

Android 4.4 App Development Essentials

Neil Smyth

This book is for sale at http://leanpub.com/android44appdevelopmentessentials

This version was published on 2014-02-15

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2014 Neil Smyth

http://leanpub.com/android44appdevelopmentessentials
http://leanpub.com
http://leanpub.com/manifesto

Contents

1. Introduction . 1
1.1 Downloading the Code Samples . 1
1.2 Feedback . 1
1.3 Errata . 2

2. Setting up an Android Development Environment . 3
2.1 System Requirements . 3
2.2 Installing the Java Development Kit (JDK) . 3
2.3 Linux JDK Installation . 5
2.4 Downloading the Android Developer Tools (ADT) Bundle 6
2.5 Installing the ADT Bundle . 7
2.6 Installing the Latest Android SDK Packages . 9
2.7 Making the Android SDK Tools Command-line Accessible 11
2.8 Updating the ADT . 14
2.9 Adding the ADT Plugin to an Existing Eclipse Integration 14
2.10 Summary . 17

3. Creating an Android Virtual Device (AVD) . 18
3.1 About Android Virtual Devices . 18
3.2 Creating a New AVD . 19
3.3 Starting the Emulator . 21
3.4 AVD Command-line Creation . 22
3.5 Android Virtual Device Configuration Files . 23
3.6 Moving and Renaming an Android Virtual Device . 24
3.7 Summary . 24

4. Creating an Example Android Application . 25
4.1 Creating a New Android Project . 25
4.2 Defining the Project Name and SDK Settings . 26
4.3 Project Configuration Settings . 28
4.4 Configuring the Launcher Icon . 29
4.5 Creating an Activity . 30
4.6 Running the Application in the AVD . 32
4.7 Stopping a Running Application . 34

CONTENTS

4.8 Modifying the Example Application . 37
4.9 Reviewing the Layout and Resource Files . 42
4.10 Summary . 43

1. Introduction
The goal of this book is to teach the skills necessary to develop Android based applications using
the Eclipse Integrated Development Environment (IDE) and the Android 4.4 Software Development
Kit (SDK).

Beginning with the basics, this book provides an outline of the steps necessary to set up an Android
development and testing environment. An introduction to the architecture of Android is followed
by an in-depth look at the design of Android applications and user interfaces. More advanced topics
such as database management, content providers and intents are also covered, as are touch screen
handling, gesture recognition, camera access and the playback and recording of both video and
audio. This edition of the book also covers features introduced with Android 4.4 including printing,
transitions and cloud-based file storage.

In addition to covering general Android development techniques, the book also includes Google Play
specific topics such as implementing maps using the Google Maps Android API and submitting apps
to the Google Play Developer Console.

Assuming you already have some Java programming experience, are ready to download Eclipse
and the Android SDK, have access to a Windows, Mac or Linux system and ideas for some apps to
develop, you are ready to get started.

1.1 Downloading the Code Samples

The source code and Eclipse project files for the examples contained in this book are available for
download at:

http://www.ebookfrenzy.com/retail/android44/index.php¹

Once the file has been downloaded and unzipped, the samples may be imported into an existing
Eclipse workspace by selecting the Eclipse File -> Import… menu option and choosing the Android
-> Existing Android Code Into Workspace category. When prompted, select the folder containing the
sample project folders as the Root Directory before choosing the sample projects to be imported from
the resulting list.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or
have any comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

¹http://www.ebookfrenzy.com/retail/android44/index.php

http://www.ebookfrenzy.com/retail/android44/index.php
http://www.ebookfrenzy.com/retail/android44/index.php

1. Introduction 2

1.3 Errata

Whilst we make every effort to ensure the accuracy of the content of this book, it is inevitable that
a book covering a subject area of this size and complexity may include some errors and oversights.
Any known issues with the book will be outlined, together with solutions, at the following URL:

http://www.ebookfrenzy.com/errata/android44.html²

In the event that you find an error not listed in the errata, please let us know by emailing our
technical support team at feedback@ebookfrenzy.com. They are there to help you and will work to
resolve any problems you may encounter.

²http://www.ebookfrenzy.com/errata/android44.html

http://www.ebookfrenzy.com/errata/android44.html
http://www.ebookfrenzy.com/errata/android44.html

2. Setting up an Android Development
Environment
Before any work can begin on the development of an Android application, the first step is to
configure a computer system to act as the development platform. This involves a number of
steps consisting of installing the Java Development Kit (JDK), the Eclipse Integrated Development
Environment (IDE) and the appropriate Android Software Development Kit (SDK). In addition to
these steps, it will also be necessary to install the Eclipse Android Development Tool (ADT) Plug-in.

This chapter will cover the steps necessary to install the requisite components for Android
application development on Windows, Mac OS X and Linux based systems.

2.1 System Requirements

Android application development may be performed on any of the following system types:

· Windows XP (32-bit)

· Windows Vista (32-bit or 64-bit)

· Windows 7 (32-bit or 64-bit)

· Windows 8 / Windows 8.1

· Mac OS X 10.5.8 or later (Intel based systems only)

· Linux systems with version 2.7 or later of GNU C Library (glibc)

2.2 Installing the Java Development Kit (JDK)

Both the Eclipse IDE and Android SDK were developed using the Java programming language.
Similarly, Android applications are also developed using Java. As a result, the Java Development Kit
(JDK) is the first component that must be installed.

Android development requires the installation of the Standard Edition of the Java Platform
Development Kit version 6 or later. Java is provided in both development (JDK) and runtime (JRE)
packages. For the purposes of Android development, the JDK must be installed.

2. Setting up an Android Development Environment 4

2.2.1 Windows JDK Installation

For Windows systems, the JDK may be obtained from Oracle Corporation’s website using the
following URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html³

Assuming that a suitable JDK is not already installed on your system, download the latest JDK
package that matches the destination computer system. Once downloaded, launch the installation
executable and follow the on screen instructions to complete the installation process.

