Maitrisez un framework JavaScript parmi les plus utilisés dans lindustrie

SEBASTIEN CASTIEL

DES APPLICATIONS
MODERNES AVEC REACT

» Créez des applications React completes
» Développez des applications web et mobiles
» Ecrivez des composants réutilisables

Introduction

Lorsqu’en 2013 Facebook a annoncé la sortie de React, on peut dire que certains
l'ont détesté, comme d’autres ont y vu un fantastique potentiel. En effet React
n’était pas annoncé comme un nouveau framework JavaScript comme AngularJS ou
Ember, mais comme une bibliotheque permettant de générer des composants dans
le DOM. II avait ainsi un c6té minimaliste qui le rendait apprécié de beaucoup de
développeurs.

Mais React annoncait aussi 'arrivé de JSX, qui comme nous le verrons permet
en quelque sorte de décrire a ’aide d’une syntaxe proche de HIML comment un
composant graphique doit étre rendu. Directement dans du code JavaScript. Il était
donc nécessaire de passer par une phase de transpilation permettant a partir de
JavaScript + JSX de générer du JavaScript standard. Et cela n’a pas plu a tout le
monde (et ne plait toujours pas a tout le monde d’ailleurs).

D’autres dont je fais partie ont été séduits par 'opportunité d’écrire des composants
réutilisables, gérant chacun les comportements qui leur sont associés. Séduits égale-
ment par un écosystéme qui s’est créé autour de React des sa sortie: une multitude
de composants disponibles, une communauté grandissante, mais surtout des mises a
jour fréquentes de la part de Facebook.

Si vous vous apprétez a lire ce livre c’est sans doute que cela fait quelque temps
que vous entendez parler de React et que vous souhaitez mettre les mains dedans.
J’espere d’abord par ce livre vous donner les éléments clés qui vous permettront de
réaliser vos premieres applications en React. Mais également vous faire découvrir
une partie des nombreux outils fréquemment utilisés avec lui.

A qui s’adresse ce livre ?

A toute personne curieuse de découvrir React, ou a toute personne ayant suivi
un tutoriel React et souhaitant aller plus loin. S’il n’est pas nécessaire d’avoir
expérimenté React ou un framework JavaScript avant, il est toutefois préférable

3

Introduction

d’avoir un minimum de connaissance du langage JavaScript, et si possible des
nouveautés apportées par ES2015: classes, arrow functions, etc. En effet React est
beaucoup plus agréable a utiliser avec ces fonctionnalités.

Notez que ce livre ne couvre pas la partie serveur d’'une application : API Rest, base
de données, etc. Pour cela je vous encourage a vous documenter par exemple sur
Node.js si vous aimez JavaScript. Ne seront pas abordées en profondeur non plus
les problématiques de déploiement d’une application React, bien que ce point soit
brievement présenté en annexe B.

Que trouverez-vous dans ce livre?

Le premier chapitre couvrira ce que React propose de base (sans bibliothéque externe
ou presque). Nous écrirons nos premiers composants, les ferons communiquer entre
eux, les stylerons avec du CSS... Il correspond également & ce qui est disponible
dans React depuis le début, c’est-a-dire ce qui est le plus utilisé. Notamment, les
dernieres nouveautés de React 16 n’y seront pas présentées, mais rassurez-vous, le
chapitre 5 en abordera certaines.

Le second chapitre vous fera découvrir Redux, qui permet de structurer une applica-
tion un peu plus conséquente afin de la rendre plus facile & maintenir et faire évoluer.
Et le troisieme chapitre sera consacré a React Native. Nous verrons comment grace
a un outil formidable I’écriture d’applications mobiles n’est pas plus complexe que
celle d’applications web.

Le quatrieme chapitre abordera des notions plus avancés comme le routage ou
I'utilisation de Firebase pour 'authentification ou le stockage de données distantes.
Il s’agit sans doute du chapitre le plus technique.

Enfin le chapitre 5 présente quelques maniéres de rendre votre code React plus facile
a maintenir et réutiliser, et cela passe par quelques possibilités introduites récemment
dans React, comme les hooks.

La conclusion du livre propose des pistes pour aller un peu plus loin, par exemple
a l’aide de bibliotheques de composants bien connues des développeurs React, ou
encore comment générer un site statique a l'aide de React.

