
Alexandre Rousseau

"APIonRails":6
{ }

"APIonRails":6
{ }

API on Rails 6
Alexandre Rousseau

Version 6.9, 2020-12-20

Table of Contents
Before . 1
Foreword . 2
About the author . 3
Copyright and license . 4
Thanks . 5

Introduction . 6
Conventions on this book . 8
Development environments . 9
Text editors and Terminal . 9
Browsers. 9
Package manager. 10
Git . 10
Ruby . 10

Initializing the project . 13
Versioning . 14
Conclusion . 16

The API . 17
Planning the application . 18
Setting the API . 19
Routes, Constraints and Namespaces 20

Api versioning . 23
Conclusion . 25

Presenting users . 26
User model . 27
Generation of the User model 27
Password hash. 32

Build users . 34
Test our resource with cURL. 37
Create users . 38
Update users . 40
Delete the user . 42

Conclusion . 45
User’s products . 47
The product model . 48
The foundations of the product 48
Product validations . 51

Products endpoints . 53
Show action for products . 53
Products list . 55
Creating products . 56
Updating products . 59

Destroying products . 62
Feed the database . 65
Conclusion . 68

Building JSON . 69
Presentation of JSON:API . 70
Serialize user . 71
Serialize products . 74
Serialize associations . 76

Theory of the injection of relationships 78
Integrate into a meta attribute. 78
Incorporate the object into the attribute 78
Incorporate the relationships into `include 81

Application of the injection of relationships 83
Retrieve user’s products . 86

Search for products . 90
The keyword by . 90
By price . 92
Sort by creation date . 94

Conclusion . 98
Placing Orders . 99
Modeling order . 100
Orders and Products . 101

Expose the user model . 103
Render a single order . 105
Placing an order . 107

Send order confirmation email 114
Conclusion . 117

Improving orders . 118
Decrementing product quantity 119
Extending the Placement model 125

Validate quantity of products 127
Updating the total . 129
Conclusion . 131
Pagination . 133
Products . 133
Orders list . 137
Refactoring pagination . 139

API Caching . 143
N+1 Queries . 145
Prevention of N + 1 requests 146

Activation of CORS . 150
Conclusion . 153

Before

1

Foreword
"API on Rails 6" is based on "APIs on Rails: Building REST APIs with
Rails". It was initially published in 2014 by Abraham Kuri under the
licenses MIT and Beerware.

The first version was not maintained and was initially planned for
Ruby on Rails version 4, which does not receive more than security
updates. I wanted to update this excellent book, adapting it to new
versions of Ruby on Rails. Therefore, this book is available for Ruby
on Rails versions 5.2 and 6.0 (the one you are currently reading).

NOTE
This book is also available in the Molière language (It
means french).

2

About the author
My name is Alexandre Rousseau, and I am a Rails developer with more
than 4 years of experience (at the time of writing). I am currently a
partner in a company (iSignif) to build and maintain a SAAS product
using Rails. I also contribute to the Ruby community by producing and
maintaining some gems that you can consult on my Rubygems.org
profile. Most of my projects are on GitHub, then don’t hesitate to
follow me.

This book’s source code is available in Asciidoctor format on GitHub.
Feel free to fork the project if you want to improve it or fix
mistakes I didn’t notice.

3

Copyright and license
This book is provided on MIT license. All the book’s source code is
available on Markdown format on GitHub

MIT license

Copyright 2019 Alexandre Rousseau

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

"API on Rails 6" by Alexandre Rousseau is shared according to Creative
Commons Attribution - Attribution-ShareAlike 4.0 International. Built
upon this book http://apionrails.icalialabs.com/book/.

This book’s cover picture uses a beautiful photo shot by Yoann Siloine
who published it on Unsplash.

4

Thanks
A big "thank you" to all Github contributors who keep this book alive.
In alphabetical order:

• airdry

• Landris18

• lex111

• cuilei5205189

• franklinjosmell

• notapatch

• promisepreston

• tacataca

5

Introduction
Welcome to API on Rails 6, a tutorial on steroids to learn the best
way to build your next API with Rails. The purpose of this book is to
provide a comprehensive methodology to develop a RESTful API following
best practices.