2.2.2 Mac OS X JDK Installation

The Java SE 6 environment or a more recent version should already be installed on the latest Mac OS
X versions. To confirm the version that is installed, open a Terminal window and enter the following
command:

java -version

Assuming that Java is currently installed, output similar to the following will appear in the terminal
window:

java version "1.6.0_65"

Java(TM) SE Runtime Environment (build 1.6.0_65-b14-462-11M4609)

Java HotSpot(TM) 64-Bit Server VM (build 20.65-b04-462, mixed mode)

In the event that Java is not installed, issuing the “java” command in the terminal window will
result in the appearance of a message which reads as follows together with a dialog on the desktop
providing the option to display the Oracle Java web page:

No Java runtime present, requesting install

The exact steps that need to be taken to install Java vary from one release of Mac OS X to the next
so check the Apple documentation for your particular Mac OS X version.

At the time of writing the latest release of Mac OS X is 10.9 (Mavericks). To install Java on this
release of Mac OS X, open a Safari browser window and navigate to the following URL:

http://support.apple.com/kb/DL1572⁴

This should display the Java for OS X 2013-005 web page. Click on theDownload button to download
the Java package to your system. Open the downloaded disk image (.dmg file) and double click on
the JavaForOSX.pkg package file (Figure 2‑1) contained within:

³http://www.oracle.com/technetwork/java/javase/downloads/index.html
⁴http://support.apple.com/kb/DL1572

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://support.apple.com/kb/DL1572
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://support.apple.com/kb/DL1572

2. Setting up an Android Development Environment 5

Figure 2‑1

The Java for OS X installer windowwill appear and take you through the steps involved in installing
the JDK. Once the installation is complete, return to the Terminal window and run the following
command, at which point the previously outlined Java version information should appear:

java -version

2.3 Linux JDK Installation

Firstly, if the chosen development system is running the 64-bit version of Ubuntu then it is essential
that the 32-bit library support package be installed:

sudo apt-get install ia32-libs

As with Windows based JDK installation, it is possible to install the JDK on Linux by downloading
the appropriate package from the Oracle web site, the URL for which is as follows:

http://www.oracle.com/technetwork/java/javase/downloads/index.html⁵

Packages are provided by Oracle in RPM format (for installation on Red Hat Linux based systems
such as Red Hat Enterprise Linux, Fedora and CentOS) and as a tar archive for other Linux
distributions such as Ubuntu.

On Red Hat based Linux systems, download the .rpm JDK file from the Oracle web site and perform
the installation using the rpm command in a terminal window. Assuming, for example, that the
downloaded JDK file was named jdk-7u45-linux-x64.rpm, the commands to perform the installation
would read as follows:

⁵http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

2. Setting up an Android Development Environment 6

su

rpm --ihv jdk-7u45-linux-x64.rpm

To install using the compressed tar package (tar.gz) perform the following steps:

1. Create the directory into which the JDK is to be installed (for the purposes of this example we
will assume /home/demo/java).

2. Download the appropriate tar.gz package from the Oracle web site into the directory.
3. Execute the following command (where <jdk-file> is replaced by the name of the downloaded

JDK file):

tar xvfz <jdk-file>.tar.gz

1. Remove the downloaded tar.gz file.
2. Add the path to the bin directory of the JDK installation to your $PATH variable. For example,

assuming that the JDK ultimately installed into /home/demo/java/jdk1.7.0_45 the following
would need to be added to your $PATH environment variable:

/home/demo/java/jdk1.7.0_45/bin

This can typically be achieved by adding a command to the .bashrc file in your home directory
(specifics may differ depending on the particular Linux distribution in use). For example, change
directory to your home directory, edit the .bashrc file contained therein and add the following line
at the end of the file (modifying the path to match the location of the JDK on your system):

export PATH=/home/demo/java/jdk1.7.0_45/bin:$PATH

Having saved the change, future terminal sessions will include the JDK in the $PATH environment
variable.

2.4 Downloading the Android Developer Tools (ADT)
Bundle

Most of thework involved in developing applications for Androidwill be performed using the Eclipse
Integrated Development Environment (IDE). If you are already using Eclipse to develop for other
platforms, then the Android Developer Tools (ADT) plug-in can be integrated into your existing
Eclipse installation (a topic covered later in this chapter). If, on the other hand, you are entirely new

2. Setting up an Android Development Environment 7

to Eclipse based development, the most convenient path to take is to install a package known as
the ADT Bundle. This bundle includes many of the tools necessary to begin developing Android
applications in a single download.

The ADT Bundle may be downloaded from the following web page:

https://developer.android.com/sdk/index.html⁶

From this page, either click on the download button if it lists the correct platform (for example on a
Windows based web browser the button will read “Download the SDK ADT Bundle for Windows”),
or select the “Download for Other Platforms” option to manually select the appropriate package for
your platform and operating system. On the subsequent screen, accept the terms and conditions, the
target architecture of your computer system (32-bit or 64-bit) and click on the download button. Note
that your choice of 32-bit or 64-bit should match the architecture chosen for the JDK installation.
Attempting to run a 64-bit ADT bundle using a 32-bit JDK, for example, will result in errors when
attempting to launch Eclipse.

2.5 Installing the ADT Bundle

The ADT Bundle is downloaded as a compressed ZIP archive file which must be unpacked to
complete the installation process. The exact steps to achieve this differ depending on the operating
system.

2.5.1 Installation on Windows

Locate the downloaded ADT Bundle zip file in a Windows Explorer window, right-click on it and
select the Extract All… menu option. In the resulting dialog, choose a suitable location into which
to unzip the file before clicking on the Extract button. When choosing a suitable location, keep in
mind that the extraction will create a sub-folder in the chosen location named either adt-bundle-
windows-x86 or adt-bundle-windows-x86_64 containing the bundle packages.

Once the extraction is complete, navigate in Windows Explorer to the directory containing the ADT
bundle, move into the eclipse sub-folder and double click on the eclipse executable to start the Eclipse
IDE environment. For easier future access, right click on the eclipse executable and select Pin to
Taskbar from the resulting menu.

It is possible that Windows will display a Security Warning dialog before Eclipse will launch stating
that the publisher could not be verified. In the event that this warning appears, uncheck the “Always
ask before opening this file” option before clicking theRun button. Once invoked, Eclipse will prompt
for the location of the workspace. All projects will be stored by default into this folder. Browse for
a suitable location, or choose the default offered by Eclipse and click on OK.