A la fin du livre vous trouverez également en annexes la présentation d’outils comme

les React Dev Tools facilitant le développement d’applications React, ou encore des
indications sur comment déployer une application React.

4

A propos des exemples

A propos des exemples

Comme tout livre consacré a du développement ce livre est riche en exemples. Dans la
plupart des chapitres, un exemple complet nous guidera dans les notions a découvrir.
Je vous encourage a reproduire les exemples vous-mémes au fur et a mesure de la
lecture afin de bien appréhender les concepts. De plus si une erreur survient, il sera
sans doute plus facile de savoir d’ou elle vient si vous avez au méme moment ce livre
ouvert a la bonne page.

L’intégralité des exemples du livre sont également disponibles sur un dépot GitHub
dédié!. Afin de les exécuter, la procédure est sauf contre-indication toujours la
méme, il suffit d’installer les dépendances avec la commande yarn, puis de lancer
I'application avec yarn start, le tout dans le répertoire de ’exemple que vous
souhaitez lancer.

Rester informé et en savoir plus

Le monde de React et du développement web en général évolue tres vite, bien trop
vite en tout cas pour qu’un livre puisse suivre le rythme. Aussi voici quelques sources
pour vous tenir au courant de ce qui se passe :

— Le site de React bien évidemment 2, et notamment sa section Blog, vous
informera des nouvelles versions contenant des évolutions majeures.

— Le subreddit dédié a React? référence probablement tout bon article lié &
React. Méme si comme tout subreddit il nécessite de faire un peu le tri entre
les informations qui y circulent. ..

— Le compte Twitter @reactjs® officiel reprend les annonces du site, mais
ceux des développeurs Dan Abramov (@dan_abramov®), Sophie Alpert
(@sophiebits ®) et Andrew Clark (@acdlite ”) vous donneront acces a I'actualité
la plus récente.

— Le récent blog de Dan Abramov, Overreacted®, est une mine d’informations
pour en savoir plus sur le fonctionnement interne de React. Attendez-vous a
des sujets techniques!

. https://github.com/scastiel/livre-react-exemples/
. https://reactjs.org
https://www.reddit.com/r/ReactJS

. https://twitter.com/reactjs

. https://twitter.com/dan_ abramov

. https://twitter.com/sophiebits

. https://twitter.com/acdlite

. https://overreacted.io/

0N DU W

https://github.com/scastiel/livre-react-exemples/
https://reactjs.org
https://www.reddit.com/r/ReactJS
https://twitter.com/reactjs
https://twitter.com/dan_abramov
https://twitter.com/sophiebits
https://twitter.com/acdlite
https://overreacted.io/

Introduction

— La section React du site Dev.to® propose beaucoup de tutoriels de tout niveau
pour approfondir vos connaissances et donner des astuces.

— En francais, le site Putain de code'® propose beaucoup d’articles sur le
développement front-end et notamment sur React.

Enfin, sachez que j’ai lancé en méme temps que j’écrivais ce livre le site Master-
React.io' dont ’ambition est de fournir régulierement des articles en complément
au livre. Vous y trouverez des articles allant du niveau débutant a un niveau avancé,
ainsi que quelques nouvelles du livre.

A présent plongeons au coeur du sujet, ¢’est parti pour Iécriture de votre premiére
application React !

Bonne lecture.

9. https://dev.to/t/react
10. https://putaindecode.io/
11. https://www.masterreact.io

https://dev.to/t/react
https://putaindecode.io/
https://www.masterreact.io

Chapitre 1

Découverte de React

Langons-nous des maintenant dans la mise en place de notre premiere application
React. Tout d’abord : de quels outils avons-nous besoin 7

1.1 Installation des outils requis

1.1.1 NodelJS

Une application React n’a pas besoin de NodeJS pour fonctionner, mais pour
générer une application interprétable par un navigateur a partir de plusieurs fichiers
organisés, utilisant une syntaxe propre a React, NodeJS est sinon indispensable du
moins fortement pratique!

La maniére la plus simple & ce jour d’installer NodeJS est selon moi d’utiliser NVM
(Node version manager)*. Mais vous pouvez aussi utiliser la distribution Node
associée a votre systeme d’exploitation ou bien le programme d’installation officiel.

