

An IDE Called Vim

Claudio Ribeiro

This book is for sale at http://leanpub.com/anidecalledvim

This version was published on 2022-01-29

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2018 - 2022 Claudio Ribeiro

http://leanpub.com/anidecalledvim
http://leanpub.com/
http://leanpub.com/manifesto

Contents

CONTENTS 1

Move Around

In the previous section, we talked about Vimmodes and introduced
some very basic commands and motions. We also saw how we
could change from mode to mode. In this chapter, we will cover
basic movement on Vim in a more structured and detailed way.

When it comes to moving around, Vim is also pretty unique.

As we know, Vim is an evolution of Vi, the text editor from 1976.

In 1976, Bill Joy(2), the creator of Vi used an ADM-3A(3) terminal.
What was particular about the ADM-3A is that its keyboard was a
bit different from what we are used to today. It didn’t have the
cursor keys, and the <ESC> key was located where we have our
<CAPS LOCK> key now.

ADM-3A keyboard

This little difference influences tremendously the way we use Vim.
Though it is possible to use the cursor keys to move around in Vim,
we normally opt to use the keys used in the original Vi version: h,
j, k, l, for left, down, up and right respectively. Why do we do
this? Because it allows us to rest our hands on the home row and
not waste movement between the cursor keys and the rest of the
keyboard.

The fact that the <ESC> also used to be in the home row reinforces
the fact that no movement was wasted to change between modes
while using Vi.

CONTENTS 2

This “No Wasted Movement” philosophy is what makes Vim a
very powerful and productive text editor, and from now on I
recommend getting used to the h, j, k and l keys to move around.

Navigating frommode to mode

When we’re talking about moving around Vim, being able to move
from mode to mode is a top priority.

Even though we covered Vim modes and how to reach them in a
past chapter, I think we should get a second look at them right now.

Normal mode is where we will be for most of our time. So our
focus will be reaching all the other modes through Normal mode.
Remember that at any time we can switch to Normal mode by
hitting the <ESC> key.

To reach Visual mode we hit the <v> key from Normal mode.

To reach Command line mode we hit <:> from Normal mode.

Insert mode is the one that has some nuances to it. So we’re going
to condense all the ways we can reach it from Normal mode in the
following table:

Insert Mode mode Command
Append after cursor <a>

Append before cursor <i>

Append at the end of the line <A>

Append at the beginning of the line <I>

Change at the end of the line <C>

Substitute characters <s>

All the commands above change our mode to Insert mode but in
different conditions. It is useful to know them, as it can speed up
our code writing by a lot.

This is how we can access the most common modes in Vim. Be sure
to experiment with them as they are an indispensable tool to have
when working with Vim.

CONTENTS 3

Locating ourselves in a file

Another good thing to have in any text or code editor is the ability
to know where we are in the file. Vim provides us that information
with the <C-g> command. This command will provide not only the
line we are on but also how many lines the file has and the column
we’re on. This information is provided in the following format:

1 /tmp/tutorUj1jxk" line 510 of 970 --52%-- col 1

We also have the ability to jump to either to start or the end of a
file:

• <G> will move us to the bottom of the file,
• <gg> will move us to the top of the file.

Of course, these commands are available only in Normal mode.

The % character

We end this Moving around section by analyzing the <%> command.
This command is called theMatching parenthesis search.

When putting the cursor over any of the following (,), [,],{ or }
characters; pressing <%> will move the cursor automatically to the
matching parenthesis or bracket.

This is a specially useful command when writing code.

There is a lot more that can be said about moving around in VIm,
and a lot more commands available. This is just a collection of
basics that can be used to quickstart us. When we look at Basic
Motions later on this chapter we will see how we can move around
muchmore quickly and accurately. But until then, these commands
are more than enough to use and be productive with Vim.

	Table of Contents