⁶https://developer.android.com/sdk/index.html

https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html

2. Setting up an Android Development Environment 8

2.5.2 Installation on Mac OS X

When using Safari to download the ADT bundle archive, it is possible that Safari will automatically
unzip the file once the download is complete (this is typically the default setting for Safari these
days). This being the case, the location into which the download was saved will contain a directory
named as follows:

adt-bundle-mac-x86_64-<version>

Using the Finder, simply move this folder to a permanent location on your file system.

In the event that the browser did not automatically unzip the bundle archive, open a terminal
window, change directory to the location where Eclipse is to be installed and execute the following
command:

unzip /<path to package>/<package name>.zip

For example, assuming a package file named adt-bundle-mac-x86_64-20131030.zip has been down-
loaded to /home/demo/Downloads, the following command would be needed to install Eclipse:

unzip /home/demo/Downloads/adt-bundle-mac-x86_64-20131030.zip

Note that, in the above example, the bundle will be installed into a sub-directory named adt-bundle-
mac-x86_64-20131030. Assuming, therefore, that the above command was executed in /Users/demo,
the software packages will be unpacked into /Users/demo/adt-bundle-mac-x86_64-20131030.Within
this directory, the files comprising the Eclipse IDE are installed in a sub-directory named eclipse.

Using the Finder tool, navigate to the eclipse sub-directory of the ADT bundle installation directory
and double click on the eclipse executable to launch the application. For future easier access to the
tool, simply drag the eclipse icon from the Finder window and drop it onto the dock.

2.5.3 Installation on Linux

On Linux systems, open a terminal window, change directory to the location where Eclipse is to be
installed and execute the following command:

unzip /<path to package>/<package name>.zip

For example, assuming a package file named adt-bundle-linux-x86-20131030.zip has been down-
loaded to /home/demo/Downloads, the following command would be needed to install Eclipse:

2. Setting up an Android Development Environment 9

unzip /home/demo/Downloads/adt-bundle-linux-x86-20131030.zip

Note that the bundle will be installed into a sub-directory named either adt-bundle-linux-x86-
20131030 or adt-bundle-linux-x86_64-20131030 depending on whether the 32-bit or 64-bit edition
was downloaded. Assuming, therefore, that the above command was executed in /home/demo, the
software packages will be unpacked into /home/demo/adt-bundle-linux-x86-20131030. Within this
directory, the files comprising the Eclipse IDE are installed in a sub-directory named eclipse.

To launch Eclipse, open a terminal window, change directory to the eclipse sub-directory of the ADT
bundle installation directory and execute the following command:

./eclipse

Once invoked, Eclipse will prompt for the location of the workspace. All projects will be stored by
default into this folder. Browse for a suitable location, or choose the default offered by Eclipse and
click on OK.

Having verified that the Eclipse IDE is installed correctly, keep Eclipse running so that it can be used
to install additional Android SDK packages.

2.6 Installing the Latest Android SDK Packages

The steps performed so far have installed Java, the Eclipse IDE and the current set of default Android
SDK packages. Before proceeding, it is worth taking some time to verify which packages are installed
and to install any missing packages.

This task can be performed using the Android SDK Manager, which may be launched from within
the Eclipse tool by selecting theWindow -> Android SDK Manager menu option. Once invoked, the
SDK Manager tool will appear as illustrated in Figure 2‑2:

2. Setting up an Android Development Environment 10

Figure 2‑2

Once the SDK Manager is running, return to the main Eclipse window and select the File -> Exit
menu option to exit from the Eclipse environment. This will leave the Android SDK Manager
running whilst ensuring that the Eclipse session does not conflict with the installation process.

Begin by checking that the SDK Path: setting at the top of the SDK Manager window matches the
location into which the ADT Bundle package was unzipped. If it does not, relaunch Eclipse and
select the Window -> Preferences option. In the Preferences dialog, select the Android option from
the left hand panel and change the SDK Location setting so that it references the sdk sub-folder of
the directory into which the ADT Bundle was unzipped before clicking on Apply followed by OK.

Within the Android SDK Manager, make sure that the check boxes next to the following packages
are listed as Installed in the Status column:

2. Setting up an Android Development Environment 11

· Tools > Android SDK Tools

· Tools > Android SDK Platform-tools

· SDK Platform Android 4.4 (API 19) > SDK Platform

· SDK Platform Android 4.4 (API 19) > ARM EABI v7a System Image

· Extras > Android Support Library

In the event that any of the above packages are listed as Not Installed, simply select the checkboxes
next to those packages and click on the Install packages button to initiate the installation process.
In the resulting dialog, accept the license agreements before clicking on the Install button. The
SDK Manager will then begin to download and install the designated packages. As the installation
proceeds, a progress bar will appear at the bottom of the manager window indicating the status of
the installation.

Once the installation is complete, review the package list and make sure that the selected packages
are now listed as Installed in the Status column. If any are listed as Not installed, make sure they
are selected and click on the Install packages… button again.

2.7 Making the Android SDK Tools Command-line
Accessible

Most of the time, the underlying tools of the Android SDK will be accessed from within the Eclipse
environment. That being said, however, there will also be instances where it will be useful to be
able to invoke those tools from a command prompt or terminal window. In order for the operating
system on which you are developing to be able to find these tools, it will be necessary to add them
to the system’s PATH environment variable.

Regardless of operating system, the PATH variable needs to be configured to include the following
paths (where path-to-adt-installation represents the file system location into which the ADT bundle
was installed):

path-to-adt-installation/sdk/tools

path-to-adt-installation/sdk/platform-tools

The steps to achieve this are operating system dependent:

2.7.1 Windows 7

1. Right click on Computer in the desktop start menu and select Properties from the resulting
menu.

2. In the properties panel, select the Advanced System Settings link and, in the resulting dialog,
click on the Environment Variables… button.