Avec Node sera automatiquement installé le gestionnaire de paquet NPM, mais pour
ma part je préfere son alternative Yarn, que vous pouvez installer avec la commande
npm install -g yarn. Lorsque je décrirai des commandes dans ce livre j'utiliserai
Yarn, mais tout est également faisable avec NPM si vous préférez.

1. https://github.com/creationix/nvm

https://github.com/creationix/nvm

Chapitre 1. Découverte de React

1.1.2 Un éditeur de texte

Tout éditeur de texte peut étre utilisé bien évidemment, du plus simple (bloc-notes,
VI) a 'IDE le plus complexe comme WebStorm ou Eclipse. Pour ma part je pense
que le meilleur compromis est d’utiliser un éditeur avancé mais léger, et mon choix
s’est porté sur VS Code? de Microsoft.

Il est disponible sur les principaux systemes d’exploitation, gere nativement la
syntaxe JSX pour React, et propose pour les utilisateurs avancés des extensions liées
a des outils facilitant le développement : ESLint, Prettier, etc.

1.1.3 Et ensuite?

Bien évidemment vous aurez besoin d’un navigateur web. Tout navigateur peut
convenir, je recommanderais néanmoins d’utiliser Firefox ou Chrome en raison des
outils de développement qu’ils proposent. De plus vous pouvez dés maintenant
installer I’extension React Dev Tools? qui vous aidera & débugguer vos applications.
Pour cela vous pourrez aller voir 'annexe A qui vous présentera les possibilités
offertes par cet outil.

1.2 Création du premier projet

Une fois que les outils nécessaires sont installés, commencons sans plus tarder. Créons
un dossier, par exemple hello-react, et ouvrons un terminal dans ce dossier. Sans
rentrer dans les détails pour le moment, sachez que React utilise une syntaxe qui
lui est propre pour écrire les composants (un ajout au langage JavaScript), et donc
qu’il est nécessaire de passer par une phase de compilation (en fait, de transpilation),
pour obtenir un code JavaScript que les navigateurs savent interpréter.

De nombreux outils existent afin de faire cette transformation et au passage de
permettre par exemple de profiter des derniéres nouveautés de JavaScript non prises
en charges par tous les navigateurs, ou encore de découper notre application en
fichiers comme bon nous semble. Parmi les plus connus, citons notamment Webpack *
tres utilisé pour des tres gros projets pour toutes les options et plugins qu’il propose.

Create-React-App® est également de plus en plus utilisé et permet de générer le
squelette d’'une application React en une seule commande.

. https://code.visualstudio.com

. https://github.com/facebook/react-devtools

. https://webpack.js.org

. https://github.com/facebook/create-react-app

T W N

https://code.visualstudio.com
https://github.com/facebook/react-devtools
https://webpack.js.org
https://github.com/facebook/create-react-app

1.2. Création du premier projet

Pour nos exemples, j’ai décidé d’utiliser un outil plus minimaliste : Parcel ®. Pour
I'installer nous utiliserons Yarn (ou NPM). Initialisons donc notre projet, et installons
Parcel et les bibliotheques et outils qui nous seront utiles:

$ yarn init -y
$ yarn add --dev parcel-bundler babel-preset-env babel-preset-react
$ yarn add react react-dom

Une fois tout cela installé, nous allons modifier le fichier package.json (généré par
Yarn), afin d’y ajouter les deux sections suivantes (avant l’accolade fermante } a la
fin):

{
/] ...
"scripts": {
"start": "parcel public/index.html"
1,
"babel": {
"presets": ["env", "react"]
}
/...
}

La section scripts va nous permettre de définir ce qui doit étre fait lorsque nous
langons la commande yarn start; ici nous langons donc parcel. Et la section
babel nous permet d’indiquer que notre code utilise du JSX, et qu’il faut donc
utiliser le plugin Babel permettant de gérer cette syntaxe pour la convertir en code
JavaScript standard.