As soon as you finish this book, you will be able to create your own
API and integrate it with any client, such as a web browser or mobile
application. The generated code is built with Ruby on Rails 6.0, which
is the current version.

The purpose of this book is not only to teach you how to build an API
with Rails but rather to teach you how to build an evolutive and
maintainable API with Rails. That is, improve your current knowledge
with Rails. On this journey, you will learn to:

• Use Git for version control

• Building JSON responses

• Test your end-points with unit and functional tests

• Set up authentication with JSON Web Tokens (JWT)

• Use JSON:API specification

• Optimize and cache the API

I strongly recommend you follow all the steps in this book. Try not to
skip chapters because I will give you some tips and tricks to improve
your skills throughout the book. You can consider yourself the main
character of a video game that gains a level in each chapter.

In the first chapter, I will explain how to configure your environment
(if you don’t already have it). Then we will create an application
called market_place_api. I will ensure that I teach you the best
practices I have learned during my experience. This means that we’ll
start using Git just after initializing the project.

We’ll build the application following a simple working method that I
use daily in the next chapters. We will develop the entire application
using Test Driven Development (TDD). I will also explain the interest
of using an API for your next project and choosing a suitable response
format such as JSON or XML. Further on, we will get our hands on the
code and complete the application’s basics by building all the
necessary roads. We will also secure access to the API by building
authentication by exchanging HTTP headers. Finally, in the last
chapter, we will add some optimization techniques to improve the

6

server’s structure and response times.

The final application will scratch the surface of being a market place
where users will be able to place orders, upload products, and more.
There are plenty of options out there to set up an online store, such
as Shopify, Spree, or Magento.

7

Conventions on this book
The conventions in this book are based on the ones from Ruby on Rails
Tutorial. In this section, I’ll mention some that may not be so clear.

I’ll be using many examples using command-line instructions. I won’t
deal with windows cmd (sorry guys), so all the examples use Unix-
style command line prompt, as follows:

$ echo "A command-line command"
A command-line command

I’ll be using some guidelines related to the language. What I mean by
this is:

• Avoid means you are not supposed to do it

• Prefer indicates that from the 2 options, the first it’s a better
fit

• Use means you are good to use the resource

If for any reason you encounter some errors when running a command,
rather than trying to explain every possible outcome, I recommend you
to `google it', which I don’t consider a bad practice or whatsoever.
But if you feel like you want to grab a beer or have some trouble with
the tutorial, you can always email me.

8

Development environments
One of the most painful parts for almost every developer is setting
everything up, but as long as you get it done, the next steps should be
a piece of cake and well rewarded. So I will guide you to keep you
motivated.

Text editors and Terminal
There are many cases in which development environments may differ
from computer to computer. That is not the case with text editors or
IDE’s. I think for Rails development an IDE is way too much, but some
other might find that the best way to go, so if that it’s your case I
recommend you go with RadRails or RubyMine, both are well supported
and come with many integrations out of the box.

• Text editor: I personally use vim as my default editor with janus,
which will add and handle many of the plugins you are probably
going to use. In case you are not a vim fan like me, there are a
lot of other solutions such as Sublime Text which is a cross-
platform easy to learn and customize (this is probably your best
option), it is highly inspired by TextMate (only available for Mac
OS). A third option uses a more recent text editor from the guys at
GitHub called Atom. It’s a promising text editor made with
JavaScript. It is easy to extend and customize to meet your needs.
Give it a try. Any of the editors I present will do the job, so I’ll
let you decide which one fits your eye.

• Terminal: If you decided to go with kaishi for setting the
environment, you would notice that it sets the default shell to
zsh, which I highly recommend. For the terminal, I’m not a fan of
the Terminal app that comes out of the box if you are on Mac OS, so
check out iTerm2, which is a terminal replacement for Mac OS. If
you are on Linux, you probably have a nice terminal already, but the
default should work fine.

Browsers
When it comes to browsers, I would say Firefox immediately, but some
other developers may say Chrome or even Safari. Any of those will help
you build the application you want. They come with a nice inspector
not just for the DOM but also for network analysis and many other
features you might know already.