2. Setting up an Android Development Environment 12

3. In the Environment Variables dialog, locate the Path variable in the System variables list,
select it and click on Edit…. Locate the end of the current variable value string and append the
path to the android platform tools to the end, using a semicolon to separate the path from the
preceding values. For example, assuming the ADT bundle was installed into /Users/demo/adt-
bundle-windows-x86_64-20131030, the following would be appended to the end of the current
Path value:

;C:\Users\demo\adt-bundle-windows-x86_64-20131030\sdk\platform-tools;C:\Users\dem\

o\adt-bundle-windows-x86_64-20131030\sdk\tools

1. Click on OK in each dialog box and close the system properties control panel.

Once the above steps are complete, verify that the path is correctly set by opening a Command
Prompt window (Start -> All Programs -> Accessories -> Command Prompt) and at the prompt
enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders.
Verify that the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command line options when executed.

Similarly, check the tools path setting by attempting to launch the Android SDK Manager:

android

In the event that a message similar to following message appears for one or both of the commands,
it is most likely that an incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

operable program or batch file.

2. Setting up an Android Development Environment 13

2.7.2 Windows 8.1

1. On the start screen, move the mouse to the bottom right hand corner of the screen and select
Search from the resulting menu. In the search box, enter Control Panel. When the Control
Panel icon appears in the results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From
the list of icons select, the one labeled System.

3. Follow the steps outlined for Windows 7 starting from step 2 through to step 4.

Open the command prompt window (move the mouse to the bottom right hand corner of the screen,
select the Search option and enter cmd into the search box). SelectCommand Prompt from the search
results.

Within the Command Prompt window, enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders.
Verify that the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command line options when executed.

Similarly, check the tools path setting by attempting to launch the Android SDK Manager:

android

In the event that a message similar to following message appears for one or both of the commands,
it is most likely that an incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

operable program or batch file.

2.7.3 Linux

On Linux this will involve once again editing the .bashrc file. Assuming that the bundle package was
installed into /home/demo/adt-bundle-linux-x86-20131030, the export line in the .bashrc file would
now read as follows:

2. Setting up an Android Development Environment 14

export PATH=/home/demo/java/jdk1.7.0_10/bin:/home/demo/adt-bundle-linux-x86-20131\

030/sdk/platform-tools:/home/demo/adt-bundle-linux-x86-20131030/sdk/tools:$PATH

2.7.4 Mac OS X

A number of techniques may be employed to modify the $PATH environment variable onMac OS X.
Arguably the cleanest method is to add a new file in the /etc/paths.d directory containing the paths
to be added to $PATH. Assuming an installation location of /Users/demo/adt-bundle-mac-x86_64-
20131030, the path may be configured by creating a new file named android-sdk in the /etc/paths.d
directory containing the following lines:

/Users/demo/adt-bundle-mac-x86_64-20131030/sdk/tools

/Users/demo/adt-bundle-mac-x86_64-20131030/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo commandwhen creating
the file. For example:

sudo vi /etc/paths.d/android-sdk

2.8 Updating the ADT

From time to time new versions of the Android ADT and SDK are released. New versions of the SDK
are installed using the Android SDKManager. When new versions of the SDK have been installed on
your system the ADT will also often need to be updated to a matching version. The latest version of
the ADT can be installed by selecting the Eclipse Help -> Install New Software menu option. When
prompted, enter the following URL and a suitable name for the update (the choice of name is not
important):

https://dl-ssl.google.com/android/eclipse/

Having entered the required information Eclipse will list any available updates. If updates are listed,
simply proceed with the installation process. Once complete, restart Eclipse to use the latest version
of the ADT.

2.9 Adding the ADT Plugin to an Existing Eclipse
Integration

The steps outlined so far in this chapter have assumed that the Eclipse IDE is not already installed
on your system. In the event that you are already using Eclipse for Java based development, the
appropriate Android development tools and SDKs can be added to this existing Eclipse installation.
Eclipse editions with which the ADT Plugin is compatible are as follows:

2. Setting up an Android Development Environment 15

· Eclipse IDE for Java Developers

· Eclipse Classic (versions 3.5.1 and higher)

· Eclipse IDE for Java EE Developers

· Eclipse for Mobile Developers

The ADT Plugin for Eclipse adds a range of Android specific features to what is otherwise a general-
purpose Java edition of the Eclipse environment. To install this plugin, launch Eclipse and select the
Help –> Install New Software… menu option. In the resulting window, click on the Add… button to
display the Add Repository dialog. Enter “ADT Plugin” into the Name field and the following URL
into the Location field:

https://dl-ssl.google.com/android/eclipse/

Click on the OK button and wait while Eclipse connects to the Android repository. Once the
information has been downloaded, new itemswill be listed entitledDeveloper Tools andNDKPlugins
as illustrated in Figure 2‑3:

2. Setting up an Android Development Environment 16

Figure 2‑3

Select the checkbox next to the Developer Tools entry and click on the Next > button. After
requirements and dependencies have been calculated by the installer, a more detailed list of the
packages to be installed will appear. Once again click on the Next > button to proceed. On the
subsequent licensing page, select the option to accept the terms of the agreements (assuming that
you do, indeed, agree) and click on Finish to complete the installation. During the download and
installation process, you may be prompted to confirm that you wish to install unsigned content. In
the event that this happens, simply click on the option to proceed with the installation.

When the ADT Plugin installation is complete, a dialog will appear providing the option to restart
Eclipse in order to complete the installation. Click on Yes and wait for the tool to exit and re-launch.

Upon restarting, theWelcome to Android Development dialog will appear as illustrated in Figure 2‑4:

2. Setting up an Android Development Environment 17

Figure 2‑4

At this stage there is no existing SDK installed so theUse Existing SDKs choice is not a viable option.
Unfortunately, the ADT Plugin does not provide the option at this point to install the SDKs of our
choice so we will need to install the latest available SDK version. With this in mind, select the option
to install the latest available version of the Android APIs. Make a note of the Target Location path
and change it if you prefer the SDKs to be installed in a different location, then click Next. Choose
whether to send usage information to Google, accept all the licensing terms and click on Install. The
Android SDK Manager will now download and install the latest Android SDKs.

At this point, the Eclipse environment is ready to begin the development of Android applications.

2.10 Summary

Prior to beginning the development of Android based applications, the first step is to set up a suitable
development environment. This consists of the Java Development Kit (JDK), Android SDKs, Eclipse
IDE and the Android ADT Plugin for Eclipse. In this chapter, we have covered the steps necessary
to install these packages on Windows, Mac OS X and Linux.