Il ne reste qu’a écrire le code! Créons deux dossiers public et sre, et deux fichiers
public/index.html et src/index.js :

// src/index.js
import React from 'react'
import ReactDOM from 'react-dom'

const content = <div>Hello!</div>
const div = document.getElementById('app')
ReactDOM.render (content, div)

<!-- index.html -->
<div id="app" />
<script src="../src/index.js"></script>

Avant d’entrer dans I'explication de ce code, essayons de lancer notre projet avec la
commande yarn start. Si tout va bien, votre console devrait afficher quelque chose

6. https://parceljs.org/

https://parceljs.org/

Chapitre 1. Découverte de React

comime ceci:

yarn run v1.5.1

$ parcel public/index.html

Server running at http://localhost:1234
Built in 242ms.

Et en ouvrant votre navigateur a 'URL http://localhost: 1234, vous devriez voir
le texte « Hello!». Voila, félicitations, c’est votre premiere application React :).

1.2.1 Explication du code

Commencons par le fichier index.html. Vous pouvez voir qu’il contient deux choses :

— une div vide qui a pour ID «app ». C’est ’élément de la page dans lequel
nous allons injecter notre application React. Il n’y a aucune contrainte sur cet
élément : ce peut étre n’importe quel élément HTML tant que vous pouvez le
retrouver en JavaScript (il lui faut donc généralement un ID ou une classe, &
moins que ce ne soit le seul élément de la page) ;

— une balise script qui charge notre fichier index.js.

En quelque sorte ce fichier HTML est le point d’entrée de notre application puisque
c’est lui qui est affiché lorsque 1'utilisateur ouvre I'application dans son navigateur.
Si vous souhaitez donner un titre a la page ou y ajouter par exemple des scripts
supplémentaires (Google Analytics, etc.), c’est ici qu’il faut les mettre (comme dans
un fichier HTML classique).

Notez que nous faisons référence a notre fichier JavaScript grace a son chemin relatif
(../src/index.js) ; ¢’est Parcel qui se chargera notamment de remplacer dans le fichier
HTML généré ce chemin par 'URL du fichier JavaScript, comme nous allons le voir
un peu plus loin.

Passons ensuite au fichier indez.js:

import React from 'react'
import ReactDOM from 'react-dom'

Tout d’abord nous importons react et react-dom. Vous pouvez avoir I'impression
qu’importer React ne sert a rien ici étant donné que nulle part nous n’utilisons la
variable React. Nous allons voir dans quelques instants que 1'usage de React est en
fait masqué par le fait d’utiliser du JSX.

Nous importons ensuite react—-dom, qui va nous donner acces a la méthode render.
Sans rentrer trop dans le détail pour le moment, sachez que si historiquement React
était fait pour le web, React Native s’est progressivement imposé et 1’équipe en

10

1.2. Création du premier projet

charge de React a décidé de conserver dans React uniquement ce qui était générique
aux deux librairies (web et natif, le coeur de React donc), et d’extraire dans React
DOM ce qui concernait le web.

const content = <div>Hello!</div>
const div = document.getElementById('app')
ReactDOM.render (content, div)

Nous créons ensuite le contenu de notre application a 'aide de la syntaxe JSX. Enfin
nous y arrivons; quelle est donc cette syntaxe qui ressemble comme deux gouttes
d’eau & du HTML ? En réalité ce n’est pas du HTML, mais plutét une maniere
élégante de créer des nceuds dans le DOM.

Pour simplifier, imaginez que cela revient en fait a écrire ceci:

const content = document.createElement('DIV')
content.innerHTML = 'Hello!'

const div = document.getElementById('app')
content.appendTo(div)

En réalité React gere le JSX bien mieux que cela (en gardant en mémoire un DOM
virtuel notamment), mais I'idée reste la méme. Nous allons voir plus loin quelques
différences entre le JSX et le HTML au niveau de la syntaxe.

Pour ce qui est du reste du fichier, nous récupérons la div principale de notre
application grace a son ID, puis nous demandons a ReactDOM.render de générer le
rendu de 'application dans cette div.

Afin d’en apprendre un peu plus sur le JSX, ajoutons un tout petit peu de logique a
notre application.

1.2.2 Composants et propriétés

Voici la nouvelle version du fichier indez.js :

import React from 'react'
import ReactDOM from 'react-dom'

const Greetings = props => {
return (

Bonjour {props.name} !

)
}

const App = () => <Greetings name="Sébastien" />

11

Chapitre 1. Découverte de React

ReactDOM.render (<App />, document.getElementById('app'))

Cette fois-ci nous créons deux fonctions Greetings et App. Ces deux fonctions
renvoient du JSX: ce sont des composants React. En effet il s’agit de la premiere
des deux manieéres classiques de déclarer un composant.

