

Aspect-Oriented Programming in PHP

Edmund P. Zynda III

This book is for sale at http://leanpub.com/aopinphp

This version was published on 2016-02-28

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2016 Edmund P. Zynda III

http://leanpub.com/aopinphp
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Edmund P. Zynda III by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought Aspect-Oriented Programming in PHP

The suggested hashtag for this book is #aopinphp.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#aopinphp

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20Aspect-Oriented%20Programming%20in%20PHP
https://twitter.com/search?q=%23aopinphp
https://twitter.com/search?q=%23aopinphp

Contents

1. Introduction and Prerequisites . 1
1.1 Introduction . 1
1.2 A Super Short History . 1
1.3 Prerequisites . 1

2. What is Aspect-Oriented Programming? . 3
2.1 Aspect-Oriented Programming in a Nutshell . 3
2.2 What Does Aspect-Oriented Programming Look Like? 5
2.3 Using Aspects in PHP . 6

1. Introduction and Prerequisites
1.1 Introduction

The idea of aspect-oriented programming has been around for about 20 years already. It has made
its way into popular languages like Java and those used in Microsoft’s .NET framework. It has
helped to make applications written in those languages cleaner and more modular. Aspect-oriented
programming has only recently made its way into PHP through various libraries and even an
extension to PHP itself.

While aspect-oriented programming does help us solve some unique problems, it isn’t a replacement
for object oriented programming. Programming with aspects can enhance our object oriented code
and as you’ll see in this book, it’s pretty simple to understand. Let’s begin!

1.2 A Super Short History

Aspect-oriented programming was created sometime between 1995 and 1996 by Gregor Kiczales and
his colleagues at Xerox’s Palo Alto Research Center (PARC). Gregor’s group had been working on
a Java game, similar to Asteroid, called Space War. Because the game was written in Java, an object
oriented language, the team was able to encapsulate the different pieces of the code into separate
objects. Asteroid objects had their own logic while a spaceship object has its own logic. This is great
because separation of concerns is a principle of good object oriented design.

There was a problem though. To get the different objects to display on the screen, there needs to be
a call to some sort of draw or paint method. This method needs to be called every time an object
moves on the screen. The logic to do this is pretty much the same though for any object. Creating a
draw method for every object would result in a lot of duplicate code.

The team at Xerox, came upwith away to address this by allowing programmers to encapsulate logic
that might affect different areas of the application and then apply it only where it was needed. This
new paradigm of programming “cross-cutting” concerns was dubbed aspect-oriented programming
by Chris Maeda, another member of Kiczales’ team. The team went on to create AspectJ, an aspect-
oriented language and extension for Java which first appeared in 2001.

1.3 Prerequisites

To run the examples in this book, youwill need to have PHP 5.4 or greater installed on your machine.
The operating system should not matter but I recommend a POSIX compliant operating system like
Ubuntu Linux.

1

1. Introduction and Prerequisites 2

This book will focus on using an aspect-oriented PHP library called “Go! AOP”. This library and
others can be installed using Composer (http://getcomposer.org).

It should go without saying, but you should have a basic to intermediate understanding of PHP
and object-oriented design. This is not a book for beginners and some advanced concepts will be
covered.

2. What is Aspect-Oriented
Programming?
2.1 Aspect-Oriented Programming in a Nutshell

Aspect-oriented programming is a paradigm created to address the problem of what is called cross-
cutting concerns. A cross-cutting concern is any bit of code that affects multiple concerns or parts
of your program. These kinds of concerns are usually difficult to decouple from the rest of the
application. Because of this, cross-cutting concerns can lead to scattered, duplicated or tangled code.

What’s an example of a cross-cutting concern though? The standard boring example that’s always
given when talking about aspect-oriented programming is “logging.” While it’s not exciting, it’s a
pretty good example because it illustrates exactly the kind of problem aspect-oriented programming
was meant to solve.

Let’s say you have a pretty sizable PHP application built. All of your classes are organized neatly,
following SOLID principles. Everything is working great. Now let’s say your boss or client decides
that they want logging functionality added to the application. They want to produce some better
analytics for their customers and certain areas of the system need to log information for that to
happen.