3. Creating an Android Virtual Device
(AVD)
In the course of developing Android apps it will be necessary to compile and run an application
multiple times. An Android application may be tested by installing and running it either on a
physical device or in an Android Virtual Device (AVD) emulator environment. Before an AVD can
be used, it must first be created and configured to match the specification of a particular device
model. The goal of this chapter, therefore, is to work through the steps involved in creating such a
virtual device using the Nexus 7 tablet as a reference example.

3.1 About Android Virtual Devices

AVDs are essentially emulators that allow Android applications to be tested without the necessity to
install the application on a physical Android based device. An AVD may be configured to emulate
a variety of hardware features including options such as screen size, memory capacity and the
presence or otherwise of features such as a camera, GPS navigation support or an accelerometer.
As part of the installation process outlined in the previous chapter, a number of emulator template
definitions were installed allowing AVDs to be configured for a range of different devices. Additional
templates may be loaded or custom configurations created to match any physical Android device
by specifying properties such as process type, memory capacity, screen size and density. Check the
online developer documentation for your device to find out if emulator definitions are available for
download and installation into the ADT environment.

When launched, an AVD will appear as a window containing an emulated Android device
environment. Figure 3‑1, for example, shows an AVD session configured to emulate the Google
Nexus 7 device.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used
either in command-line mode or with a more user-friendly graphical user interface.

3. Creating an Android Virtual Device (AVD) 19

Figure 3‑1

3.2 Creating a New AVD

In order to test the behavior of an application, it will be necessary to create an AVD for an Android
device configuration.

To create a new AVD, the first step is to launch the AVD Manager. This can be achieved from
within the Eclipse environment using theWindow -> Android Virtual Device Manager menu option.
Alternatively, the tool may be launched from the command-line using the following command:

android avd

Once launched, the tool will appear as outlined in Figure 3‑2. Assuming a new Android SDK
installation, no AVDs will currently be listed:

3. Creating an Android Virtual Device (AVD) 20

Figure 3‑2

Begin the AVD creation process by clicking on the New… button in order to invoke the Create a
New Android Virtual Device (AVD) dialog. Within the dialog, perform the following steps to create
a first generation Nexus 7 compatible emulator:

1. Enter a descriptive name (for exampleNexus7) into the name field. Note that spaces and other
special characters are not permitted in the name.

2. Set the Device menu to Nexus 7 (7.27” 800 x 1280: tvhdpi).
3. Set the Target menu to Android 4.4 – API Level 19.
4. Set the CPU/ABI menu to ARM (armeabi-v7a).
5. Leave the default RAM value in Memory Options and the Internal Storage value unchanged

from the default settings. Keep in mind however, that it may be necessary to reduce the RAM
value below 768M on Windows systems with less available memory.

6. If the host computer contains a web cam the Front Camera: emulation may be configured to
use this camera. Alternatively, an emulated camera may be selected. If camera functionality
is not required by the application, simply leave this set to None.

Whether or not you enable theHardware Keyboard andDisplay skin with hardware controls options
is optional. When the hardware keyboard option is selected, it will be possible to use the physical

3. Creating an Android Virtual Device (AVD) 21

keyboard on the system on which the emulator is running. As such, the Android software keyboard
will not appear within the emulator.

The skin with hardware controls option controls whether or not buttons appear as part of the
emulator to simulate the hardware buttons present on the sides of the physical Android device.

Note that it may also be possible to speed the performance of the emulator by enabling the Use Host
GPU option. In the event that the emulator crashes during startup when this option is selected, edit
the virtual device properties and disable this option.

Figure 3‑3 illustrates the dialog with the appropriate settings implemented for a Nexus 7 emulator.
Once the configuration settings are complete, click on the OK button.

Figure 3‑3

With the AVD created, the AVD Manager may now be closed. If future modifications to the AVD
are necessary, simply re-open the AVDManager, select the AVD from the list and click on the Edit…
button.

3.3 Starting the Emulator

To perform a test run of the newly created AVD emulator, simply select the emulator from the
Android Virtual Device Manager and click on the Start… button followed by Launch in the resulting
Launch Options dialog. The emulator will appear in a new window and, after a short period of time,
the “android” logo will appear in the center of the screen. The first time the emulator is run, it can
take up to 10 minutes for the emulator to fully load and start. On subsequent invocations, this will
typically reduce to a few minutes. In the event that the startup time on your system is considerable,
do not hesitate to leave the emulator running. The ADT system will detect that it is already running

3. Creating an Android Virtual Device (AVD) 22

and attach to it when applications are launched, thereby saving considerable amounts of startup
time.

Once fully loaded, the emulator will display either the standard Android lock screen.

3.4 AVD Command-line Creation

As previously discussed, in addition to the graphical user interface it is also possible to create a new
AVD directly from the command-line. This is achieved using the android tool in conjunction with
some command-line options. Once initiated, the tool will prompt for additional information before
creating the new AVD.

Assuming that the system has been configured such that the Android SDK tools directory is included
in the PATH environment variable, a list of available targets for the new AVD may be obtained by
issuing the following command in a terminal or command window:

android list targets

The resulting output from the above command will contain a list of Android SDK versions that are
available on the system. For example:

Available Android targets:

id: 1 or "android-19"

Name: Android 4.4

Type: Platform

API level: 19

Revision: 1

Skins: HVGA, QVGA, WQVGA400, WQVGA432, WSVGA, WVGA800 (default), WVGA854, WX\

GA720, WXGA800, WXGA800-7in

ABIs : armeabi-v7a

The syntax for AVD creation is as follows:

android create avd -n <name> -t <targetID> [-<option> <value>]

For example, to create a new AVD named Nexus7 using the target id for the Android 4.4 API level
19 device (in this case id 1), the following command may be used:

3. Creating an Android Virtual Device (AVD) 23

android create avd -n Nexus7 -t 1

The android tool will create the new AVD to the specifications required for a basic Android 4.4
device, also providing the option to create a custom configuration to match the specification of a
specific device if required. Once a new AVD has been created from the command line, it may not
show up in the Android Device Manager tool until the Refresh button is clicked.