Puis afin d’utiliser un composant déja créé, on utilise la méme syntaxe que s’il
s’agissait d’un élément HTML. C’est ce qui est fait dans le composant App, ol nous
appelons le composant Greetings.

Vous avez remarqué que la fonction Greetings prend un parametres props: il s’agit
d’un objet contenant les parametres qui sont envoyés au composant. Ici nous appelons
Greetings ainsi: <Greetings name="Sébastien"/>, notre parametre props vaudra
donc { name: 'Sébastien' }. D’ou l'utilisation de props.name.

Nous pourrions rendre le code du composant Greetings encore plus concis en
utilisant 'interpolation des parametres de JavaScript :

const Greetings = ({ name }) => (

Bonjour {name} !

)

Derniere chose: pour placer le contenu d’une variable dans du JSX| il suffit de
Ientourer d’accolades: Bonjour {name} !. Cela vaut aussi pour les propriétés des
composants, nous aurions pu écrire :

const App = () => {
const name = 'Sébastien'
return <Greetings name={name} />

}

Vous l'avez compris, 'application affiche désormais « Bonjour Sébastien ». Cette
premiere application est terminée, mais vous vous demandez maintenant comment la
rendre disponible sur Internet. Bon peut-étre pas celle-ci qui ne fait rien d’intéressant,
mais sans doute une de vos prochaines réalisations:). Pour cela je vous renvoie vers
I'annexe B a la fin du livre qui vous guidera dans la marche a suivre.

A présent attardons-nous le temps d’une section sur le langage JSX. Il est trés
pratique a utiliser, mais il comporte son lot de subtilités et pieges.

12

1.3. Le langage JSX

1.3 Le langage JSX

Au fur et & mesure vous verrez que le JSX est un langage tres intuitif & utiliser. Voici
deux propriétés de base pour ce qui est des balises utilisées :

— Toute balise commengant par une minuscule (div, span, label, etc.) est
réservée aux éléments HTML. Ils sont déclarés par React DOM, et vous
obtiendrez une erreur si vous utilisez un élément inexistant.

— Toute balise commengant par une majuscule (Greetings, App, etc.) doit
étre déclarée explicitement, ce doit donc étre un élément du scope courant :
fonction déja déclarée, composant importé d’une bibliothéque ou d’un autre
fichier... Cela veut aussi dire que tout composant que vous créerez devra
avoir son nom commencant par une majuscule.

Pour ce qui est des propriétés:

— Une chailne de caractéres constante peut étre passée comme en HTML, entre
simples ou doubles quotes: name="Sébastien" ou name='Sébastien'.

— Toute valeur (code JavaScript) peut étre passée entre accolades: prop={1},
prop={true}, prop={name}, prop={'Sébastien'} (ce dernier exemple étant
exactement équivalent & prop="Sébastien"). Pour les objets, tableaux,
fonctions, méme principe: prop={{ a: 1, b: 2 }}, prop={['a', 'b']},
prop={x => 2 * x}.

Pour les composants comme pour les propriétés, les régles de nommage sont les
mémes que pour une variable JavaScript: caractéres alphanumériques, underscore,
etc. Pas de tiret par exemple, ni d’espace ou d’autres caractéres spéciaux. De plus
les propriétés sont sensibles a la casse.

Point important : la plupart du temps pour spécifier un attribut HTML, la
propriété JSX a le méme nom (pour id par exemple). Ce n’est cependant pas
toujours le cas: 'exemple plus courant étant ’attribut class qui devient className
en JSX, pour qu’il n’y ait pas de confusion avec le mot-clé class de JavaScript.
Vous vous ferez souvent avoir au début, heureusement React vous affichera un petit
avertissement dans la console de votre navigateur. Le détail des éléments concernés
est bien évidemment disponible dans la documentation de React .