9

Package manager
• Mac OS: There are many options to manage how you install packages
on your Mac, such as Mac Ports or Homebrew, both are good options,
but I would choose the last one, I’ve encountered fewer troubles
when I install software, and I manage it. To install brew, just
run the command below:

$ /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/inst
all)"

• Linux: You are all set! It really does not matter if you are using
apt, pacman, yum as long you feel comfortable with it, and you
know how to install packages so you can keep moving forward.

Git
We will be using Git a lot, and you should use it too, not just for
the purpose of this tutorial but for every single project.

• on Mac OS: $ brew install git

• on Linux: $ sudo apt-get install git

Ruby
There are many ways in which you can install and manage ruby, and by
now, you should probably have some version installed if you are on Mac
OS. To see which version you have, just type:

$ ruby -v

Rails 6.0 requires the installation of version 2.5 or higher.

I recommend using Ruby Version Manager (RVM) or rbenv to install it.
We will use RVM in this tutorial, but it doesn’t matter which of
these two options you use.

The principle of these tools is allowing you to install several
versions of Ruby on the same machine, in an environment that is
airtight to a possible version installed on your operating system, and
to be able to switch from one to the other easily.

10

To install RVM, go to https://rvm.io/ and install the GPG footnote
key:[The GPG key allows you to verify the identity of the author of the
sources you download.]. Once that’s done:

$ gpg --keyserver hkp://keys.gnupg.net --recv-keys
409B6B1796C275462A1703113804BB82D39DC0E3
7D2BAF1CF37B13E2069D6956105BD0E739499BDB
$ \curl -sSL https://get.rvm.io | bash

Next, it is time to install ruby:

$ rvm install 2.6

Now it is time to install the rest of the dependencies we will be
using.

Gems, Rails & Missing libraries

First, we update the gems on the whole system:

$ gem update --system

In some cases, if you are on a Mac OS, you will need to install some
extra libraries:

$ brew install libtool libxslt libksba openssl

We then install the necessary gems and ignore documentation for each
gem:

$ gem install bundler
$ gem install rails -v 6.0.0

Check for everything to be running nice and smooth:

$ rails -v
Rails 6.0.0

11

Database

I highly recommend you install Postgresql to manage your databases.
But here, we’ll be using SQlite for simplicity. If you are using Mac
OS, you should be ready to go. In case you are on Linux, don’t worry.
We have you covered:

$ sudo apt-get install libxslt-dev libxml2-dev libsqlite3-dev

or

$ sudo yum install libxslt-devel libxml2-devel libsqlite3-devel

12

Initializing the project
Initializing a Rails application may be pretty straightforward for
you. If that is not the case, here is a super quick tutorial.

There is the command:

$ mkdir ~/workspace
$ cd ~/workspace
$ rails new market_place_api --api

NOTE

The --api option appeared in version 5 of Rails. It allows
you to limit the libraries and Middleware included in the
application. This also avoids generating HTML views when
using Rails generators.

As you may guess, the commands above will generate the bare bones of
your Rails application.

13

Versioning
Remember that Git helps you track and maintain your code history. Keep
in mind that the source code of the application is published on GitHub.
You can follow the project on GitHub.

Ruby on Rails initialized the Git directory for you when you used the
rails new command. This means that you do not need to execute the git
init command.

However, it is necessary to configure the information of the author of
commits. If you have not already done so, go to the directory and run
the following commands:

$ git config --global user.name "Type in your name"
$ git config --global user.email "Type in your email"

Rails also provide a .gitignore file to ignore some files that we
don’t want to track. The default .gitignore file should look like the
one shown below:

.gitignore

Ignore bundler config.
/.bundle

Ignore the default SQLite database.
/db/*.sqlite3
/db/*.sqlite3-journal

Ignore all logfiles and tempfiles.
/log/*
/tmp/*
!/log/.keep
!/tmp/.keep

Ignore uploaded files in development.
/storage/*
!/storage/.keep
.byebug_history

Ignore master key for decrypting credentials and more.
/config/master.key

14

After modifying the .gitignore file, we just need to add the files and
commit the changes, the necessary commands are shown below:

$ git add .
$ git commit -m "Initial commit"

TIP

I have found that committing a message starting with a
present tense verb, describing what the commit does and not
what it did, helps when you are exploring the history of the
project. I find it is more natural to read and understand.
I’ll follow this practice until the end of the tutorial.