In addition to the creation of new AVDs, a number of other tasks may be performed from the
command line. For example, a list of currently available AVDs may be obtained using the list avd
command line arguments:

android list avd

C:\Users\nas>android list avd

Available Android Virtual Devices:

Name: KindleFireHD7

Path: C:\Users\nas\.android\avd\KindleFireHD7.avd

Target: Kindle Fire HD 7" (Amazon)

Based on Android 4.0.3 (API level 15)

ABI: armeabi-v7a

Skin: 800x1280

Name: Nexus7

Path: C:\Users\nas\.android\avd\Nexus7.avd

Target: Android 4.4 (API level 19)

ABI: armeabi-v7a

Skin: 800x1280

Name: Nexus7Google

Path: C:\Users\nas\.android\avd\Nexus7Google.avd

Target: Google APIs (Google Inc.)

Based on Android 4.2.2 (API level 17)

ABI: armeabi-v7a

Skin: 800x1280

Similarly, to delete an existing AVD, simply use the delete option as follows:

android delete avd --name <avd name>

3.5 Android Virtual Device Configuration Files

By default, the files associated with an AVD are stored in the .android/avd sub-directory of the
user’s home directory, the structure of which is as follows (where <avd name> is replaced by the
name assigned to the AVD):

3. Creating an Android Virtual Device (AVD) 24

<avd name>.avd/config.ini

<avd name>.avd/userdata.img

<avd name>.ini

The config.ini file contains the device configuration settings such as display dimensions andmemory
specified during the AVD creation process. These settings may be changed directly within the
configuration file and will be adopted by the AVD when it is next invoked.

The <avd name>.ini file contains a reference to the target Android SDK and the path to the AVD
files. Note that a change to the image.sysdir value in the config.ini file will also need to be reflected
in the target value of this file.

3.6 Moving and Renaming an Android Virtual Device

The current name or the location of the AVD files may be altered from the command line using the
android tool’smove avd argument. For example, to rename an AVD named Nexus7 to Nexus7B, the
following command may be executed:

android move avd -n Nexus7 -r Nexus7B

To physically relocate the files associated with the AVD, the following command syntax should be
used:

android move avd -n <avd name> -p <path to new location>

For example, to move an AVD from its current file system location to /tmp/Nexus7Test:

android move avd -n Nexus7 -p /tmp/Nexus7Test

Note that the destination directory must not already exist prior to executing the command to move
an AVD.

3.7 Summary

A typical application development process follows a cycle of coding, compiling and running in a
test environment. Android applications may be tested on either a physical Android device or using
an Android Virtual Device (AVD) emulator. AVDs are created and managed using the Android AVD
Manager tool which may be used either as a command line tool or using a graphical user interface.
When creating an AVD to simulate a specific Android device model it is important that the virtual
device be configured with a hardware specification that matches that of the physical device.

Now that we have created and configured an AVD, the next step is to create a simple application
and run it within the AVD.

4. Creating an Example Android
Application
The preceding chapters of this book have covered the steps necessary to configure an environment
suitable for the development of Android applications. Before moving on to slightly more advanced
topics, now is a good time to validate that all of the required development packages are installed and
functioning correctly. The best way to achieve this goal is to create a simple Android application,
compile it and then run it within an Android Virtual Device (AVD) emulator.

4.1 Creating a New Android Project

The first step in the application development process is to create a new project within the Eclipse
IDE. Begin, therefore, by launching Eclipse and accepting the default path to your workspace in the
Workspace Launcher dialog as illustrated in Figure 4‑1 (or choose another location if the default is
unsuitable). Note that if you do not wish to be prompted for the location of the workspace each time
Eclipse loads, simply select the Use this as the default and do not ask again option before clicking
on OK.

4. Creating an Example Android Application 26

Figure 4‑1

Once the workspace has been selected, the main Eclipse workbench window will appear ready for
a new project to be created. To create the new project, select the File -> New -> Android Application
Project menu option.

4.2 Defining the Project Name and SDK Settings

In theNewAndroid Project window set both theApplication Name and Project Name toAndroidTest.

The Package Name is used to uniquely identify the application within the Android application
ecosystem. It should be based on the reversed URL of your domain name followed by the name
of the application. For example, if your domain is www.mycompany.com, and the application has
been named AndroidTest, then the package name might be specified as:

4. Creating an Example Android Application 27

com.mycompany.androidtest

If you do not have a domain name, youmay also use example.com for the purposes of testing, though
this will need to be changed before an application can be published:

com.example.androidtest

The next step is to specify some SDK settings. For the purposes of this example, the Minimum
Required SDK, Target SDK and Compile With menus should all be set to API 19: Android 4.4 (Kit
Kat). Once these settings have been configured, the dialog should match that shown in Figure 4‑2:

Figure 4‑2

4. Creating an Example Android Application 28

4.3 Project Configuration Settings

With the correct settings configured, click Next > to proceed to the Configure Project screen (Figure
4‑3). Within this screen, a number of different configuration options are provided.

Make sure that the Create Activity and Create customer launcher icon options are selected. The
former setting will ensure that the project is preconfigured with a template activity that will make
the task of creating an example application easier. An activity is a single task that can be performed
by the user within the context of an application and is typically analogous to a single user interface
screen within an application. In asking for Eclipse to create an activity for us, therefore, the project
will be primed with both a window onto which a user interface may be displayed and the code to
ensure that the window appears when the application runs.

The custom launcher selection, on the other hand, will provide the option to specify the icon that
will represent the application on the device screen.

4. Creating an Example Android Application 29

Figure 4‑3

4.4 Configuring the Launcher Icon

Clicking the Next > button will proceed to the launcher icon configuration screen. Before the
application can be submitted to the Google Play app store for sale it will need to have an icon
associated with it. This icon is displayed on the screen of the Android device and is touched by
the user to launch the application. The launch icon can take the form of a set of PNG image files,
clipart or even text. Options are also provided on this screen to configure the background color of
the launcher and to change the shape surrounding the icon.

When assigning image files for the launcher icon, images for a variety of screen resolutions and
densities may be specified. If only a single image size is provided, the Android system will scale the

4. Creating an Example Android Application 30

image for different screens, potentially leading to some image quality degradation. For the purposes
of this example, however, it is adequate to use the default icon images:

Figure 4‑4

Click Next > to proceed with the configuration process.

