructuras .. 159

Código 56: Ejemplo de tuplas .. 161

Código 57: Acceso a los elementos de una tupla ... 161

Código 58: Ejemplo de estructuras (2/3) .. 162

Código 59: Ejemplo de tuplas (1/4) ... 163

Código 60: Ejemplo de tuplas (2/4) ... 163

Código 61: Ejemplo de tuplas (3/4) ... 164

Código 62: Ejemplo de tuplas (4/4) ... 165

Código 63: Uniones .. 170

Código 64: Declaración de clases .. 175

 9

Código 65: Ejemplo de clase .. 176

Código 66: Otro ejemplo de clase ... 177

Código 67: Ejemplo de objeto.. 177

Código 68: Otro ejemplo de clases .. 178

Código 69: Ejemplo de propiedades .. 179

Código 70: Ejemplo de método ... 180

Código 71: Ejemplo de métodos .. 180

Código 72: Constructores .. 183

Código 73: Constructor de copia ... 183

Código 74: Constructor de movimiento .. 183

Código 75: Ejemplo de destructor ... 184

Código 76: Ejemplo de sobrecarga de constructores ... 185

Código 77: Ejemplo de encapsulamiento .. 187

Código 78: Miembros privados ... 189

Código 79: Herencia ... 190

Código 80: Ejemplo de herencia .. 192

Código 81: Ejemplo de acceso a miembros de la clase .. 193

Código 82: Sobreescritura de métodos ... 194

Código 83: Constructores en clases derivadas ... 196

Código 84: Ejemplo de clase derivada .. 198

Código 85: Delegación ... 199

Código 86: Ejemplo de polimorfismo .. 200

Código 87: Ejemplo de polimorfismo .. 201

Código 88: Ejemplo de abstracción ... 203

Código 89: Función lambda que suma dos números ... 210

Código 90: Sobrecarga de constructores .. 211

Código 91: Sobrecarga de constructores .. 211

Código 92: Lambdas con std::functional... 212

Código 93: Lambdas captura de this... 212

Código 94: Lambdas genéricas .. 213

Código 95: Ejemplo de function template .. 217

Código 96: Ejemplo de class template .. 218

Código 97: Ejemplo de template de template .. 219

Código 98: Ejemplo de template de template .. 220

 10

Código 99: Ejemplo de especialización de templates... 221

Código 100: Ejemplo de deducción de tipo en templates .. 222

Código 101: Ejemplo de bloque try-catch ... 225

Código 102: Ejemplo de múltiples bloques try-catch ... 225

Código 103: Manejo de excepciones en operaciones de E/S 227

Código 104: excepción personalizada clase de excepción personalizada 229

Índice de figuras

Tabla 1: Palabras clave .. 24

Tabla 2: Objetos de la biblioteca estándar de I/O .. 61

Tabla 3: Manipuladores de flujo de la biblioteca estándar de I/O 62

Ilustración 4: Direcciones de memoria .. 139

Ilustración 5: Operadores & y * ... 140

Ilustración 6: Un puntero ... 141

Ilustración 7: Estructura de una variable en la memoria ... 169

 11

 20

Introducción a C++

Características

• C++ es un lenguaje de programación de alto nivel, compilado, de
propósito general ampliamente utilizado y de alto rendimiento.

• C++ fue diseñado en 1979 por Bjarne Stroustrup y para su creación
tomó como base el popular lenguaje de programación C.
Por tanto, es un derivado del mítico lenguaje C, el cual fue creado en
la década de los 70 por Dennis Ritchie para la programación del
sistema operativo UNIX, y que surgió como un lenguaje orientado a
la programación de sistemas y aplicaciones siendo su principal
característica la eficiencia del código que produce.

• La expresión “C++” significa “incremento de C” y se refiere a que C++
es una extensión de C para incluir características de la
programación orientada a objetos (POO).

• Es portable y con un gran número de compiladores en diferentes
plataformas y sistemas operativos.

• Es un lenguaje muy didáctico, que permite aprender muchos otros
lenguajes con gran facilidad.