Lastly and as an optional step, we setup the GitHub (I’m not going
through that here) project and push our code to the remote server: We
first add the remote:

$ git remote add origin
git@github.com:madeindjs/market_place_api_6.git

Then we push the code:

$ git push -u origin master

As we move forward with the tutorial, I’ll be using the practices I
follow daily. This includes working with branches, rebasing, squash
and some more. For now, you don’t have to worry if some of these
don’t sound familiar to you. I walk you through them in time.

15

Conclusion
It’s been a long way through this chapter. If you reach here, let me
congratulate you and be sure that things will get better from this
point. So let’s get our hands dirty and start typing some code!

16

The API
In this section, I’ll outline the application. By now, you should have
read the previous chapter. If you did not read it, I recommend you to
do it.

You can clone the project until this point with:

$ git checkout tags/checkpoint_chapter02

To summarize, we simply generated our Rails application and made our
first commit.

17

Planning the application
As we want to go simple with the application, it consists of five
models. Don’t worry if you don’t fully understand what is going on.
We will review and build each of these resources as we move on with
the tutorial.

In brief, the user will be able to place many orders, upload multiple
products which can have many images or comments from other users on
the app.

We will not build views for displaying or interacting with the API,
so not to make this a huge tutorial, I’ll let that to you. There are
plenty of options out there like javascript frameworks (Angular,
Vue.js, React.js).

By this point, you must be asking yourself:

all right, but I need to explore or visualize the API we will be
building?

That’s fair. Probably if you google something related to API exploring,
an application called Postman will pop. It is great software, but we
won’t be using that anyway because we’ll use cURL, allowing anybody
to reproduce requests on any computer.

18

Setting the API
An API is defined by wikipedia as an application programming interface
(API) specifies how some software components should interact with
each other. In other words, the way systems interact with each other
through a common interface, in our case, a web service built with
JSON. There are other kinds of communication protocols like SOAP, but
we are not covering that here.

As the Internet media type standard, JSON is widely accepted,
readable, extensible, and easy to implement. Many of the current
frameworks consume JSON APIs by default (Angular or Vue.js, for
example). There are also great libraries for Objective-C too like
AFNetworking or RESTKit. There are probably good solutions for Android,
but I might not be the right person to recommend something because of
my lack of experience in that development platform.

All right. So we are building our API with JSON. There are many ways
to achieve this. The first thing that comes to mind would be just to
start adding routes defining the endpoints. This may be bad because
they may not have a URI pattern clear enough to know which resource is
being exposed. The protocol or structure I’m talking about is REST
which stands for Representational State Transfer and by Wikipedia
definition

aService.getUser("1")

And in REST you may call a URL with a specific HTTP request, in this
case with a GET request: http://domain.com/resources_name/uri_pattern

RESTful APIs must follow at least three simple guidelines:

• A base URI, such as http://example.com/resources/.

• An Internet media type to represent the data is commonly JSON and
is commonly set through header exchange.

• Follows the standard HTTP Methods such as GET, POST, PUT, DELETE.

◦ GET: Reads the resource or resources defined by the URI pattern

◦ POST: Creates a new entry into the resources collection

◦ PUT: Updates a collection or member of the resources

◦ DELETE: Destroys a collection or member of the resources

This might not be clear enough or may look like a lot of information
to digest, but hopefully, it’ll get a lot easier to understand as we

19

move on with the tutorial.

Routes, Constraints and Namespaces
Before start typing any code, we prepare the code with git. We’ll be
using a branch per chapter, upload it to GitHub and then merge it on
master branch. So let’s get started. Open the terminal, cd to the
market_place_api directory and type in the following:

$ git checkout -b chapter02
Switched to a new branch 'chapter02'

We will only be working on the config/routes.rb, as we are just going
to set the constraints and the default response format for each
request.

config/routes.rb

Rails.application.routes.draw do
 # ...
end

First of all, erase all commented code that comes within the file. We
are not gonna need it. Then commit it, just as a warm-up:

$ git add config/routes.rb
$ git commit -m "Removes comments from the routes file"

We are going to isolate the API controllers under a namespace. With
Rails, this is fairly simple: you just have to create a folder under
the app/controllers named API. The name is important because that’s
the namespace we’ll use for managing the controllers for the API
endpoints.