4.5 Creating an Activity

The next step is to define the type of initial activity that is to be created for the application. A range of
different activity types is available when developing Android applications. TheMaster/Detail Flow
option will be covered in a later chapter. For the purposes of this example, however, simply select
the option to create a BlankActivity before clicking Next >.

4. Creating an Example Android Application 31

Figure 4‑5

With the Blank Activity option selected, click Next >. On the final screen (Figure 4‑6) name the
activity AndroidTestActivity. The activity will consist of a single user interface screen layout which,
for the purposes of this example, should be named activity_android_test. Finally, since this is a very
simple, single screen activity, there is no need to select a navigation type, so leave this menu set to
None.

Finally, click on Finish to initiate the project creation process.

4. Creating an Example Android Application 32

Figure 4‑6

4.6 Running the Application in the AVD

At this point, Eclipse has created a minimal example application project and opened the main
workbench screen. If the “Welcome!” panel is still displayed, close it by clicking on the “X” in the
“Android IDE” tab.

The newly created project and references to associated files are listed in the Package Explorer located
in a panel on the left hand side of the main Eclipse window. Clicking on the right facing arrow next
to the AndroidTest project name will unfold the project and list the various files and sub-folders
contained therein. This essentially mirrors the directory hierarchy and files located in the project’s
workspace folder on the local file system of the development computer:

4. Creating an Example Android Application 33

Figure 4‑7

The example project created for us when we selected the option to create an activity consists of
a user interface containing a label that will read “Hello World” when the application is executed.
In order to run the application in the AVD that was created in the chapter entitled Creating an
Android Virtual Device (AVD), simply right-click on the application name in the Package Explorer
and select Run As -> Android Application from the resulting menu. If, at this point, more than one
AVD emulator has been configured on the system, a window will appear providing the option to
select which AVD environment the application will run in. If multiple AVDs are listed, select the
Nexus7 emulator created in the earlier chapter. In the event that only one AVD is available, Eclipse
will automatically launch that virtual device. The AVD window typically appears immediately, but
a delay may be encountered as the emulator starts up and loads the Android operating system. Once
the operating system has loaded, the example application will run and appear within the emulator
as shown in Figure 4‑8:

Figure 4‑8

In the event that the activity does not automatically launch, check to see if the launch icon has

4. Creating an Example Android Application 34

appeared on the emulator screen. If it has, simply click on it to launch the application.

When the application has launched, an additional windowmay appear askingwhether or not LogCat
messages should be monitored. When an application is running, a range of diagnostic messages is
output by the system. In addition, the application developer may have included diagnostic messages
into the application code. It is generally recommended, therefore, that monitoring of these messages
be enabled.

Assuming that the application loads into the emulator and runs as expected, we have safely verified
that the Android development environment is correctly installed and configured.

4.7 Stopping a Running Application

When building and running an application for testing purposes, each time a new revision of the
application is compiled and run, the previous instance of the application running on the device or
emulator will be terminated automatically and replaced with the new version. It is also possible to
manually stop a running application from within the Eclipse environment.

To stop a running application, begin by displaying the Eclipse DDMS perspective (DDMS stands for
Dalvik Debug Monitor Server). The default configuration for Eclipse is to launch showing the Java
perspective and for a button to be located in the top right hand corner of the main Eclipse screen
(Figure 4‑9) that allows the DDMS perspective to be displayed.

4. Creating an Example Android Application 35

Figure 4‑9

In the event that this button is not present, the perspective may be displayed using the Window
-> Open Perspective -> DDMS menu option. Once selected, the DDMS perspective will appear as
illustrated in (Figure 4‑10).

4. Creating an Example Android Application 36

Figure 4‑10

The left hand panel, entitled Devices, lists any devices or emulators to which the development
environment is attached. Under each device is a list of processes currently running on that device
or emulator instance. Figure 4‑11, for example, shows the Devices panel with the AndroidTest
application running:

4. Creating an Example Android Application 37

Figure 4‑11

To terminate the AndroidTest application, select the process from the list and click on the red Stop
button located in the Devices panel toolbar.

To return to the main Java development perspective, simply click on the Java button in the Eclipse
toolbar.

4.8 Modifying the Example Application

The next step in this tutorial is to modify the user interface of our application so that it displays a
larger text view object with a different message to the one provided for us by Eclipse.

The user interface design for our activity is stored in a file named activity_android_test.xml which,
in turn, is located under res -> layout in the project workspace. Using the Package Explorer panel,
locate this file as illustrated in Figure 4‑12:

4. Creating an Example Android Application 38

Figure 4‑12

Once located, double click on the file to load it into the user interface builder tool which will appear
in the center panel of the Eclipse main window:

Figure 4‑13

In the toolbar across the top of the layout editor panel is a menu that is currently set to Nexus One.
Since we are designing a layout for the screen of a Nexus 7 device, click on the menu and select
the Nexus 7 (800 x 1280: tvhdpi) menu option. The visual representation of the device screen will
subsequently change to reflect the dimensions of the Nexus 7 device. If you have created a custom
AVD for another device, this may also be selected from the menu so that the design canvas matches
that device.

To change the orientation between landscape and portrait simply use the drop down menu

4. Creating an Example Android Application 39

immediately to the right of the device selection menu showing the icon.

In the center of the panel is the graphical representation of the user interface design, now within
the context of a Nexus 7 device. As can be seen, this includes the label that displays the Hello World
message. Running down the left hand side of the panel is a palette containing different categories of
user interface components that may be used to construct a user interface, such as buttons, labels and
text fields. It should be noted, however, that not all user interface components are obviously visible
to the user. One such category consists of layouts. Android supports a variety of different layouts
that provide different levels of control over how visual user interface components are positioned and
managed on the screen. Though it is difficult to tell from looking at the visual representation of the
user interface, the current design has been created using a RelativeLayout. This can be confirmed by
reviewing the information in the Outline panel that, by default, is located on the upper right hand
side of the Eclipse main window and is shown in Figure 4‑14:

Figure 4‑14

As we can see from the outline, the user interface consists of a RelativeLayout parent that has as a
child the TextView object.

The first step in modifying the application is to delete the TextView component from the design.
Begin by clicking on the TextView object within the user interface view so that it appears with a
blue border around it. Once selected, press the Delete key on the keyboard.