• C++ admite plantillas, que permiten escribir código que puede
funcionar con múltiples tipos de datos sin duplicar el código. Esto
facilita la creación de funciones y bibliotecas, que facilita la
reutilización de código y la abstracción.

• C++ tiene una comunidad de desarrolladores grande y activa que
proporciona soporte, herramientas y bibliotecas de terceros.
Además, hay una gran cantidad de recursos disponibles, como
tutoriales, cursos y libros.

• Para escribir un programa en C++ necesitamos un editor de texto y
un compilador para la plataforma y el sistema operativo que estemos
utilizando. Normalmente estas herramientas se unifican en los
Entornos Integrados de Desarrollo1 (IDE). Ejemplos de IDE que
podemos usar: Visual Studio Code2, Dev-C++3, Visual C++, ZinjaI,

1 Aplicación que ofrece en un mismo programa distintas funcionalidades (editor de texto, compilador, …)
2 https://code.visualstudio.com/
3 https://dev-cpp.com/

https://code.visualstudio.com/
https://dev-cpp.com/

 21

Eclipse4, Code::Blocks5, …

• Durante los últimos años se han estandarizado6 distintas versiones
donde se han ido añadiendo nuevas funcionalidades al lenguaje.
Estas versiones se nombran con el año en que son publicadas, de
esta manera tenemos: C++98, C++03, C++11, C++14, C++17,
C++20 (versión estable actual), C++23 (versión en desarrollo).

¿Qué puede hacerse con C++?

• Desarrollo de software de sistemas: C++ es muy popular para
desarrollar sistemas operativos, controladores de dispositivos y otros
programas de bajo nivel debido a su rendimiento y control sobre el

hardware.

• Desarrollo de videojuegos: Populares motores de videojuegos
como Unreal Engine7 y Unity8 (con su soporte nativo) utilizan C++
debido a su alto rendimiento y capacidad para controlar
eficientemente los recursos del sistema.

• Aplicaciones de escritorio: en plataformas Windows, macOS y

GNU/Linux.

• Desarrollo de aplicaciones móviles: para Android e iOS a través
de frameworks como Qt o usando el soporte nativo de C++ en
Android Studio9.

• Computación de alto rendimiento: La velocidad y rendimiento de
C++ lo hacen ideal para aplicaciones científicas, de análisis de datos
y simulaciones que requieren una gran cantidad de cálculos y
procesamiento de datos.

• Desarrollo de bibliotecas y frameworks: Muchas bibliotecas y
frameworks ampliamente utilizados, como Boost, Qt o TensorFlow10,
están escritos en C++.

• Programación embebida y controladores de hardware: ya que
C++ ofrece un buen equilibrio entre control de bajo nivel y
abstracciones de alto nivel.

4 https://eclipseide.org/
5 https://www.codeblocks.org/
6 https://isocpp.org/
7 https://www.unrealengine.com/
8 https://unity.com/es
9 https://developer.android.com/studio
10 https://www.tensorflow.org/

https://eclipseide.org/
https://www.codeblocks.org/
https://isocpp.org/
https://www.unrealengine.com/
https://unity.com/es
https://developer.android.com/studio
https://www.tensorflow.org/

 22

• Desarrollo web: Aunque no es el uso más común, C++ también se
puede utilizar para escribir servidores web y aplicaciones backend
de alto rendimiento.

Instalación del IDE ZinjaI

ZinjaI11 es un IDE (del inglés: Integrated Development Enviroment =

Entorno Integrado de Desarrollo) libre y gratuito para programar en C/C++.

Pensado originalmente para ser utilizado por estudiantes de programación

durante el aprendizaje, presenta una interfaz inicial muy sencilla, pero sin

dejar de incluir funcionalidades avanzadas. Puedes ver las

características12 de ZinjaI en su página web y en la sección Descargas13

puedes encontrar el programa para las distintas plataformas con las

instrucciones de instalación.

Estructura de un programa en C++

Veamos nuestro primer programa para estudiar su estructura:

// Incluir la biblioteca estándar para entrada y salida

#include <iostream>

// Usar el espacio de nombres estándar

using namespace std;

/* funcion main() Es la función principal

 donde empieza la ejecución del programa */

int main(int argc, char *argv[]) {

 cout << "Hola mundo!!!"; // Imprime Hola mundo!!!