$ mkdir app/controllers/api

Then we add that namespace into our routes.rb file:

20

config/routes.rb

Rails.application.routes.draw do
 # API definition
 namespace :api do
 # We are going to list our resources here
 end
end

By defining a namespace under the routes.rb file. Rails will
automatically map that namespace to a directory matching the name
under the controllers folder, in our case the api/` directory.

Rails media types supported

Rails can handle up to 35 different media types, you can list
them by accessing the SET class under de Mime module:

$ rails c
2.6.3 :001 > Mime::SET.collect(&:to_s)
=> ["text/html", "text/plain", "text/javascript",
"text/css", "text/calendar", "text/csv", "text/vcard",
"text/vtt", "image/png", "image/jpeg", "image/gif",
"image/bmp", "image/tiff", "image/svg+xml", "video/mpeg",
"audio/mpeg", "audio/ogg", "audio/aac", "video/webm",
"video/mp4", "font/otf", "font/ttf", "font/woff",
"font/woff2", "application/xml", "application/rss+xml",
"application/atom+xml", "application/x-yaml",
"multipart/form-data", "application/x-www-form-
urlencoded", "application/json", "application/pdf",
"application/zip", "application/gzip"]

This is important because we are going to be working with JSON, one
of the built-in MIME types accepted by Rails, so we just need to
specify this format as the default one:

21

config/routes.rb

Rails.application.routes.draw do
 # API definition
 namespace :api, defaults: { format: :json } do
 # We are going to list our resources here
 end
end

Up to this point, we have not made anything crazy. What we want to
generate is a base_uri which includes the API version. But let’s
commit changes before going to the next section:

$ git add config/routes.rb
$ git commit -m "Set the routes constraints for the API"

22

Api versioning
At this point, we should have a nice route mapping using a namespace.
Your routes.rb file should look like this:

config/routes.rb

Rails.application.routes.draw do
 # API definition
 namespace :api, defaults: { format: :json } do
 # We are going to list our resources here
 end
end

Now it is time to set up some other constraints for versioning
purposes. You should care about versioning your application from the
beginning since this will give a better structure to your API. When
changes need to be made, you can give developers who are consuming
your API the opportunity to adapt to the new features while the old
ones are being deprecated. There is an excellent railscast explaining
this.

To set the version for the API, we first need to add another directory
under the API we created:

$ mkdir app/controllers/API/v1

This way we can namespace our api into different versions very easily,
now we just need to add the necessary code to the routes.rb file:

config/routes.rb

Rails.application.routes.draw do
 # Api definition
 namespace :api, defaults: { format: :json } do
 namespace :v1 do
 # We are going to list our resources here
 end
 end
end

By this point, the API is now scoped via the URL. For example, with
the current configuration, an endpoint for retrieving a product would

23

be like http://localhost:3000/v1/products/1.

Common API patterns

You can find many approaches to set up the base_uri when building
an API following different patterns, assuming we are versioning
our API:

• api.example.com/: In my opinion, this is the way to go, gives
you a better interface and isolation, and in the long term can
help you to quickly scalate

• example.com/api/: This pattern is very common, and it is
actually a good way to go when you don’t want to namespace
your API under a subdomain

• example.com/api/v1: it seems like a good idea by setting the
version of the API through the URL seems like a more
descriptive pattern, but this way you enforce the version to be
included on URL on each request, so if you ever decide to change
this pattern, this becomes a problem of maintenance in the
long-term

There are some practices in API building that recommend not to
version the API via the URL. That’s true. The developer should not
be aware of the version he’s using. For simplicity, I have chosen
to set aside this convention, which we will be able to apply in a
second phase.

It is time to commit:

$ git commit -am "Set the versioning namespaces for API"

We are at the end of our chapter. Therefore, it is time to apply all
our modifications to the master branch by making a merge. To do this,
we place ourselves on the master branch and we merge chapter02:

$ git checkout master
$ git merge chapter02

24

Conclusion
I know it’s been a long way, but you made it, don’t give up this is
just our small scaffolding for something big, so keep it up. In the
meantime, and if you feel curious, some gems handle this kind of
configuration:

• RocketPants

• Versionist

I’m not covering those in this book since we are trying to learn how
to implement this kind of functionality, but it is good to know. By
the way, the code up to this point is here.

25