From the Palette panel, select the Form Widgets category if it is not already selected. Click and drag
the Large TextView object and drop it in the center of the user interface design (green marker lines
will appear to indicate the center of the display):

4. Creating an Example Android Application 40

Figure 4‑15

Right-click over the TextView and select Edit Text… from the menu. When developing applications,
attributes and values such as text strings should be stored in the form of resourceswherever possible.
Doing so enables changes to the appearance of the application to bemade bymodifying resource files
instead of changing the application source code. This can be especially valuable when translating
a user interface to a different spoken language. If all of the text in a user interface is contained
in a single resource file, for example, that file can be given to a translator who will then perform
the translations and return the translated file for inclusion in the application. This enables multiple
languages to be targeted without the necessity for any source code changes to be made. In this
instance, we are going to create a new resource namedwelcomestring and assign the string “Welcome
to Android” to it. In the Resource Chooser dialog that is currently displayed, click on theNew String…
button and in the resulting Create New Android String dialog enter “Welcome to Android” into the
String field and welcomestring into the New R.string field before clicking on OK. On returning to
the Resource Chooser, make sure welcomestring is selected before clicking on OK.

Once changes have been made to a file within Eclipse, it is important to remember to save the
changes before moving on to other tasks. This can be achieved by selecting the File -> Save menu
option, or by using the Ctrl-S keyboard shortcut. Eclipse also allows multiple files to be open for
editing simultaneously. Each open file is represented by a tab along the top edge of the editing
panel. To close an open file, simply click on the X next to the file name in the corresponding tab.

When there is insufficient space to display a tab for each open file, a >> symbol appears to the
far right of the tab bar together with a number indicating the number of open files beyond those
currently visible. Clicking on this will display a dropdown list of all open files. Figure 4‑16, for
example, shows tabs for three currently open files together with an indication that another seven

4. Creating an Example Android Application 41

files are open but not visible. The drop down menu shows the names of all ten open files:

Figure 4‑16

Double clicking on a tab will cause that editing session to expand to fill the entire Eclipse window.
Double clicking a second time reverts the panel to its original size. Clicking and dragging a tab
outside the Eclipse window results in the editing session for the corresponding file appearing in an
entirely separate window on the desktop.

Editing panels may be displayed side by side in a tiled arrangement by clicking and dragging a tab
to a location to the right or left of, or above or below an existing editing panel. As the dragging
motion approaches different locations, guidelines will appear indicating whether the editing panels
will be tiled vertically or horizontally.

The design is now complete so once again run the application in the emulator environment. This
time the larger TextView will appear in the center of the display containing the new string resource
value.

4. Creating an Example Android Application 42

4.9 Reviewing the Layout and Resource Files

Before moving on to the next chapter, we are going to look at some of the internal aspects of user
interface designs and resource handling. In the previous section, we made some changes to the user
interface by modifying the activity_android_test.xml file using the Graphical Layout tool. In fact,
all that the Graphical Layout was doing was providing a user-friendly way to edit the underlying
XML content of the file. In practice, there is no reason why you cannot modify the XML directly
in order to make user interface changes, and in some instances, this will actually be quicker than
using the graphical layout tool. At the bottom of the Graphical Layout panel are two tabs labeled
Graphical Layout and activity_android_test.xml respectively. To switch to the XML view simply
select the activity_android_test.xml tab as shown in Figure 4‑17:

Figure 4‑17

As can be seen from the structure of the XML file, the user interface consists of the RelativeLayout
component, which in turn, is the parent of the TextView object.We can also see that the text property
of the TextView is set to our welcomestring resource. Although varying in complexity and content,
all user interface layouts are structured in this hierarchical, XML based way.

Finally, use the Package Explorer to locate the res -> values -> strings.xml file and double click on it
to load it into the editor. Tabs at the bottom of the editor pane provide options to use the resource
editor (Resources) or to view the raw XML content of the file (strings.xml). Currently the XML
should read as follows:

4. Creating an Example Android Application 43

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">AndroidTest</string>

<string name="action_settings">Settings</string>

<string name="hello_world">Hello world!</string>

<string name="welcomestring">Welcome to Android</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the
welcomestring resource then run the application again. Note that the application has picked up the
new resource value for the welcome string.

4.10 Summary

Whilst not excessively complex, a number of steps are involved in setting up an Android develop-
ment environment. Having performed those steps, it is worth working through a simple example to
make sure the environment is correctly installed and configured. In this chapter, we have created an
application and then run it within an AVD emulation session. The Eclipse Graphical Layout tool was
then used to modify the user interface of the application. In so doing, we explored the importance of
using resources wherever possible, particularly in the case of string values, and briefly touched on
the topic of layouts. Finally, we looked at the underlying XML that is used to store the user interface
designs of Android applications.

Now that we have looked at running applications within an AVD emulator environment, the next
chapter will cover Testing Android Applications on a Physical Android Device with ADB.

	Table of Contents
	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Development Environment
	2.1 System Requirements
	2.2 Installing the Java Development Kit (JDK)
	2.3 Linux JDK Installation
	2.4 Downloading the Android Developer Tools (ADT) Bundle
	2.5 Installing the ADT Bundle
	2.6 Installing the Latest Android SDK Packages
	2.7 Making the Android SDK Tools Command-line Accessible
	2.8 Updating the ADT
	2.9 Adding the ADT Plugin to an Existing Eclipse Integration
	2.10 Summary

	3. Creating an Android Virtual Device (AVD)
	3.1 About Android Virtual Devices
	3.2 Creating a New AVD
	3.3 Starting the Emulator
	3.4 AVD Command-line Creation
	3.5 Android Virtual Device Configuration Files
	3.6 Moving and Renaming an Android Virtual Device
	3.7 Summary

	4. Creating an Example Android Application
	4.1 Creating a New Android Project
	4.2 Defining the Project Name and SDK Settings
	4.3 Project Configuration Settings
	4.4 Configuring the Launcher Icon
	4.5 Creating an Activity
	4.6 Running the Application in the AVD
	4.7 Stopping a Running Application
	4.8 Modifying the Example Application
	4.9 Reviewing the Layout and Resource Files
	4.10 Summary