 // Indica que el programa terminó correctamente

 return 0;

}

Código 1: Programa “Hola mundo!”

11 https://zinjai.sourceforge.net/
12 https://zinjai.sourceforge.net/index.php?page=features.php

https://zinjai.sourceforge.net/
http://zinjai.sourceforge.net/index.php?page=features.php
https://zinjai.sourceforge.net/index.php?page=descargas.php
https://zinjai.sourceforge.net/
https://zinjai.sourceforge.net/index.php?page=features.php

 23

Elementos que forman parte de la estructura de un programa C++:

• #include <iostream>: indica que utilizaremos la librería iostream.

En esta librería están definidas las funciones de entrada/salida, como
mostrar información en la consola, por ejemplo, cout.

• using namespace std;: indicamos que usaremos el espacio de

nombres estándar (std). Como podemos tener diferentes elementos

en el lenguaje que se llamen igual, se utilizan espacios de nombres
para agruparlos. Las funciones de entrada / salida como cout o cin

están definidas en el espacio de nombres std, por lo tanto, si

indicamos que vamos a usarlos no será necesario nombrarlos
cuando escribamos las instrucciones. Si no indicamos que vamos a
usar el espacio de nombres std la instrucción a escribir en pantalla

quedaría de la siguiente forma:

std::cout << "Hola mundo!!!";

• int main(): es la función principal del programa. Todo programa

la tiene, es el punto de entrada donde comienza la ejecución. Al
ejecutar el programa son las instrucciones de esta función por las
que se empieza. Esta función devuelve un valor entero (int) al

sistema operativo. Si el programa va a tener parámetros en la línea
de comandos, encontraremos esta función definida de esta manera:

int main()

o argc: argumentos enviados al programa desde el entorno

donde se ejecuta. Es un valor no negativo.

o argv: argumentos pasados al programa desde el entorno de

ejecución.

• cout << "Hola mundo!!!";: instrucción que imprime en pantalla. El

operador << es el operador de inserción que “envía” el texto "Hola

mundo!!!" al flujo de salida.

• return 0;: como dijimos la función main() devuelve un valor entero

(0 si todo sale bien, distinto de 0 si se produce algún error).

• Los bloques de instrucciones se guardan entre corchetes { y }.

• Todas las instrucciones deben acabar en ;.

• Podemos poner comentarios de una línea (utilizando los caracteres
//) o comentarios de varias líneas (con los caracteres /* y */).

Todos los comentarios son ignorados por el compilador.

• C++ es case-sensitive (distingue entre mayúsculas y minúsculas).

 24

Por ejemplo, variable, Variable y VARIABLE serían tres

identificadores distintos. Hay ciertas convenciones a seguir: el
nombre de las variables se suele poner siempre en minúsculas,
mientras que el nombre de las constantes se suele poner en
mayúsculas.

Palabras clave

Las palabras clave no pueden redefinirse o sobrecargarse.

A – C D – P R – Z

alignas (desde C++11)

alignof (desde C++11)
and
and_eq
asm

auto
bitand
bitor

bool
break
case

catch
char

char8_t (desde C++20)

char16_t (desde C++11)

char32_t (desde C++11)
class

compl

concept (desde C++20)
const

consteval (desde C++20)

constexpr (desde C++11)

constinit (desde C++20)
const_cast
continue

co_await (desde C++20)

co_return (desde C++20)

co_yield (desde C++20)

decltype (desde C++11)
default
delete
do

double
dynamic_cast
else

enum
explicit
export
extern

false
float
for

friend
goto
if

inline
int
long

mutable
namespace
new

noexcept (desde C++11)
not
not_eq

nullptr (desde C++11)
operator

or
or_eq
private
protected

public

register
reinterpret_cast

requires (desde C++20)
return

short
signed
sizeof

static

static_assert (desde C++11)
static_cast
struct

switch
template
this

thread_local (desde C++11)
throw
true
try
typedef

typeid
typename
union

unsigned
using
virtual

void
volatile
wchar_t

while
xor
xor_eq

Tabla 1: Palabras clave

 25

Normas de nombrado

Al igual que en otros lenguajes, C++ tiene reglas para nombrar variables y

funciones:

• No pueden comenzar con un número: los nombres de variables
deben comenzar con una letra o un guion bajo (_), pero nunca con

un número.

int 1edad = 25; // Incorrecto

int edad1 = 25; // Correcto

• No pueden contener espacios: los nombres deben ser una sola
palabra sin espacios.

int mi edad = 25; // Incorrecto

int miEdad = 25; // Correcto

• No pueden incluir símbolos especiales como @, #, %, !, etc., pero

pueden usar guiones bajos (_).

int edad$ = 25; // Incorrecto

int _edad = 25; // Correcto

• Convenciones de estilo: aunque C++ no lo exige, es común usar la
convención de camelCase (como en miVariable) o snake_case

(como en mi_variable) para nombres de variables, según el estilo

del equipo o proyecto.

 26

Compilación y ejecución de programas

Vamos a compilar y ejecutar nuestro primer programa en C++.

Para ello vamos a seguir los siguientes pasos:

Paso 1. Crear un nuevo programa. Para ello seleccione la opción

Nuevo... del menú Archivo (o pulsando).

Se desplegará inmediatamente el Asistente para Nuevo Archivo. Allí

seleccione la opción Utilizar Plantilla y haga clic en el botón

Continuar: elegimos la versión de C++ que vamos a usar, por

ejemplo, Programa C++14 en Blanco y obtendremos un fichero con

la estructura de nuestro programa:

 27

Paso 2. Escribimos el programa. Recuerda que el programa se puede

guardar (Opción Archivo -> Guardar o) en un fichero

en nuestro sistema de archivos con la extensión cpp.

Paso 3. Para intentar ejecutar el programa presione , o seleccione

la opción Ejecutar del menú Ejecución.

Esta acción guarda el archivo (si aún no tiene nombre lo hará en un

directorio temporal) y lo compila. Si la compilación es exitosa lo

ejecuta. Aparecerá en la parte inferior de la ventana principal el panel

de Resultados de la Compilación, en el cual se muestra el estado

de la compilación y los resultados de esta.

 28

Si la compilación no tiene errores aparece una ventana de terminal

donde vemos la ejecución. Luego de finalizar la ejecución, ZinjaI

informará del código de retorno del programa (el 0 de la línea final

return 0;, el cual sirve para saber si se ejecutó correctamente) y

esperará a que presione antes de cerrar la ventana, para

permitirle observar los resultados.

Pero, si hemos tenido algún error pasamos al siguiente paso.

Paso 4. Si hemos cometido algún error, por ejemplo, se nos ha olvidado

un ; al final de una instrucción, en el proceso de compilación

obtendremos errores:

Al hacer doble clic sobre el error en el panel de compilación el cursor

se desplaza hacia la línea que lo provocó.

 29

Tenemos que corregir todos los errores sintácticos para que el proceso de

compilación se pueda realizar.

 30

Atajos de teclado

Algunas combinaciones de teclas para aprovechar mejor las facilidades de

edición en ZinjaI:

• F9: Realiza todos los pasos necesarios para probar un programa

(guardar, compilar y ejecutar).
Si se presiona Shift+F9, se evita el último paso; es decir, sólo se

compila.
Esto sirve para saber si el código es sintácticamente correcto.

• Ctrl+<: Si la compilación arroja errores o advertencias, con esta

combinación se pueden recorrer los mismos.

• Ctrl+H: Busca la librería que contiene la declaración de una

determinada clase, función, variable o macro e inserta al principio del
archivo el #include correspondiente para poder utilizarla.

• Ctrl+L: Duplica la línea actual o las líneas seleccionadas. Es útil en

muchos casos en que el código incluye líneas casi idénticas, equivale
a copiar y pegar esas líneas.
Ctrl+Shift+L: Elimina la línea actual o las líneas seleccionadas.

• Ctrl+T, Ctrl+Shift+T: Desplazan la línea actual o las líneas

seleccionadas una posición más arriba en el código. Sirven para
mover fragmentos de código líneas arriba o abajo.