Pour placer du contenu dynamique dans le corps méme d’un élément JSX, les regles
sont en fait les mémes que pour les propriétés. Vous pouvez donc écrire par exemple :

Carrés :{[1, 2, 3, 4, 5].map(x => x * x).join(', ')}

Cependant il n’est possible que de passer des expressions dans du JSX. Cela exclut
donc de mettre des if ou des for. Pourtant il serait trés tentant d’écrire:

7. https://reactjs.org/docs/dom-elements.html

13

https://reactjs.org/docs/dom-elements.html

Chapitre 1. Découverte de React

{
// Cela ne compilera pas!
if (test) { return 'Oui' }
else { return 'Non' }
}

Heureusement il existe une alternative treés intéressante : I'utilisation de I'opérateur
ternaire 7

{test ? 'Oui' : 'Non'}

Si vous souhaitez ne rien afficher dans le cas ot une condition est fausse, vous pouvez
également utiliser 'opérateur &&:

{test && 'Oui'}

Dans le cas ot les conditions ou résultats sont plus complexes, ou que 1'on a plus de
deux cas a gérer, il est également possible (et méme recommandé pour la lisibilité)
de passer par une fonction intermédiaire :

const renderResult = () => {
if (conditionl) {
return 'Oui’
} else if (condition2) {
return Peut-&tre...
} else {
return 'Non'
}
}

return Resultat : {renderResult()}

Car oui, il n’y a pas que les composants qui peuvent renvoyer du JSX. N’importe
quelle fonction en a le droit.

Qu’en est-il des boucles 7 Et bien non, pas de boucle for ou while dans du JSX,
mais il est par contre tres pratique d’utiliser la méthode map des tableaux. Supposons
par exemple que I'on souhaite afficher une liste de fruits:

const fruits = ['Pomme', 'Péche', 'Poire', 'Abricot']

Nous pouvons commencer par écrire une fonction qui va nous générer le JSX pour
un fruit donné:

const renderFruit = fruit => <1i>{fruit}</1li>

14

1.3. Le langage JSX

Puis utiliser map pour obtenir un tableau contenant le rendu pour chaque fruit :

const renderedFruits = fruits.map(renderFruit)

Et comme React est treés bien fait, il nous permet d’afficher directement un tableau
de composants. Il va simplement afficher les composants les uns apres les autres
comme on pourrait s’y attendre.

return {renderedFruits}

Tout devrait bien s’afficher, néanmoins React va vous afficher une erreur dans la
console, comme Warning : Each child in an array or iterator should have a unique
« key » prop. (le message exact peut avoir changé depuis 1’écriture de ce chapitre).
En effet lorsque React affiche un tableau de composant, il a besoin d’une propriété
key sur chacun de ses composants, lui permettant lorsqu’il doit réafficher le tableau
(avec de nouveaux éléments ou un nouvel ordre), de savoir quel composant affiché
correspond a quel élément du tableau.

Modifions donc notre fonction renderFruit afin d’ajouter la propriété key:

const renderFruit = <1i key={fruit}>{fruit}</1i>

Nous pouvons utiliser n’importe quelle valeur comme key, du moment que celle-ci
est unique dans le tableau. Idéalement une clé donnée doit identifier un élément
donné du tableau. Ce peut donc étre un ID par exemple, et en dernier recours l'index
dans le tableau (& éviter cependant car cela ne sera pas optimisé dans le cas o des
éléments du tableau sont réordonnés).

En plus concis, voici & quoi peut ressembler notre composant affichant des fruits:

const Fruits = ({ fruits }) => (

{fruits.map(fruit => <1i key={fruit}>{fruit}</1i>)}

)

// Utilisation :
return <Fruits fruits={['Pomme', 'Pé&che', 'Poire', 'Abricot'l} />

Apres avoir créé nos premiers composants, nous allons voir dans la section suivante
quelques unes des possibilités offertes par React afin de leur ajouter de la logique.
Nous partirons d’un exemple simple que nous rafinerons au fur et a mesure. Il s’agira
d’une application de gestion de liste de taches, permettant d’ajouter des nouvelles
taches et de les marquer comme effectuées.

15

Chapitre 1. Découverte de React

1.4 Un composant par fichier

Dans les exemples que nous venons de voir, il n’'y avait qu'un seul fichier JavaScript
ou l'on déclarait nos composants. Pour des raisons évidentes il serait intéressant de
séparer nos composants en plusieurs fichiers.