The first thing you might do is create a logging class. All it does is log. That’s simple enough. Now
you need to figure out what areas of the system need to be logged so you find those classes and
decide you can just inject your new logger into those classes and log where needed. But wait! That
would violate the ‘S’ in SOLID. You no longer have separation of concerns because you’ve tainted
your nice clean class with logging logic.

Logger injected through constructor

1 <?php

2

3 namespace App\Service;

4

5 use Logging\Logger;

6

7 class Facebook

8 {

9 private $logger;

10

11 public function __construct(Logger $logger)

3

2. What is Aspect-Oriented Programming? 4

12 {

13 $this->logger = $logger;

14 }

15

16 public function doStuff()

17 {

18 // Do Facebook stuff...

19 $this->logger->log('Facebook stuff completed.');

20 }

21 }

Next you decide that the better way to go about it is to decorate those classes. If you’ve coded
those classes to an interface all you have to do is create a logging decorator class for each of those
classes and just inject the original class into the decorator. From the decorator you just implement
the required methods with logging and call the corresponding method from your original class.
Then you realize that you need to do this for every…single….class that you want to have logging
implemented in. Yikes! Is there a better way?

Service class implementing an interface

1 <?php

2

3 namespace App\Service;

4

5 use App\Service\FacebookInterface;

6

7 class Facebook implements FacebookInterface

8 {

9 public function doStuff()

10 {

11 // Do Facebook stuff...

12 }

13 }

2. What is Aspect-Oriented Programming? 5

Logging decorator class

1 <?php

2

3 namespace App\Service;

4

5 use App\Service\Facebook;

6 use App\Service\FacebookInterface;

7

8 class LoggingFacebook implements FacebookInterface

9 {

10 private $fb;

11

12 public function __construct(Facebook $fb)

13 {

14 $this->fb = $fb;

15 }

16

17 public function doStuff()

18 {

19 $this->fb->doStuff();

20 // Log some stuff

21 }

22 }

2.2 What Does Aspect-Oriented Programming Look
Like?

There is. In aspect-oriented programming we can take a look at our code from the point of view of
our logger. In other words, we look it through the logging aspect, hence the name. We want to add
logging functionality throughout our code. With aspect-oriented programming we can apply that
functionality to those other areas with touching the original code. Sound magical? Here’s what a
simple aspect-oriented logger might look like in PHP.

2. What is Aspect-Oriented Programming? 6

An aspect-oriented approach to logging

1 <?php

2

3 namespace App\Aspect;

4

5 use Go\Aop\Aspect;

6 use Go\Aop\Intercept\MethodInvocation;

7 use Go\Lang\Annotation\After;

8

9 class Monitor implements Aspect

10 {

11

12 /**

13 * Log after a method is executed

14 *

15 * @param MethodInvocation $invocation Invocation

16 * @After("execution(public Stark\Service\Facebook->*(*))")

17 */

18 public function afterMethodExecution(MethodInvocation $invocation)

19 {

20 $this->log('Executed method: ' . $invocation->getMethod()->getName());

21 }

22

23 private function log($msg)

24 {

25 // Log stuff

26 }

27 }

2.3 Using Aspects in PHP

As of this writing, PHP doesn’t have any built in functions or libraries for aspect-oriented
programming. There is a PECL extension called AOP-PHP that’s currently in beta and it provides
some simple functions for applying logic to existing code. This book won’t cover that extension but
you can find the source code and documentation on GitHub¹.

The example above uses a library called Go! AOP. It’s a user-land library, meaning it’s written in
pure PHP and can be installed using a tool like composer. This book and later examples will focus
on using this library. The source code and documentation can be found on GitHub² as well.

¹https://github.com/AOP-PHP/AOP
²https://github.com/lisachenko/go-aop-php

https://github.com/AOP-PHP/AOP
https://github.com/lisachenko/go-aop-php
https://github.com/AOP-PHP/AOP
https://github.com/lisachenko/go-aop-php

	Table of Contents
	1. Introduction and Prerequisites
	1.1 Introduction
	1.2 A Super Short History
	1.3 Prerequisites

	2. What is Aspect-Oriented Programming?
	2.1 Aspect-Oriented Programming in a Nutshell
	2.2 What Does Aspect-Oriented Programming Look Like?
	2.3 Using Aspects in PHP