 31

Diferencias entre C, C++ y C#

En el mundo de la programación, tres lenguajes han sido pilares

fundamentales en el desarrollo de software: C, C++ y C#. Cada uno de

ellos han jugado un papel crucial en la evolución de la industria, y aunque

comparten ciertas raíces, sus enfoques y aplicaciones varían

significativamente.

El lenguaje C es conocido por ser un lenguaje de bajo nivel con una gran

influencia en sistemas operativos y software de alto rendimiento. C amplía

las capacidades de C con programación orientada a objetos y otras

características avanzadas. C# se diseñó como un lenguaje más moderno

y versátil, con una sintaxis clara y potentes herramientas de desarrollo.

Exploremos las diferencias clave entre estos lenguajes, sus principales

características y en qué escenarios es más conveniente utilizar cada uno.

Características de C

El lenguaje C es uno de los pilares fundamentales en el mundo de la

programación. Es un lenguaje de bajo nivel, con una sintaxis eficiente y

directa que permite un control absoluto sobre el hardware. Su diseño

centrado en la eficiencia lo convierte en ideal para sistemas operativos,

controladores de dispositivos y software embebido.

Una de las principales características de C es su gestión manual de

memoria a través de funciones como malloc() y free(), lo que le otorga

un gran rendimiento, pero también una mayor responsabilidad al

programador. Esto significa que cualquier error en la administración de

memoria puede derivar en fugas de memoria o accesos indebidos, lo

que lo hace propenso a errores en manos inexpertas.

 32

C es un lenguaje estructurado, lo que implica que su diseño fomenta una

organización lógica del código en funciones y módulos, permitiendo una

mejor legibilidad y mantenibilidad. Además, gracias a su compatibilidad

con múltiples arquitecturas, es uno de los lenguajes más utilizados en

sistemas críticos y de alto rendimiento.

Características de C++

C++ nace como una extensión de C con el objetivo de incluir

programación orientada a objetos (POO), sin perder la eficiencia del

lenguaje original. Esto significa que hereda muchas de las características

de C, como la gestión manual de memoria y la posibilidad de programar

en bajo nivel, pero agrega potentes mejoras que facilitan la modularidad y

reutilización del código.

Una de sus mayores fortalezas es la POO, la cual permite organizar el

código en clases y objetos, promoviendo una mayor flexibilidad y

escalabilidad. Gracias a esto, los proyectos grandes pueden manejarse de

manera más eficiente, reduciendo la complejidad y facilitando el

mantenimiento del software.

Otra característica clave es su compatibilidad con la programación

genérica, que se logra a través de plantillas (templates). Esto permite

escribir código flexible y reutilizable sin sacrificar rendimiento.

Además, C++ introduce el concepto de excepciones, una forma más

estructurada de manejar errores en comparación con C.

C++ también ofrece un mayor nivel de abstracción, sin perder la

posibilidad de optimización manual. Esto lo hace ideal para una amplia

gama de aplicaciones, desde el desarrollo de videojuegos hasta sistemas

financieros y de simulación científica.

 33

Características de C#

C# es un lenguaje moderno y de alto nivel, diseñado para la productividad

y facilidad de uso. Su sintaxis es más amigable y su enfoque está

totalmente orientado a objetos, lo que lo convierte en una excelente

opción para el desarrollo de aplicaciones de gran escala, incluyendo

software empresarial, videojuegos y servicios en la nube.

A diferencia de C y C++, C# gestiona la memoria de manera automática

mediante un recolector de basura (garbage collector), lo que reduce

significativamente los errores comunes relacionados con la gestión de

memoria. Esta automatización permite que los desarrolladores se

enfoquen más en la lógica del negocio en lugar de en los detalles técnicos

de la administración de recursos.

Otra característica de C# es su fuerte tipado y seguridad en tiempo de

ejecución, lo que minimiza errores y mejora la estabilidad del software.

Además, su integración con potentes entornos de desarrollo facilita la

creación de aplicaciones en diversos dominios, incluyendo el desarrollo

web, aplicaciones móviles y servicios cloud.