Commengons & concevoir notre application. Dans sa premiére version, nous définirons
trois composants :

— un composant Task permettant d’afficher une tache;

— un autre composant TaskList permettant d’afficher une liste de tAches (nous
utiliserons le premier composant Task) ;

— et enfin notre composant App qui affichera un titre ainsi que la liste de taches
via le composant TaskList.

De maniére assez intuitive nous créeons donc trois fichiers, un pour chaque composant.
Commengons avec le composant Task :

// src/Task.js
import React from 'react'

const Task = ({ task }) => {task.label}

export default Task

Rien de bien nouveau ici: nous créons un composant Task, dont nous extrairons des
propriétés qui lui sont passées un parametre task qui contiendra les informations
sur la tache a afficher. Cette tache aura un attribut label, que nous afficherons dans
une balise span.

Comme notre fichier contient notre composant, nous souhaitons I'importer dans
d’autres fichiers; il est donc exporté par 'instruction export default Task.

Le composant TaskList est un brin plus complexe, mais ne comporte pas de
nouveautés par rapport a ce que nous avons vu précédemment :

// src/TaskList.js
import React from 'react'
import Task from './Task'

const TaskList = ({ tasks }) => (

{tasks.map(task => (
<1li key={task.id}>
<Task task={task} />
</1i>
N}

16

1.4. Un composant par fichier

export default TaskList

En propriété de ce composant nous attendons un tableau de taches tasks. Pour
chacune de ces taches nous affichons un élément 1i, au sein duquel nous appelons
notre composant Task en lui passant la tdche en parameétre.

Notez que lorsque nous créons un élément 1i pour chaque tache (grace a map), nous
fournissons a l'attribut key I'ID de la tache, unique dans le tableau, comme cela est
demandé par React.

Nous aurions pu intégrer I’élément 1i dans le composant Task, mais d’'un point de
vue conception il me semble plus pertinent de rendre le composant Task le plus
générique possible ; peut-étre aurons-nous a un moment ’envie de afficher ailleurs
que dans une liste. Mais techniquement cela ne poserait aucun probleme, nous
aurions écrit :

tasks.map(task => <Task key={task.id} task={taskl} />)

Dans ce cas, il est indispensable que I'attribut key soit spécifié ici; il ne peut pas
I’étre dans le composant Task. En effet React en a besoin avant méme de générer
le contenu de Task. D’ailleurs autre point intéressant, la propriété key n’est pas
transmise au composant Task. C’est un attribut un peu spécial et traité uniquement
par React.

Enfin notre dernier composant App:

// src/App.js
import React from 'react'
import TaskList from './TaskList'

const App = () => {
const tasks = [
{ id: 1, label: 'Acheter du lait', isDone: true 1},
{ id: 2, label: 'Prendre des vacances', isDone: false }
]
return (
<div>
<h1>Taches</h1>
<TaskList tasks={tasks} />
</div>
)
}

export default App

Rien de nouveau ici non plus, ce composant déclare un tableau de taches (nos
données de test), et affiche un titre ainsi que le composant TaskList en lui passant

17

Chapitre 1. Découverte de React

en parametre le tableau tasks. Il s’agit du composant principal de 'application.

Il ne reste plus qu’a utiliser ce composant dans le fichier indez.js :

// src/index.js

import React from 'react'

import ReactDOM from 'react-dom'
import App from './App'

ReactDOM.render (<App />, document.getElementById('app'))

Pour ce qui est du reste du code, nous reprendrons le méme squelette que pour la
premieére application que nous avons créée.

Lorsque nous langons I’application, nous pouvons admirer notre liste de taches! Si
vous ouvrez les outils développement de votre navigateur et inspectez le contenu
généré (au format HTML), vous aurez probablement quelque chose qui ressemble a
ceci:

<div id="app">
<div>
<h1>Taches</h1>

Acheter du lait</1i>
Prendre des vacances

</div>
</div>

C’est assez similaire & ce que l'on attendait, non?:)

18

	Introduction
	À qui s'adresse ce livre?
	Que trouverez-vous dans ce livre?
	À propos des exemples
	Rester informé et en savoir plus

	Découverte de React
	Installation des outils requis
	NodeJS
	Un éditeur de texte
	Et ensuite?

	Création du premier projet
	Explication du code
	Composants et propriétés

	Le langage JSX
	Un composant par fichier