C# también destaca por su enfoque en la programación asíncrona, lo

que permite crear aplicaciones altamente responsivas y eficientes en el

manejo de procesos concurrentes. Gracias a esto, es una elección ideal

para el desarrollo de aplicaciones modernas que requieren un rendimiento

óptimo en entornos distribuidos.

 34

Paradigmas de programación soportados

Cuando analizamos las diferencias entre C, C++ y C#, uno de los aspectos

más relevantes es el paradigma de programación que cada uno de estos

lenguajes implementa. Si bien los tres tienen una base común, su

evolución ha permitido que cada uno adopte enfoques distintos en el

desarrollo de software. A continuación, exploramos los paradigmas de

programación que caracterizan a cada uno.

C: Programación estructurada

El lenguaje C se caracteriza por ser un lenguaje de programación

estructurada, lo que significa que su enfoque está basado en la división

del código en funciones bien definidas. Este paradigma fomenta la

creación de programas modulares, donde cada parte del software está

compuesta por funciones específicas que pueden ser reutilizadas en

diferentes partes del sistema.

Principales características de la programación estructurada en C:

• Uso de estructuras de control como if-else, switch-case y bucles

para controlar el flujo del programa.

• Eliminación del uso de saltos (goto), promoviendo un código más

legible y mantenible.

• Implementación de funciones para dividir las tareas en bloques

lógicos independientes.

A pesar de ser un lenguaje de bajo nivel, C permite escribir programas

altamente eficientes y optimizados, lo que lo hace ideal para el desarrollo

de sistemas embebidos, software de sistemas y aplicaciones de alto

rendimiento.

 35

C++: POO y genérica

La evolución de C dio lugar a C++, un lenguaje que amplía sus

capacidades con la introducción de la programación orientada a objetos

(POO) y la programación genérica. Paradigmas que permiten desarrollar

software más estructurado, reutilizable y escalable.

La programación orientada a objetos introduce conceptos como:

• Clases y objetos, que permiten encapsular datos y

comportamientos en entidades autónomas.

• Herencia, que facilita la creación de jerarquías de clases para la

reutilización de código.

• Polimorfismo, que permite a un mismo método o función

comportarse de manera distinta según el contexto.

Por otro lado, la programación genérica permite escribir código que

puede trabajar con distintos tipos de datos sin necesidad de reescribir

funciones o estructuras. Esto se logra mediante el uso de plantillas

(templates), una característica esencial para el desarrollo de bibliotecas

eficientes y reutilizables.

Gracias a esta combinación de paradigmas, C++ es ampliamente utilizado

en aplicaciones de alto rendimiento, videojuegos, desarrollo de software

de sistemas y simulaciones.

 36

C#: Programación Orientada a Objetos y Eventos

C# surge con un enfoque moderno de la programación orientada a

objetos, pero también adopta el paradigma de programación orientada

a eventos. Así, además de las características tradicionales de la POO,

como clases, herencia y polimorfismo, facilita el desarrollo de

aplicaciones interactivas y reactivas.

Algunos aspectos clave de la programación orientada a eventos son:

• Uso de delegados y eventos para responder a acciones del usuario

o cambios en el sistema.

• Implementación de modelos de suscripción-publicación,

permitiendo una comunicación eficiente entre distintos componentes

del software.

• Integración con interfaces de usuario gráficas, como en el

desarrollo de aplicaciones de escritorio y móviles.

Esta combinación de paradigmas convierte a C# en una opción ideal para

el desarrollo de aplicaciones empresariales, soluciones de software

escalables y entornos con fuerte orientación a la interacción del usuario.

Cuando utilizas un paradigma de programación, no estas atado a usar sólo

este, puedes hacer una combinación de diferentes paradigmas de ser

necesario.

 37

Tipos de datos básicos

Datos y tipos de datos

C++ es un lenguaje fuertemente tipado, por tanto, los tipos de datos

determinan las características y el comportamiento de las variables que se

El tipo de dato representa la clase de datos con el que trabajaremos.

Podemos clasificar los tipos de datos tal que:

• Tipos de datos simples:

o Números enteros (int)

o Números reales o en coma flotante (float, double)

o Valores lógicos o booleanos (bool)

o Caracteres individuales (char)

• Tipos de datos complejos:

o Enumeraciones (enum)

o Estructuras (struct)

o Arrays

o Cadenas de caracteres (string)

o Uniones (union)

o Clases (class)

Los datos con los que podemos trabajar en un programa son:

• Literales: que permiten representar valores. Por ejemplo, un literal
entero podría ser el 5.

• Variables: son un identificador que guarda un valor. Las variables se
declaran de un determinado tipo de datos, así, una variable entera
puede guardar datos enteros.

• Constantes: mientras que el valor de una variable puede cambiar,
las constantes no pueden cambiar durante la ejecución del programa

• Expresiones: permiten hacer operaciones entre los distintos datos.
El tipo de dato de una expresión dependerá del resultado de la
operación.

 38

Según el tipo de datos con los que trabajemos tenemos distintos
tipos de operadores:

o Operadores aritméticos: para hacer operaciones con tipos
de datos numéricos.

o Operadores relacionados: permiten comparar datos y nos
devuelven valores lógicos.

o Operadores lógicos: permiten trabajar con valores lógicos.

o Operadores de asignación: permiten asignar valores a
variables.

o Otros operadores: veremos algunos operadores más, por
ejemplo, para trabajar con bits o con punteros.

La precedencia o prioridad de los operadores es la siguiente:

Prioridad Operador Descripción Asociatividad

1 () Paréntesis N/A

2 ++, -- Incremento y decremento (postfijo) dcha a izda

3 +, - Unario positivo y negativo dcha a izda

4 *, /, % Multiplicación, división, módulo izda a dcha

5 +, - Adición, sustracción izda a dcha

6 <<, >> Desplazamiento de bits izda a dcha

7 <, >, <=, >= Comparación izda a dcha

8 ==, != Igualdad, desigualdad izda a dcha

9 & AND bit a bit izda a dcha

10 ^ XOR bit a bit izda a dcha

11 ` OR bit a bit izda a dcha

12 && AND lógico izda a dcha

13 || OR lógico izda a dcha

14 ?: Operador condicional (ternario) dcha a izda

15 =, +=, -= Asignación y operadores compuestos dcha a izda

Los operadores con mayor precedencia se evalúan antes que los
operadores con menor precedencia. Si dos operadores tienen la misma
precedencia, su evaluación se determina por la asociatividad del operador
(izquierda a derecha o derecha a izquierda).

 39

Aunque la precedencia de operadores permite omitir paréntesis, es una
buena práctica usarlos para mejorar la claridad del código.

Literales

Los literales permiten representar valores, los cuales pueden ser de

diferentes tipos. De esta manera tenemos diferentes tipos de literales:

• Literales enteros: Para representar números enteros utilizamos
cifras enteras. Ejemplos números en base decimal: 5,-12…, en base

octal: 077 y en hexadecimal 0xfe.

• Literales reales: Utilizamos un punto para separar la parte entera de
la decimal. Por ejemplo: 3.14159. También podemos usar la letra e o

E seguida de un exponente con signo para indicar la potencia de 10

a utilizar, por ejemplo: 6.63e-34, 35E20.

• Literales booleanos o lógicos: Los valores lógicos solo tienen dos
valores: false para indicar el valor falso, y true para indicar el valor

verdadero.

• Literales carácter: Para indicar un valor de tipo carácter usamos la
comilla simple '. Por ejemplo 'a'. Tenemos algunos caracteres

especiales que son muy útiles, por ejemplo \n indica nueva línea y

\t indica tabulador.

• Literales cadenas de caracteres: Una cadena de caracteres es un
conjunto de caracteres. Para indicar cadenas de caracteres usamos
las dobles comillas ". Por ejemplo: "Hola".

Constantes

Una constante es un identificador que utilizamos para representar un

valor no puede ser modificado durante la ejecución del programa.

Su uso facilita la actualización y el mantenimiento del código (si necesitas

cambiar el valor de una constante, solo necesitas hacerlo en un lugar).

Para definir constantes usamos:

#define identificador valor

